4-vectors and energy-momentum conservation

Exercise 1 Lecture: from $\widetilde{u} = \gamma(c, \vec{v})$ show that $\widetilde{w} = (\gamma^4 \vec{a} \cdot \vec{\beta}, \gamma^4 (\vec{a} \cdot \vec{\beta}) \vec{\beta} + \gamma^2 \vec{a})$.

Exercise 2 A rocket is in rectilinear motion with a constant proper acceleration a_p .

Initial conditions in the inertial frame *R*: at t=0, v=0, x=0 and $\vec{a}(t=0)=a_n\vec{i}$.

- 1) Give \widetilde{w}_R in the proper inertial coinciding frame of reference.
- 2) Apply the Lorentz boost to obtain the four-acceleration \widetilde{w}_R .
- 3) Demonstrate that $a(t) = a_p/\gamma^3$.
- 4) Find the expressions $v(t) = \frac{a_p t/c}{\sqrt{1 + (a_p t/c)^2}}$ and $\gamma(t) = \sqrt{1 + a_p^2 t^2/c^2}$.
- 5) Find the hyperbola equation $c^2 t^2 (x + c^2/a_p)^2 = -c^4/a_p^2$.
- 6) From $\tau = \int \gamma \, dt$ find for the proper time $\tau = argsh(a_p t/c)$.

Exercise 3 In the galactic inertial frame a rocket speed at the constant velocity 70% c. The rocket shoot a proton with an angle of 45° with respect the forward direction and a speed of 90% c in the rocket frame. Find the components of the proton velocity in the galactic frame using two methods:

- 1) Use the 4-velocity \tilde{u} and is covariance.
- 2) Demonstrate from the Special Lorentz Transform, and use the following formulas between the velocity expressed in R, $\vec{v} = (v_x, v_y, v_z)$, and in R', $\vec{v}' = (v_x, v_y, v_z)$:

$$\vec{v}' = \left| \frac{v_x - u}{1 - \frac{uv_x}{c^2}}, \frac{v_y}{\gamma \left(1 - \frac{uv_x}{c^2} \right)}, \frac{v_z}{\gamma \left(1 - \frac{uv_x}{c^2} \right)} \right| \text{ with } \vec{v}_{R'/R} = u \vec{i}$$

Exercise 4 2-Body decay

In the inertial reference frame R of the laboratory, a meson K^+ at rest decays into a meson π^+ and a meson π^0 . The masses at rest are $m_{K^+} = 987 \, m_e$, $m_{\pi^+} = 273 \, m_e$, $m_{\pi^0} = 264 \, m_e$, m_e is the mass of the electron, $m_e \, c^2 = 0.5 \, MeV$.

- 1) a) Write down the conservation equations.
 - b) Show that the energy of the π^+ obtained is: $E_{\pi^+} = c^2 \frac{m_{K^+}^2 + m_{\pi^+}^2 m_{\pi^0}^2}{2 m_{K^+}}$.
 - c) What is the momentum p_{π^+} of the π^+ ?
 - d) Find the numerical values of E_{π^+} in MeV and p_{π^+} in MeV/c.
- 2) R' is the proper frame of π^+ . Determine the velocity \vec{u} of this inertial frame with respect to R.
- 3) The charged pion proper mean lifetime is 26 ns, what is the lifetime and the distance traveled in the laboratory?