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We all have in mind Einstein's famous thought experiment in the elevator where we observe  
the free fall of a body and then the trajectory of a light ray. Simply here, in addition to the quali-
tative aspect, we carry out the exact calculation. We consider a uniformly accelerated reference  
frame in rectilinear translation and we show that the trajectories of the particles are ellipses  
centered on the horizon of the events. The frame of reference is non-inertial, the space-time is  
flat, the metric is non-Minkowskian and the computations are performed within the framework  
of special relativity. The deviation, compared to the classical case, is important close to the  
horizon, but small in the box, and the interest is above all theoretical and pedagogical. The  
study helps the student to become familiar with the concepts of metric, coordinate velocity, hori-
zon, and, to do the analogy with the black hole. 

1. INTRODUCTION

We imagine a portion of empty space infinitely distant from all masses. We have a large box in which an 
observer floats in weightlessness. With the help of a hook and a rope, a constant force is exerted on the box 
thus animated by a rectilinear translation motion uniformly accelerated. The observer then experiences an ar-
tificial gravity. We will study in the elevator's frame the motion of light, then of a massive particle, and, fi-
nally, we will do a comparison with the black hole during a free fall from rest. 

In the frame of the box, first inertial, a light beam propagates at speed  c 
along a straight-line trajectory. Then, the box is accelerated and a ray, initially 
perpendicular to the direction of motion, follows a curved trajectory. Let us 
quote Albert Einstein in his book Relativity [1] : «It can easily be shown that the 
path of the same ray of light is no longer a straight line ».

Following the birth of special relativity in 1905, the accelerated elevator 
thought experiment, proposed by Einstein as early as 1908, allowed to draw the 
analogy with gravity to develop an intuition and to guide the foundation of 
general relativity.  New theory of gravitation established in 1915 which then 
supplanted Newton's theory. This image was used to illustrate the principle of 
equivalence and to predict the deviation of light rays by a massive star. 

Nevertheless, the historical development of the theory should not hide an 
essential point: the deviation of a light ray in the accelerated elevator is fully  
explained within the framework of special relativity. Indeed, in the accelerated 
elevator frame of reference, spacetime remains flat, no gravitational field here, 
and the deviation of light rays is understood by a purely kinematic reasoning.

Fig. 1  The Einstein's elevator.

According to Einstein's second postulate, the speed of light in vacuum is constant and equal to c in all 
inertial frames of reference. A logical consequence of this postulate: in a non-inertial frame the speed of light  
can, a priori, be different than c 1. Another property: a free particle follows a rectilinear and uniform trajec-
tory in an inertial frame. Therefore, a free particle can follow a curved trajectory in a non-inertial frame. As  
we will show, this is precisely what happens here for the ray of light.

1 It remains, of course, that an object can in no case exceed the speed of light, and that the speed of light for a local Minkowskian  
observer is always equal to c.
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2. UNIFORMLY ACCELERATED REFERENCE FRAME

2.1. Coordinate system

We want to describe physics from the point of view of the accelerated observer. A reference frame is a 
physical entity to which we associate a coordinate system for localization. A uniformly accelerated reference  
frame R is defined as a set of observers who remain at rest with respect to each other in a hypothetical rigid  
three-dimensionnal structure. We imagine a continuous set of infinitesimal observers each equipped with a 
ruler and a clock [2,3]. An event is uniquely specified with the observer on whose worldline the event occurs. 
We decide to assign a set of three numbers  (x, y, z) to each observer and a number  t at each point on its 
worldline. For an inertial frame all the clocks can be synchronized and t corresponds to the proper time of 
each observer at rest in R'. For a non-inertial frame, this is no longer possible and each observer has a second 
clock called coordinate clock. However, the uniformly accelerated frame is still rigid, because the relation-
ships between the observers remain unchanged. We choose an observer O of R used as reference: x=0 and in 
his particular case the proper and coordinate times remain equal. We assign an x to each observer by shifting 
the ruler as much as necessary in the direction of the proper acceleration given by an accelerometer. We pro -
ceed in the same way in two orthogonal directions for y and z. O emits a periodic light signal and each of the 
other observers X equals the rate of its coordinate clock with the signal received from O. To synchronize all 
the coordinate clocks we use the radar method: O sends a signal at  t1 reflected by X and back to O at  t2. 
When the signal is reflected by X the time t=(t1+t2)/2 is assigned to its coordinate clock. A coordinate clock 
can be compared to a clock radio-controlled by O's proper clock.

The coordinate system has been built intrinsically with the non-inertial observers. To define a constant accel -
eration for O in an inertial frame R', we consider R' coinciding instantaneously with R and then it is easy to 
show that the proper acceleration ap is equal to the acceleration a of R' with respect to R. At this instant all 
the clocks are set to zero. If later at  t, a second inertial frame  R'' coincides with  R, the set of coordinate 
clocks of R will still be synchronized and we will be able to equalize their dates with the set of proper clocks  
of R'', however the set of proper clocks of R will no longer be synchronized especially as x is large.

When a particle passes close to an observer, to measure velocity and acceleration, he can use one or the other  
of his clocks: coordinate velocity and acceleration, vμ

=dxμ
/dt and aμ

=dvμ
/dt, or local, dxμ

/d τ and d 2 xμ
/d τ

2. 
In an inertial reference frame the speed of light is constant and we can indifferently measure distances with a  
ruler or a radar. In a non-inertial frame the coordinate velocity of the light varies and the distances measured 
by each method are generally different [4].

2.2. Metric and change of coordinates

In a non-inertial frame of reference the metric is non-Minkowskian. We consider the frame R in rectilin-
ear translation and uniformly accelerated with respect to R' inertial. We have the coordinate system (ct, x, y  
,z) and we give the metric for a constant proper acceleration a along the x-axis [5,6] :

For a particle:     d s2=c2d τ2=gμν d xμ d xν=(1+
a x
c2 )

2

c2 dt2−dx2−dy2−dz2     with    a⃗=au⃗ x            (1)

The calculation shows that all the components of the Riemann curvature tensor are zero  [7], so the spacetime 
is flat, and there is a global change of coordinates from R to R' [5] :

ct '=( x+
c2

a )sh( at
c ),      x '=( x+

c2

a )ch( at
c )−c2

a
,      y '=y ,      z '=z,                            (2)

with    u⃗ x '=u⃗ x,    x '( t '=0)=x ( t=0 )=0    and    v ' x'( t '=0 )=0.

We find the Minkowski metric in R' :   ds 2
=ds ' 2

=c2 dt ' 2
−dx ' 2

−dy ' 2
−dz ' 2.

To simplify the study, we use dimensionless quantities. For the distances, X=x/dH with the horizon distance 
dH=c2/a. For times, T=t/tH with the  horizon time tH=c/a. For an acceleration equivalent to the intensity of 
gravity at the earth's surface, the horizon quantities are approximately one light-year and one year. To further  
illustrate our point, we can associate the reference frame R' to the galactic reference frame where the stars are 
supposed to be fixed, and replace the elevator frame R by the rocket frame which makes an interstellar voy-
age. The hyperplane x=-dH defines the event horizon as a break in the causal link. The astronauts will see the 
Earth, their starting point, moving away then stopping at a light-year with a proper time frozen at one year.
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Fig. 2  Minkowski  diagram  in R' inertial.  The 
uniformly  accelerated  rocket  has  a  hyperbolic 
worldline.  We have  represented  the  coordinate 
lines of R' and R in R'. In both cases, the coordi-
nate lines of space and time are orthogonal. In 
this case, the rocket defines a rigid body of refer-
ence [2,5,3] with respect to which we can study the 
trajectory of the light rays.

The  proper  acceleration  felt  by  an  observer 
varies with x: a p=a/ (1+ X). 

Fig. 3  The worldlines of 12 particular rays in a 
Minkowski diagram (T', X', Y') with 
θ'(t'=0)=θ(t=0) as initial conditions. 
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3. RAYS OF LIGHT

Without losing in generality, we take as initial condition a light ray that enters the elevator when it has a 
zero speed in the inertial reference frame. All clocks are then set to zero, and the angle of entry of the ray is  
the same for all observers. The trajectories are all located in the plane z'=z=0.

3.1. Lateral rays

In R', the ray worldline equations are Y'=T' and X'=0. Also Y'=Y, hence we have  [7] :

X=1/chT−1,       Y =thT        and        ( X+1 )
2
+Y 2

=1                                      (3)

The ray of light traces a quarter circle of radius dH and center (-dH, 0). For a light ray d τ=0 then |β|=1+X  
with β=dL/dT . |β|≠1 because the coordinate system (x, t) uses different physical methods of measuring dis-
tance and time: rods for x and O's clock for t. The coordinate velocity of the light ray, initially equal to c, de-
creases and becomes zero on the horizon in an infinite time. As the components of the metric tensor depend  
on the point, the coordinate velocity corresponds to the proper velocity just for the particular observer O,  
whereas for an inertial frame this velocity keeps the same meaning for all observers. For example, for the  
uniformly accelerated frame, the notion of rigidity is maintained, but, on the other hand, we can no longer  
define a set of proper clocks synchronized on the worldline of a particle. For the observer O, the measure-
ments of his observers placed at different x's with their coordinate clock tell him that everything goes slower 
downwards, and faster upwards. This is why from his point of view light goes slower at the lower levels,  
while a lower observer measures, where he is with is proper clock, a speed of light well equal to c.

For comparison, we give the predictions of Newton's theory: X=−Y 2
/2 and β=√1−2 X. In this approxi-

mation the trajectory is parabolic and the speed of light increases towards infinity.

Fig. 5  On the right,  the speed of light which decreases and 
tends towards zero in  x=-dH. In classical  theory,  there is  no 
horizon and the speed of light increases.

Fig. 4  On  the  left,  the  circular  trajectory  of  the  ray 
traced on a vertical wall of the elevator. The deviation is 
greater than that of Newton's parabolic trajectory. At the 
level of the horizon the deviation is double.

3.2. Any rays

In general, the worldline of a ray in R' has for equations Y '=T ' sinθ '  and X '=T ' cosθ ' . The calculation 
gives  ( X+1)

2
+( Y−1 / tanθ )

2
=1 /sin2

θ. The ray of light describes a circular trajectory of radius  d H /|sin θ| and 
center (−d H , d H / tanθ ). The speed of a luminous ray, whatever the initial conditions of the trajectory, varies 
linearly with X. If X>0 the ray goes faster than c, and if X<0 the speed of light becomes less than c and tends 
towards zero when X tends towards -1.
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Newton's parabolic trajectory: X=−Y 2
/(2sin2

θ )+Y / tanθ. For example, if the light ray initially goes for-
ward, its speed first decreases, then the ray returns downward and its speed increases and tends towards in-
finity.

Fig. 6  In the (X, Y) plane, the trajectories of non-verti-
cal light rays are portions of circles centered on the hori-
zon. The rays thus arrive perpendicularly to the line of 
centers which is identified with the horizon. The grayed 
straight  lines  correspond to  the  inertial  trajectories,  in 
case the rocket  is  not  accelerated.  The gray parabolic 
lines are the Newtonian trajectories.

Fig. 7  Below is the Minkowski diagram in the non-iner-
tial reference frame (T, X, Y). Apart from the limit case 
θ=0, all the light rays follow a partially helical worldline 
that asymptotically joins the horizon plane  x=-dH in an 
infinite time t. The maximum deviation tends towards the 
half-turn for a ray emitted in the direction close to θ=0°.

For vertical rays β=dX /dT=±(1+X ) and worldlines have for equations Y=0 and T=±ln (1+X ). A notable 
difference from the classical theory is that the relativistic rocket cannot overtake the ray sent forward.
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4. NON-ZERO MASS PARTICLES

4.1. Trajectories and worldlines

The worldline of a particle in R' has for equations Y '=β0T ' sin θ '  and X '=β0T ' cosθ '  with β0 c the initial 
velocity.  The  calculation  gives  ( X +1 )

2
/ RX

2
+( Y−Y C )

2
/RY

2
=1 with  RX=a /dH=1 /√1−β0

2cos2 θ and 
RY=b /d H=β0|sin θ|RX

2. The particle describes an elliptical trajectory of semi-major axis a, of semi-minor axis 
b and center (−dH , β0

2sin θcosθ R X
2 dH ).

Newton's parabolic trajectory: X=−Y 2
/(2β0

2 sin2
θ )+Y / tanθ.

Fig. 9  On the right,  the Minkowski  diagram in 
the non-inertial reference frame (T, X, Y). World-
lines for v0=50 % of c. In bold the worldline for a 
particle released at rest.

Worldlines equations:

          {
X=

1
chT−β0 shT cosθ

−1

Y =
β0 shT sin θ

chT−β0 shT cosθ

         (4)

The intersection between a horizontal plane and 
the  tubular  worldsheet,  formed  by  the  set  of 
worldlines for  different  θ and a given  β0,  also 
forms an ellipse (dotted curve).

Fig. 8  On the left, in the (X, Y) plane, the trajectories of the parti-
cles are portions of ellipses centered on the horizon. The trajecto-
ries are perpendicular to the horizon line.

Although the underlying theory is known for more than a century, to my knowledge, the specific results ob-
tained here, an elliptical trajectory for a massive particle, and previously a circular trajectory for a ray of  
light, are new.

4.2. Velocity and acceleration for a particle released at rest

The initial speed of the particle is zero and the motion is vertical:

 {
X=

1
chT

−1

β=
dX
dT

=−
thT
chT

=−√1−( X+1 )
2
( X+1 )

A=
d β

dT
=

ch2T−2

ch3 T
=[ 1−2( X+1 )

2 ]( X+1 )

                                                      (5)
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We have:         vmax=
c
2

    at    X (vmax )=
1

√2
−1≃−0.3  [8,3]                      (6)

Initially the speed increases, then it decreases and tends to zero on the 
horizon. The acceleration is first negative, then zero and becomes posi-
tive. The elevator observer can initially interpret the metric effects as a  
inertial force similar to gravitation, but then his measurements will lead 
him to interpret a repulsive force as the particle approaches the horizon. 
These are spatiotemporal perspective effects experienced by the observer 
of the rocket. These metric effects due to the non-inertial character of the 
frame of reference are sometimes described in terms of fictitious forces, 
because the particle in R' inertial does not undergo any force and follows 
a rectilinear and uniform trajectory.

For Minkowskian observers, instantaneously at rest in successive inertial 
reference frames that coincide at every moment with R:

d t Mink=(1+ X )d t   then   v Mink(x vmax
)=c /√2≃71% c   also   vmax=v lum/√2     (7)

For the proper time, the metric gives  τ(X )=tH √1−(1+ X )2.  In the plane 
(τ/tH, X) we have a quarter circle. For example, when the falling speed is 
maximum, T=argch√2≃0,9 and τ/ t H=1 /√2≃0,7. And for the observer of 
the vessel at  O, the time of the object in free fall freezes, and tends to-
wards tH when the time of the clock at O tends towards infinity. When a 
free-falling observer crosses the horizon, apart from the breaking of the 
causal link with the vessel, nothing special happens and his proper time 
continues to elapse indefinitely.

Fig. 10  Top right, the Minkowski diagram in the non-inertial frame  (T, X). The 
cones indicate how the coordinate velocity of light varies with respect to c.

Fig. 11  Falling velocity of a particle released at rest from O 
at T=0.  In gray the classical case.

Fig. 1  Particle  acceleration  during  a  free  fall  in  the  uni-
formly accelerating reference frame.

4.3. Comparison with the black hole

To broaden our view we will look at another non-inertial frame of reference R defined by the Schwarz-
schild metric. We have an observer at far distance from a spherical, static, neutral and of mass M star. There 
is also a horizon and the velocity and acceleration curves show analogies. On the other hand space-time is  
curved, there is no global change of coordinates to an underlying inertial reference frame, tidal effects will be 
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present,  free  fall  is  no longer  adiabatic  because of  the  emission of  gravitational  waves,  and the metric  
changes during the fall if the body is of non-negligible mass in front of the main star  [9,10]. We will use the La-
grangian approach to determine the equation of motion. The free-falling particle maximizes its proper time 
and follows a geodesic. We limit the study to the adiabatic radial fall of a test mass with an velocity of zero 
to infinity. The differential equation is then solved by a numerical approach for the plotting of the curves. 

For a particle:   d s2=c2d τ2=gμ ν d xμd xν=g(r)c2 dt2−
dr 2

g(r )

    with    g=1−
rS

r
   and   rS=

2G M

c2             (8)

Lagrangian:  τ=∫ L(r , v)dt ,   L=√g−
β

2

g
  and   L−

∂L
∂ v

v=cst            (9)

We obtain:  β=−(1−
1
R ) 1

√R
   and   A=

d β

dT
=

r̈
aS

=
1

2 R2 (1−
1
R )( 3

R
−1)           

                                 with   R=
r
rS

,   T=
t
t S

,   t S=
rS

c
   and   aS=

c2

rS

    (10)

We have  vmax=2 /(3√3 )c≃38 % c at  r (vmax)=3 rS
 [11].  Here  too  the speed 

reaches a maximum and the acceleration changes of sign. The metric ef-
fects correspond to gravitation, they cannot be canceled over the whole 
space by a change of coordinates and they are well real.

For  Minkowskian  observers:   d tMink=√g dt  and  d rMink=d r/√g  then 
v Mink( rvmax

)=c/√3≃58% c  and  vmax=v lum/√3  with  v lum(rvmax
)=2 /3c.

For the proper time the metric gives τ(R)=2 /3 (R0
3 /2

−R3 /2) t S. For example, 

with the initial condition τ=0 when T=0 at R0=10, when the speed of fall 
is maximum, T≃21 and τ/ t S≃18. For an observer outside the black hole, 
the time of the falling object freezes on the horizon when the time of its 
clock tends towards infinity. Whereas for the observer in free fall, a finite  
proper time of about 2.8 tS elapses between the maximum speed and the 
crossing of the horizon, and, apart from the breaking of the causal link 
with the outside, nothing special happens during the crossing. Then 2/3 tS 

of proper time is added until  the singularity where the observer is de-
stroyed. 

Fig. 15  On the right, the acceleration of the particle in ra-
dial fall towards a black hole. In gray the classical curve.

Fig. 14  On the left,  falling velocity of a particle dropped 
without velocity from infinity.  In dark gray the curve ac-
cording to Newton's laws. Dotted the speed of light. In light 
gray, the speed for a local observer.
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5. DEVIATION MEASUREMENT

The difference is difficult to measure experimentally. We can have an accelerated rocket, but its width d 
is very small in front of the horizon distance dH, and, consequently, the observed deviation is tiny. The devia-
tion depends on the ratio D=d/dH and we perform a series expansions:

X=R X√1−( D−Y C )
2
/RY

2
−1≃

D
tanθ⏟

rect. traj .

−
D2

2β0
2 sin2

θ⏟
parabol .corr .

+
D3

2β0
2 sin2

θ tanθ
−[ D 4

8β0
4 ] θ=± π

2

+...
⏟

elliptical corrections

                   (11)

The term in D2 corresponds to the non-zero first order of the deviation due to the non-inertial character of the  
reference frame. The terms D3 and beyond correspond to the deviation between classical theory and special 
relativity. For d=10 m, a=10 m/s2 and θ=45°, we have |Δx|≃11 fm for the parabolic correction of a light ray, 
or, for the elliptic correction of a non-zero mass particle of velocity v0=10 m/s (bell shot). The deviation is 
extremely small and a direct measurement seems out of reach. 

On the other hand, with the precision of atomic clocks, the time deviation is ex-
perimentally accessible. For example, let's launch a clock upwards with a verti-
cal motion. Let us consider a maximum height reached of h=45 m. On its return, 
when the moving clock falls back in free fall to the level of the clock that re-
mained at X=0, with a=10 m/s2 and v0≃30 m/s, the time difference between the 
two clocks is Δt≃10 fs for a time of flight of 6 s: for θ=0 an expansion with re-
spect to β0 gives Δ t /t H=τ/t H−T≃β0

3 /3 with H≃β0
2 /2, and Δ t≃v 0

3 /(3ac 2 )  [7].

 

6. CONCLUSION

The calculations remain relatively simple and allow students to become familiar with concepts that are 
partly reused in general relativity. At the same time, this textbook case helps to avoid a lot of confusion in  
relativity. Pushing special relativity to its last non-inertial limits, where an underlying global Minkowskian 
framework persists, makes it easy to implement a progressive learning pedagogy. Moreover, the theoretical  
vision is broadened, and perhaps one day direct experimental verifications will be feasible. 

[1]  A. Einstein, Relativity, in Chapter A few inferences from the general theory of relativity, 1916.

[2]  C. Møller, The Theory of Relativity, Oxford, 1st ed. 1952, See on page 253.

[3] E.A. Desloge, R.J. Philpott, Uniformly accelerated reference frames in special relativity, Am. J. Phys. 55, 252, 1987.

[4] E.A. Desloge, Spatial geometry in a uniformly accelerating reference frame, Am. J. Phys. 57, 598, 1989.

[5] W. Rindler, Relativity, Oxford University Press, 2nd ed. 2006, See on page 71.

[6] C. Semay, Observer with a constant proper acceleration, European Journal of Physics, 27(5), 1157-1167, 2006.

[7] M. Rouaud, Special Relativity, A Geometric Approach, voyagepourproxima.fr/SR.pdf, 2020, See p. 243, 167 & 387.

[8] J. Dwayne Hamilton, The uniformly accelerated reference frame, Am. J. Phys. 46, 83, 1978.

[9] A. Spallicci, P. Ritter, A fully relativistic radial fall, Int. J. of Geom. Meth. in Mod. Phys. 11(10), July 2014.

[10] E.A. Desloge, Nonequivalence of a uniformly accelerating reference frame and a frame at rest in a uniform gravitational field, 
Am. J. Phys. 57, 1121, 1989.

[11] S.I. Blinnikov, L.B. Okun, M.I. Vysotsky, Critical velocities c/3 and c/2 in the general theory of relativity, Physics-Uspekhi, 
46(10), 1099–1103, October 2003.

[12] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman & Co., 1971, See on page 848.

[13] P. Tourrenc, Relativity and Gravitation, 1992, See on page 185.

 M. Rouaud, Worldlines in the Einstein's Elevator, voyagepourproxima.fr/WLEEv1.pdf, 2021.                                                    9/9

Fig. 16  Minkowski diagram (T, X) for 
a vertical launch. τ/ tH  as a function of 
X draws a circle arc.
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