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Foreword

Special relativity, presented in the article published 

by Albert Einstein in June 1905, has deeply changed 

our physical concepts. The well-established theories 

of the time, Newton's old mechanics and Maxwell's 

brand new theory of electromagnetism, were 

fundamentally incompatible. In the ,rst, there is an 

addition law for velocities, while in the second, an 

invariant speed is required: the speed of light in 

vacuum. In Newton's theory, in line with the relativity 

of motion introduced by Galileo, the speed of an 

object depends on the observational reference 

frame, so how could the speed of light in vacuum 

be a ,xed fundamental constant? For inertial 

frames, special relativity reconciles mechanics and 

electromagnetism, at the cost of calling into 

question the absolute nature of space and time. 

Space and time are now relative and form a new 

absolute: the space-time. The theories of matter and 

light are thus uni,ed in their natural spatiotemporal 

framework. Albert Einstein's historical approach is 

based on the constancy of the speed of light in a 

vacuum. The modern approach, which made it 

possible to build the Standard Model, is based on 

another logic: symmetries. This new approach is 

deeper and breaks free from the historical bias of 

the early 20th century. The structure of space-time 

imposes a speed limit. This maximum speed is 



speci,c to space-time and is not linked to a material 

object. This new constant is speci,c to the container, 

the space-time, and not to the content, for 

example, light rays. This new vision is conceptually 

very di5erent and sheds light on the true nature of 

physical laws. In this book, we focus on visual and 

graphical methods that help develop understanding 

without the systematic use of equations. This 

geometrical approach will be highlighted and will 

allow the reader to make sense of the equations 

that will follow. The path followed is not academic, 

but pragmatic and utilitarian. From the ,rst pages 

you will master the tools that will allow you to apply 

special relativity independently. We are not studying 

general relativity here. We specify this because 

confusion is frequent between the two theories. That 

said, for those who want to understand general 

relativity, you must ,rst have understood the special. 

General relativity deals with gravitation and is based 

on its own principles. Small notable exception, we 

will sometimes make analogies with the black hole 

to help delimit the two theories.
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 I. Time Dilation and Length Contraction

TIME DILATION AND
LENGTH CONTRACTION

In this chapter, we introduce special relativity and 

we present the ,rst geometrical tool: the triangle of 

times

.

 A. Units of Time and Distance

7    UNITS OF TIME AND DISTANCE

These two physical quantities, time and distance, 

are of di5erent natures. Impossible, for example, to 

say if a second is greater or less than a meter, that 

makes no sense. 

We can use a speed to link a distance to a time, but 

the speed depends on the observer; this link would 

therefore be perfectly arbitrary. It is always true in 

classical mechanics, but in special relativity we have 

a novelty, we have an invariant speed: the 

maximum speed. This fundamental constant makes 

it possible to unambiguously associate a distance 

with a time. This distance is called light-time. 

For example, the light-year corresponds to the 

distance traveled in vacuum by light during a year.

1
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The speed of light in vacuum is about a billion km/h, 

it is named c and is precisely ,xed at:

c = 299 792 458 m/s

It is the speed of any electromagnetic wave in 

vacuum, whether it be radio, infrared, visible, 

ultraviolet, X-rays or gamma rays. 

We specify well, in vacuum, because in a 

transparent material, such as air, water or glass, the 

speed is lower and depends on the wavelength.

A light-year, denoted l.y., is worth about 10,000 billion 

km. The star closest to our Sun, Proxima Centauri, is 

located about 4 ly. Our Sun is 8 light-minutes from 

Earth, the Moon is one light-second, and an adult 

human measures between 5 and 6 light-

nanoseconds:

1 l.ns. ≃ 33 cm

We can now freely compare distances and times, 

expressing the distances in units of light-time.

 B. Frames
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7    FRAMES

Any measurement of a physical quantity is carried 

out in a given frame of reference. 

The quantity can be a time, a distance, a velocity, 

an acceleration, a force, etc. 

The reference frame, as in Newtonian mechanics, is 

de,ned by a reference solid considered ,xed. 

For example, a train can be taken as a reference. 

More precisely, a wagon of this train makes it 

possible to locate any object. We consider, arbi-

trarily, a point of the wagon as the origin. Then, from 

this point, we count how many times we have to 

move, end to end, a rigid ruler of one meter in the 

direction front-back, right-left and up-down to reach 

this object. We get a set of three numbers that 

uniquely de,nes the position of the object. If the 

object is ,xed this will be suCcient, but if it moves, it 

will also be necessary to de,ne a date. We then 

have a set of four numbers called event:

E (x, y, z, t).

For the date, we must proceed more precisely than 

in classical mechanics. Time is no longer absolute, 

and instead of a single clock we must have a set of 

synchronized clocks over the whole space.

Depending on the case, we can use the terrestrial 

reference frame, the heliocentric reference frame, 

the galactic reference frame, etc.
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These frames of reference are in motion with respect 

to each other and for the same event we will have 

di5erent sets of coordinates.

 C. EINSTEIN'S POSTULATES

7    EINSTEIN'S POSTULATES

Albert Einstein postulates in his article of June 19051 

that the laws of physics are the same in all inertial 

frames of reference (1st postulate), and that in these 

same frames the speed of light in vacuum is 

invariant (2nd postulate) .

In Newtonian mechanics, for the statement of 

Newton's three laws, we did not speak of inertial 

frames but of Galilean frames, which amounts to the 

same thing. For example, in classical mechanics, in 

a frame rotating with respect to a Galilean frame, 

Newton's second law is no longer veri,ed and new 

forces, called inertial, appear. A rotating frame with 

respect to an inertial frame is therefore not inertial.

How to de,ne an inertial frame? A frame is inertial if 

the postulates are veri,ed. The simplest is to have a 

inertial frame of reference, then all the frames in 

uniform rectilinear translation with respect to this ,rst 

frame of reference are also of inertia.

1 “On the Electrodynamics of Moving Bodies”, June 30 1905, English 
Translation.
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The farther away we aim at an object, such as a 

distant star, the more its motion can be neglected. 

For example, extremely massive and very distant 

quasars, several billion light-years away, are taken as 

,xed points and make it possible to de,ne the 

cosmological reference frame. Fossil radiation, 

emitted 380,000 years after the Big Bang, 13.8 billion 

years ago, is homogeneous and isotropic in this 

frame of reference.

To come back to our train, if it runs in a straight line 

and at constant velocity in the terrestrial frame of 

reference, the reference frame of the train can be 

considered as inertial for an experiment of a few 

minutes. This duration is small compared to that of 

the rotation of the Earth on itself. This is a good 

approximation, and the terrestrial frame can be 

considered here as inertial. The more precise the 

measurements, the shorter the duration of the 

experiment for the approximation to remain valid.

For a satellite, the terrestrial frame of reference is no 

longer inertial. A low-Earth-orbiting satellite goes 

around in 1 hour 30 minutes, a not insigni,cant time 

compared to the Earth's rotation which lasts about 

24 hours. We then consider the geocentric frame of 

reference, with the origin at the center of the Earth, 

and in which the Earth is in rotation around its own 

axis relative to distant stars assumed to be ,xed.

5

In an inertial frame of reference, 

an object keep moving in a 

straight line at a constant speed 

when no forces act upon it.



Unable to position and date an event without landmarks. 

If you hide a treasure you will indicate its position relative 

to a point of origin: for example, "from the hundred-year-

old oak tree, 22 steps west, 47 steps south and dig at 

three feet." If I say that I was born in 1992, it is in reference 

to an origin date, placed arbitrarily as a common 

reference point. 

A reference frame is associated with a solid to which a 

chronology is added. A minimum of four ?xed objects 

relative to each other is required. For chronology, in 

special relativity a single clock is no longer suCcient: one 

can imagine a solid made up of rigid bars of unit length, 

all placed perpendicular to each other in order to form a 

three-dimensional network, and at each node of this 

network we place a clock; all the clocks are synchro-

nized, and the whole forms what is called a crystal of 

clocks.
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The largest object in the Universe is the Universe itself. Let's 

use it as a reference solid. In cosmology, the Universe can 

be seen as a Fuid of galaxies which extends everywhere: 

any point of the Universe can be considered as the 

center. But, two remarks: ?rst of all the Universe cannot be 

observed as a whole, because the further one looks far, 

the more one goes back in time. The oldest visible object 

is fossil radiation emitted 13.4 billion years ago when the 

Universe became transparent. Secondly, if we take a 

point where this fossil radiation is uniform, everything leads 

us to think that this point is motionless in the Universe. 

Image opposite,  the  data 

collected  by  the  COBE 

satellite  on  the  cosmic 

di5use  background. 

On the ?rst image we 

visualize the anisotropy due 

to the displacement of the 

Earth in relation to the 

cosmological frame  of 

reference, this is due to the 

Doppler e5ect and we thus 

evaluate a speed of 350 

km/s. 

In the second image, we 

have stray light from our own 

galaxy. 

Finally, at the very bottom, 

we get an image of the 

Universe at its beginnings: it is 

homogeneous in the cosmo-

logical frame of reference 

and we can use quasars for 

the directions.
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Thus the frames of reference nest one in the other: 

for the Voyager probe we consider the Copernic 

frame of reference, which has for origin the center of 

mass of the solar system and the directions of distant 

stars. For an interstellar journey to Proxima Centauri 

we will consider the galactic frame of reference. 

Indeed, over a journey of a few years or decades, 

the Milky Way and its stars can be assumed to be 

,xed; for example, our galaxy turns on itself in some 

250 million years, much longer than our journey to 

the stars2.

 D. The Triangle of Times

7    THE TRIANGLE OF TIMES

There is not an absolute, unique and universal time. 

Times are multiple and relative. Each observer, or 

object, lives his own time. Times are plural, each time 

follows its course, and, when we compare them, we 

see that they evolve at di5erent rates. These rhythms 

will be all the more di5erent the greater the relative 

velocity between two inertial frames of reference. 

For each inertial frame we can de,ne a unique time 

for a set of objects which are motionless with respect 

to each other.

Let us name R such an inertial frame of reference. 

Consider a ,xed point M1(x1, y1, z1) in R. At this point, 

2 Continuation of the reflection on inertial frames of reference in the 
conclusion of the course on four-vectors.
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two events occur at the date t1 and t2:

E1(x1, y1, z1, t1)    and    E2(x2=x1, y2=y1, z2=z1, t2).

For example, a lamp that turns on and o5. Second 

example, in the case of an interstellar journey, let us 

take for R the reference frame of a rocket, t1 
corresponds to the date of departure from the solar 

system, and t2 indicates the date of arrival near 

Proxima Centauri. Dates measured on a clock ,xed 

relative to the rocket.

The duration between the two events is ∆t = t2 - t1.

If we now measure the four coordinates of these two 

events from a second inertial frame R', in uniform 

rectilinear translational motion at the velocity ⃗v with 

respect to R, we measure a second duration ∆t' = t'2 
- t'1 .

From the point of view of R', the events E1 and E2 
have space-time coordinates (x'1, y'1, z'1, t'1) and (x'2, 

y'2, z'2, t'2), and now occur at two distinct points 

M'1(x'1, y'1, z'1) and M'2(x'2, y'2, z'2). The ,rst duration ∆t 

is called proper time, because the events are at rest 

in R; the second duration ∆t' is called relative time, 

because the events are moving with respect to R'. 

The reference frame R' will have traveled, with 

respect to R, the distance ∆x' = x'2 - x'1 during ∆t' 

(case where the x-axes are oriented along ⃗v).

We then have the triangle of times which allows us 

to answer many of our questions:

9



We use this triangle as a starting point to build 

special relativity. Later we can demonstrate its 

validity using Einstein's postulates or symmetries.

 

We can memorize it in the following form:

The

Triangle

of

Times
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The triangle of times is easy to remember and apply. 

Take the case of an interstellar journey Sun - Proxima 

Centauri and use a card game to solve the 

problem.

The base of the right triangle is the distance in light- 

years. We place one card per light-year, so, here 

horizontally, four cards. Then we vertically place the 

number of cards that correspond to the travel time 

for the astronauts, one card per year. 

We decide to complete the trip in three years, 

measured with a clock at rest in the frame of 

reference of the vessel. 

How long will the journey measured from the 

galactic frame of reference last? It's simple we 

count the number of cards needed for the 

hypotenuse:

Relative time is 5 years and proper time 3 years. The 

triangle of times allows you to directly visualize the 

time dilation: γ=Δt ' /Δt.

Here, the gamma factor is 5/3. The speed of the 
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vessel is in R': v=Δx ' /Δt '. Here, the speed is 4/5 of 

the limit speed so 80% of c. As the hypotenuse is the 

longest side, time can only expand, and the speed 

of light in vacuum cannot be exceeded.

The ,rst two exercises on page 25 allow you to 

familiarize yourself with these concepts.

 E. Length Contraction

7    LENGTH CONTRACTION

We previously envisioned a trip from the Sun to 

Proxima that lasts 3 years for astronauts. We could 

ask ourselves: «The ship takes three years while light 

takes four years, so we go faster than light!?» 

Question that comes up regularly among students 

at the time of the introduction to special relativity.

This is of course not the case. Rather, it should be 

reformulated as follows: if a terrestrial observer sends 

a light pulse with a laser, he will have to wait for his 

clock to indicate four years elapsed before the ray 

reaches Proxima Centauri; while an observer 

traveling at 80% c will have to wait for his clock to 

indicate three years elapsed before joining Proxima. 

And the terrestrial observer will observe well the 

vessel arriving after the ray, just as the astronaut 

leaving at the same time as the ray will never 

exceed it. To be logical, all reasoning must be 

carried out in a ,xed frame of reference. If we 

change the frame of reference, we change our 

12



3 The discussion will be prolonged and deepened when studying four-
vectors and four-velocity.
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All the triangles are in the same proportions, and the 

light-time measured in R is the shortest. 

The Sun-Proxima distance measured from the vessel 

is 2.4 ly.

 F. SpatioTemporal Perspective Effect

7    SPATIOTEMPORAL PERSPECTIVE EFFECT

Suppose the astronaut's heart beats at 60 beats per 

minute. If the time dilation is two, from the point of 

view of observers on Earth, his heart beats more 

slowly, once every two seconds. And if for another 

observer the gamma is equal to three, there will be 

a beat every three seconds according to the latter. 

But it goes without saying that for the astronaut, from 

his point of view, his heart beats quite normally, once 

a second. Its frame of reference is inertial as for the 

other two observers.

Also, by the relativity of the motion, the astronaut 

who observes the inhabitants of the Earth will have 

the impression of a symmetrical slowing down. 

It should be noted that this slowing down of the 

clocks is the same whether one moves away or that 

one approaches. This phenomenon is di5erent in 

nature from the Doppler e5ect, where, when a 

source approaches, the received signal is of higher 

frequency, and when the source moves away, it is 

lower.

A classic confusion consists in confusing what we 

see with what is. When you look at a star, you see 
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the light that it emitted many years ago, possibly not 

there anymore, or even not existing. Yet sponta-

neously when we look at the starry sky we feel 

united to the cosmos, here and now. This illusion 

stems from our daily habits in a world where 

maximum speed is very high compared to our 

routine motions. We can assume the instantaneous 

propagation of light, we see what is. If the speed 

limit were 10 km/h, we would be used to these 

di5erences. Often we imagine ourselves watching, 

with the naked eye or with a terrestrial telescope, 

the astronaut in his vessel moving away and 

performing his motions in slow motion, but this 

thought experiment is false, it is not about that.

We do not «see», we measure with the crystal of 

clocks. The ,rst time you apprehend it, the approach 

may seem somewhat conceptual, but with practice 

it becomes natural, and you stop saying that you 

see the clocks slowing down. It is necessary to have 

in mind the two reference frames of inertia such as 

meshes, one immobile, and the other in motion, and 

imagine the two successive events and the dates 

recorded locally by each of the synchronized clock 

crystals.

However, we can make analogies with spatial 

perspective e5ects. When you look at someone in 

the distance, he is very small, you can look at him 

from head to toe between two ,ngers. He can do 

the same, it's symmetrical. There is a contraction of 

the lengths, and nobody imagines the phenomenon 

15



as real, the other is not small like a smurf.

The contraction takes place in all directions. 

Another perspective e5ect that produces a 

contraction of the lengths: the rotation. When I show 

you a book from the front, then I turn it 90° on a 

vertical axis, you only see its edge, and the cover 

has reduced in size to zero during the rotation. The 

apparent contraction occurred horizontally only. 

In special relativity, the two observers are in motion 

with respect to each other, and it is this motion that 

simultaneously creates the contraction of lengths 

and the dilation of time. The lengths are only 

contracted in the direction of the relative velocity. 

We recall that, unlike previous analogies, it is not 

what we see but what we measure.

Contrary to what we sometimes hear, it is not a 

spatiotemporal rotation. We will see the transfor-

mation to be performed between the coordinates 

(x, y, z, t) of R and (x', y', z', t') of R' in the chapter 

Changing reference frame, this is not a rotation.

16



 G. Twin Experiment

7    TWIN EXPERIMENT

This is a thought experiment proposed by Paul 

Langevin in 1911. We hope that one day we will 

have a space-time ship to make it happen! 

Although not performed with real twins, it has, for the 

moment, been performed with atomic clocks. We 

sometimes talk about the twin paradox, but it is a 

reality, not a paradox; this misleading name comes 

from  misunderstandings.  Langevin, the main 

defender of relativity in France at the beginning of 

the 20th century, did not speak, at the Bologna 

Philosophy Congress in 1911, of paradox, or of twins... 

but of a Jules Verne-style voyage by cannonball! It is 

the mathematician and physicist Hermann Weyl 

who speaks of twins in 1918. It is the philosopher 

Henri Bergson who devotes an entire book, 

published in 1922, on special relativity, which speaks 

of paradox and gives an erroneous interpretation of 

the experience.

Now let's explain this experiment. We take two twins 

as they celebrate their 20th birthday on Earth. Right 

after the birthday, they leave each other, one stays 

on Earth and the other leaves for Proxima at 80% c. 

According to the triangle of times, we have 5 years 

elapsed for the twin who remained on Earth and 3 

years for the one who travels to Proxima. Then the 

traveling twin returns to Earth, which doubles the 

times. The twin on Earth is now 30 years old and the 

17



one who has made the round trip 26 years. Our twins 

are no longer the same age.

The image is striking because the two twins can 

directly compare their two clocks with a di5erence 

of four years. It is less abstract than a measurement 

via a crystal of clocks. The postulates of special 

relativity consider inertial frames of reference. We 

can at some point have the clocks of two di5erent 

frames coinciding, but then they just move away 

from each other at constant speed. Thus, the twin 

experiment cannot be understood on the basis of 

Einstein's ,rst two postulates alone.

We see a cumulative e5ect of time dilation on the 

round trip, why not also a cumulative e5ect of 

contractions: a younger and Sattened astronaut...!? 

Time and space do not have equivalent natures: a 

left-right motion can be compensated by a right-left 

motion, for time it is impossible, there is the principle 

of causality and one can only go from the past to 

the future, one can only move forward in time and 

the proper times are added.

Before concluding on the twins' experiment one last 

point. Doesn't it seem absurd to you that the traveler 

leaves just like that at 800 million km/h, implied 

instantaneously? It is of course impossible, a physicist 

is only interested in physically acceptable situations, 

it would require in,nite energy and the force due to 

the acceleration exerted would also be in,nite. In 

short, even if the acceleration phase lasted a few 

seconds, it is not conceivable that such a powerful 

reactor could exist, and the occupants would simply 

18



be crushed... The spaceship actually sees its speed 

increase continuously, which can be modeled by a 

succession of inertial reference frames of increasing 

velocities. 

A new postulate completes special relativity, it is the 

clock hypothesis which has been veri,ed experi-

mentally:

Two clocks of the same instantaneous speed v, one 

being accelerated and the other not, undergo the 

same time dilation factor  γ.
The clock measures the proper time and we add the 

times of the traveler over the whole of his space-

time round trip:

τ=∫d τ=∫ d t '
γ

The proper time is the time measured by a clock at 

rest in relation to the phenomenon to be studied. 

We had called it Δ t, but often to emphasize its 

peculiarity we use the Greek letter τ. On the other 
hand, measuring a relative time requires two 

di5erent clocks previously synchronized.

It is thus possible, without ambiguity, to calculate the 

actual time taken by the traveler for the round trip. 

Calculation made from the galactic inertial frame 

R'. Note that if we do the calculation from another 

inertial frame of reference R'' we would ,nd the 

same proper duration τ. 
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On the other hand, a direct calculation is impossible 

from the reference frame of the vessel because this 

one is not of inertia4.

Joseph Hafele and Richard Keating, in 1971, experi-

mentally verify the «clock hypothesis», the third postulate 

of special relativity. With few resources and a lot of 

perseverance, they went around the world twice, one to 

the east and the other to the west. They were in 

commercial planes with atomic clocks and many 

passengers. On the way back, they compare with a 

clock that has remained on the ground5. 

Photo: Time Magazine, October 18, 1971.

Training: exercises 3, 4 & 5 on page 26.
 H. Use of Equations

4 The calculation can be done from the point of view of the 
accelerated reference frame using the non-Minkonskian metric 
given on page 143.

5 L'expérience cruciale de Hafele et Keating by Pierre Spagnou, pdf, 
27 pages, March 2018.
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7    USE OF EQUATIONS

The triangle of times, page 10, gives by application 

of the Pythagorean theorem : 

(Δt ' )2=(Δt )2+( Δx '

c )
2

   besides   γ=
Δt '

Δt
   and  v=

Δx '

Δt '
 

then    (γ Δt )2=(Δt )2+( v

c
γ Δt)

2

    and    γ=
1

√1−( v

c )
2

we also note beta : β=
v

c
 which expresses the speed 

with respect to c,

 So, we have the following relation for gamma:

 γ=
1

√1−β2

Knowing this expression of the gamma factor by 

heart makes it possible to do without the triangle of 

times.

Training: exercises 6 to 9 on page 28.
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◦ Transformation of volumes and angles

• Volumes : Only the lengths along the direction of 

the relative velocity between the two frames of 

reference are contracted. Let us take the case of a 

rectangular parallelepiped along the axes (Oxyz) at 

rest in R, then if ⃗v=v i⃗: Δ x '=Δ x /γ, Δ y '=Δ y and 

Δ z '=Δ z,

from where :   V '=V
γ  .

True relationship whatever the shape of the object. 

Indeed, any object can be decomposed into 

in,nitesimal parallelepipedal volumes each con-

tracted by the same factor γ, the integral, sum of 

in,nitesimals, is therefore also. 

A cube in R Sattens in R' while keeping the same 

section perpendicular to ⃗v. A sphere in R Sattens in 

the direction of ⃗v in R'.

The distance measurement protocol ensures that 

each position of the object is measured at the same 

time t' in R'.

This is of course only a perspective e5ect, nothing 

physical here, if for example the cube is a box which 

contains a gas, this one is not compressed and no 

risk that this one lique,es!

Concerning what is seen by an observer, there is a 

new deformation due to the propagation of light 
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rays to the point of observation. The distance from a 

point of the object to the observation point varies 

and the object photographed on a sensor consists 

of light points which correspond to di5erent instants 

t' at the level of the object, the measurements are 

not then simultaneous in R'. This more subtle aspect is 

discussed in the chapter The Appearance of Things.

• Angles : Consider a right triangle. A side of length 

Δx along ⃗v, and a second perpendicular along y 

and of length Δy. We measure the angle θ between 

the side of length Δx and the hypotenuse. The 

triangle is at rest in R and tanθ=Δ y /Δ x. In R': 
tanθ '=Δ y ' /Δ x '. Δ x '=Δ x /γ  and  Δ y '=Δ y  then:

      

tanθ '=γ tanθ

 

When you see a star in the sky, you measure its 

position using angles. These angles are modi,ed by 

the motion of the Earth in its orbit in the galactic 

frame of reference. The apparent angle θa under 

which we see a star is not simply the angle θ' 

because we must also take into account the 

propagation of light rays to our telescope. The color 

of a star is also modi,ed, see the chapter The 

Appearance of Things for more details.
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 I. Exercices
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Exercises

Methods of resolution:

           (card game) 

          (ruler, triangle, protractor and compasses)

       (equations) 

DiCculty : ▲△△ (simple) / ▲▲△ / ▲▲▲ (complex)

Data :

Speed of light (vacuum) ≃ 300 000 km/s 

Distance Sun-Proxima ≃ 4 light-years 

Distance Sun-Barnard ≃ 6  light-years

Distance Sun-Sirius ≃ 9  light-years

Radius of the Earth ≃  6 400 km

1.  ▲△△ The Crystals of the Pop exomoon

In the galactic year 2110, you undertake the Sun-

Barnard voyage to study the crystals of the Pop 

exomoon. After eight years in your rocket, you land 

on Pop. In what galactic year are we then, and 

what was the speed of your rocket?

Answers page 337.
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2.  ▲△△ One-way ticket for Sirius

It is decided, in 2154, for your 30 years, you will leave 

for Sirius with the antique ship β6 of your friend Zu. 

Too eager to change air and make a new start. The 

ship is not very fast, but spacious and comfortable. 

At what age will you arrive, and will you be able to 

attend the festival of the two suns of 2168, or will you 

have to wait for the one of 2178?

Dream Series β6: model 2110-2124 / Speed 60% of c.
Answers page 337.

3.  ▲△△ Parcel delivery

Your job? The delivery of parcels throughout the 

galaxy. And you are the ,rst on the market because 

you have the fastest SpaceTruck! 

"... to trade between the Sun and Proxima, I only 

need 4 years of travel time for the round trip. And a 

pro?t of 5 million Blings, imagine how much money I 

make !!" 

How long does it take to deliver, what is the speed of 

the ship and the time dilation?

                                                  Answers p338.

4.  ▲▲△ Twin on his way to Sirius

Twins are 20 years old in 2132, the most intrepid 

leaves for Sirius and returns in 2156. 

How old are the twins then? 

What was the speed of the rocket?
Answers page 338.
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5.  ▲▲△ Cruel dilemma?

We are in 3021. Denys lives in the galactic center. He 

has just received terrible news: during his stay in the 

spiral arm of Perseus, he caught a virus, he will die in 

exactly 32 years, and there is no cure ... 

In addition to that, he has just received a very 

precise mission order: to defuse a gamma ray bomb 

located at 26 ly before it destroys the whole galaxy, 

explosion planned in 3052. 

And most important of all, to be there, at the center 

of the galaxy, for the great secular galactic 

celebration of 3082! 

Denys has a ship with a gamma equal to two. 

What can you o5er Denys? 
Answers p339.

  The use of equations is the most complete and 

general method. Nevertheless, we believe that its 

systematic use, from the very beginning of learning, 

makes it diCcult to understand phenomena 

intuitively. Moreover, the mathematical language to 

be mastered unnecessarily blocks many people who 

are passionate about physics. 

The equations are very practical in the two cases 

where the triangle of times is very stretched: for slow 

motions where the speed is very low in front of that 

of light, or, on the contrary, for fast motions where 

the speed is very close to the maximum speed 

(ultra-relativistic cases). 
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6.  ▲▲△ Muons

Cosmic rays are made up of high-energy particles. 

Many of those that hit the Earth's atmosphere are 

protons.  They come from the Sun, our galaxy and 

beyond. Fortunately for life on Earth, many of these 

particles are destroyed in the upper atmosphere 

and create showers of other, less energetic particles. 

We are interested here in the case of muons created 

in this way. When you are by the sea, an average of 

170 muons reach the ground per square meter per 

second. Every second that you take to read the 

statement of this exercise dozens of muons pass 

through you. 

Muons have a half-life t 1/2 of 1.5 microseconds. This 

means that if you take a large number of muons at 

rest, only half of them will remain after 1.5 Xs, and 

since they do not age, only a quarter will remain 

after 3 Xs, and so on. 

Let's take the example of a muon created at an 

altitude of 10 km and which moves vertically 

towards the ground with a speed of 99.9% c.

What do you think about the probability of this muon 

reaching the ground (sea level)?

Answers page 340.
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7.  ▲▲▲ High-speed train journey

In 2012, the longest high-speed train line is in China 

and connects Beijing to Guangzhou. Its length is 

2300 km and the journey time is eight hours. 

You have two atomic clocks. You synchronize them, 

then, you leave one of them at the station in Beijing, 

and, the other one accompanies you for your round 

trip Beijing-Guangzhou. 

On the return trip, what will be the time di5erence 

between the two clocks?

◦ Accuracy of on-board atomic clocks: 10 -14s/s.

◦ The trip is considered at constant speed, which will give 

a good approximation.

◦ A necessary mathematical tool here, a series expan-

sions: if epsilon is very small compared to one, ϵ≪1, then 

(1+ϵ)α≃1+αϵ. Here  1/√1−β2=(1−β2)−1/2≃1+
1

2
β2
.

Answers page 341.

8.  ▲▲▲ Satellite  

Let's consider a low altitude satellite, such as, the 

International Space Station. The satellite is placed at 

an altitude of 500 km and travels at 27,000 km/h in 

the geocentric reference frame. This frame of 

reference is considered to be inertial in this exercise. 

One clock is placed in the International Space 

Station and a second is kept motionless in the 
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geocentric frame of reference. Synchronization and 

time comparison protocols are perfectly respected. 

What is the time di5erence after a revolution?

◦ The satellite's frame of reference is not inertial and we 

apply the clock hypothesis.

◦ Unlike Hafele and Keating's experience, the clocks 

remain at a constant altitude, so we don't have to take 

into account the e5ects of gravity.

Answers page 342.

9.  ▲▲▲▲ Hafele-Keating experiment

Here we will try to ,nd the results of Hafele and 

Keating established in 1971. 

For a round-the-world trip to the east, they found 

that the onboard clock aged less than about 60 ns 

compared to the clock on the ground, on the other 

hand, for a round-the-world trip to the west, the 

onboard clock aged more by about 300 ns. 

We simplify the problem, only one plane is enough 

to go around the world. The Sight is equatorial at an 

altitude of 10 km. The plane has a speed of 1000 

km/h from the ground. At the equator, the ground is 

moving at 1674 km/h relative to the geocentric 

reference frame, here considered Galilean. The 

takeo5 and landing phases are considered fast 

enough to be neglected. 
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Concerning gravitation, time slows down when 

gravitation increases:

Δt '=(1+ gh

c
2 )Δt,  h : altitude,  g = 9.81 m/s2

Δt ' is the time spent in altitude,  Δt on the ground.

(general relativity in the weak-,eld limit)

You can imagine three clocks, the ,rst stationary in 

the geocentric reference frame, the second at rest 

in the plane and the third on the ground. 

Are your results in agreement with those of the 

experiment carried out in 1971?

Answers page 342.
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 II. SpaceTime Diagram

SPACETIME DIAGRAM

After the triangle of times, we present here a second 

geometrical tool, a diagram, which broadens our 

vision of space-time, gives a synthetic representation 

of situations and makes it possible to answer a very 

large set of questions.

 A. Worldlines

7    WORLDLINES

The triangle of times is enough to study the motion of 

a single moving object with constant velocity. When 

the velocity of the object varies, or we have several 

moving objects, we prefer space-time diagrams. For 

example, for the twin experiment, the traveling twin's 

direction of velocity changes between the outward 

and return journey. 

The world-line of an object contains all of its physical 

information: all of its positions through time, and 

therefore the evolution of its velocity, acceleration 

and force exerted on the particle. 

A worldline represents the set of events experienced 

by an object.
 B. Minkowski Diagram
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7    MINKOWSKI DIAGRAM

The spacetime diagram is often called a Minkowski 

diagram in the context of special relativity. In the 

case of a rectilinear motion, a spatial axis is suCcient 

and the diagram will be represented in a plane. The 

horizontal axis represents the x-coordinate of the 

object and the vertical axis the time t. Each point in 

the diagram corresponds to an event. Point O 

corresponds to the origin event — both temporal 

and spatial.

Let's start by considering the motion of a photon 

which "passes" by O and which goes to the right. The 

successive events "experienced" by the photon 

create its worldline. We graduate the axes in natural 
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space-time units and we choose the year as the unit 

of time.

A year ago the photon was located one light-year 

to the left, it is now here, it will be one light-year to 

the right in a year, etc.

In addition, we consider a second photon, which 

also passes through the origin, but which moves in 

the other direction, from right to left. The two photon 

worldlines are shown in dotted lines and are often 

present to aid the reading of Minkowski diagrams.

In the case of an immobile particle in the 

observational frame of reference, the worldline is a 

vertical line oriented upwards.

On the following diagram we have the world line of 

an object at rest in the observational frame of 

reference and located one light year to the right of 

the origin of the frame.
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We now consider the general case of a particle 

which passes through O and moves to the right with 

a constant velocity v. As a particle cannot go faster 

than light, the worldline is represented by a straight 

line of inclination intermediate between the vertical 

line (time axis) and the dotted line of the corres-

ponding light ray.

On this example, 

the object moves at 

50% of c, it travels 

one light-year in two 

years.
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We now know that there is dilation, the time for a 

moving object is not the same as for an object at 

rest. We take the example of a trip at 80% c. With 

the triangle of times we obtain the proper time τ 
which we add on the worldline of the moving 

object. The dilation of time appears clearly.
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For the twin experiment we visualize the two world- 

lines of each on the same diagram:

The worldlines are represented in the frame of refe-

rence of the twin who remained on Earth, more 

precisely the galactic frame of reference which is an 

excellent inertial frame of reference. We cannot 

directly reason from the reference frame of the 

traveler, the latter is not inertial because his velocity 

varies.
 C. Use of Equations
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7    USE OF EQUATIONS

Equation of worldlines

These straight line equations are used to determine 

dates and positions, appointments and reception of 

spatial messages. 

Ship passing through O and heading to the right at 

speed v:

v=
x

t
    then    t=

1
β

x

c
    with    β=

v

c

Ship passing through A and heading left at speed v':

t=−
1

β '

(x−d)
c
    with    β '=

v '

c

Photon passing through O and heading to the right:

t=
x

c

Photon which passes 

by B and goes to the 

left:

t=−
x

c
+ tB
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Angles

The more the speed increases, the more the world- 

line of the spaceship, initially vertical, inclines at an 

angle θ which tends towards 45° when the speed 

approaches the maximum speed c.

tanθ=
x /c

t
=β

β 0 0.1 0.25 0.5 0.6 0.8 0.9 0.94 1

θ 0° 6° 14° 27° 31° 39° 42° 43.3° 45°

γ 1 1.005 1.03 1.15 1.25 1.67 2.3 3 +∞
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Scale factor

On the worldline of the ship, the proper time axis, 

time passes more slowly and the graduations are 

more spaced.

OJ=1

OL=√1+β2
OJ

OJ '=γOL

OJ '=γ √1+β2
OJ

OJ '

OJ
=√ 1+β2

1−β2
=√2 γ2−1

v % of c 50 60 75 80 87 95 99 99.5

γ 1.15 1.25 1.51 5/3 2 3.2 7 10

OJ (t=1) 1 1 1 1 1 1 1 1

OJ' (τ=1) 1.29 1.46 1.89 2.13 2.6 4.4 10 14
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 D. Exercises

Exercises

 ╋ : resolution by Minkowski diagrams.

1.╋ ▲△△ Draw the Minkowski diagrams of 

chapter 1 exercises 1 to 5.
Answers p344.

2.╋ ▲△△ Interstellar communications

In the Twins Experiment page 17, when the traveling 

twin lands on the planet Proxima b, it takes a photo 

and sends it to Earth as an electromagnetic wave.

When will the twin on Earth receive the photo? 

Throughout the journey, the twin on Earth follows his 

brother's journey using a very powerful telescope. 

When will he see his brother land on the planet in his 

telescope?

If the twin on Earth looks through his telescope the 

moment his brother lands on Proxima b, 5 years after 

his departure, what does he see?

To send a birthday message to his brother when he 

lands on the exoplanet, when should he send it?

Make a Minkowski diagram that represents the 

worldlines of the twins and those of the photons that 

transmit the photo, the telescope images and the 

message.

Answers p347.
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3. ▲▲△  Call for help

A cruise ship with more than 10,000 people on board 

undertakes the Proxima - Earth crossing at the speed 

of 50% of light. 

Halfway through the journey, the ship calls for help. 

An emergency rescue shuttle leaves Earth at 90% c 

as soon as the electromagnetic distress message is 

received. 

How long will the passengers have to wait before the 

arrival of the help ?

Answers p349.

4. ▲△△ Tim, Tam, Tom

We are in a slow universe where the maximum 

speed inherent to space-time is 20 km/h. 

Tom, Tim and Tam are in the living room, the clock 

indicates 10 o'clock. They decide to meet there at 

11 o'clock. Tom stays there. Tim leaves to run at 10 

km/h. Tam goes to work at his oCce 10 light-minutes 

away with a bicycle that travels at 15 km/h 

Tim has to be back by what time indicated on his 

watch? 

How much work time will Tam have at his oCce? 

What time will his watch show when he returns? 

Answers p350.
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 III. Changing Reference Frame

CHANGING REFERENCE FRAME

We will consider a second inertial reference frame. 

The ,rst observational reference frame was the 

reference frame R of axes (x, y, z, t), a frame often 

associated with the galactic frame of reference in 

the context of interstellar journeys. 

The second frame of reference R' is in motion with 

respect to R, moved at a constant velocity. We say 

that R' is in uniform rectilinear translational motion 

with respect to R. For R' the origin is denoted O' and 

the axes (x', y, 'z', t '). 

R' is then also a reference frame of inertia, where the 

principles of special relativity apply. This frame of 

reference R' will often be associated with the 

spaceship.

 A. SPACETIME DIAGRAM

7    SPACETIME DIAGRAM

We will build step by step the 

axes of R' in the Minkowski 

diagram of R. The proper time 

τ on board the space-time 

vessel corresponds to the time 

t'. The axis O't' is thus identi,ed 

with the ship's worldline.
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The speed limit is the same in R and R'. This invariant 

shows that the axis O'x' is necessarily symmetrical 

with respect to the worldline of a light Sash that 

moves to the right and passes through O. We thus 

have the reference frame R' seen from the reference 

frame R :

Let's show on an example how the coordinates are 

read. From Earth, we record, 3 years after the depar-

ture of the spacecraft, a huge stellar eruption 

produced by the star Proxima Centauri located 4 

light-years away. The spacecraft is moving at 60% of 

c. In the reference frame of the spaceship where 

and when does the eruption occur? 

In the galactic frame of reference R the event E has 

coordinates (x=4, t=3). 

In the vessel frame of reference R' we read on the 
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Minkowski diagram that the event E has coordinates 

(x'=2.75, t'=0.75). The occupants of the ship will 

determine that the eruption occurred 9 months after 

their departure at a distance of 2.75 light-years. 

Nevertheless, the astronauts will see the Sare in their 

telescope well after 9 months. Indeed, following the 

eruption, it is also necessary to allow time for the 

light to propagate to the telescope and to the eye 

of the observers. To complete this we have drawn in 

gray the worldline of a light beam emitted by the 

Sare. It will ,rst be observed in the spaceship after 

about 3 and a half years of travel, and it will then be 

observed on Earth 7 years after departure.

In Minkowski's diagrams, the coordinates indicated 

for an event are taken from local recordings made 
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using the reference solid and the associated clock 

crystal. Propagation times are not included. 

All inertial frames of reference are equivalent in spe-

cial relativity and we can also represent R from R': 

 B. Relativity of Simultaneity

7    RELATIVITY OF SIMULTANEITY

In the case of the ship heading towards Proxima at 

80% c we had a 3-4-5 triangle of times. When the 

ship is at the level of Proxima 4 light-years away, 

before reducing its speed, 3 years have elapsed in 
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Simultaneity is relative to the frame of reference 

considered. In Newtonian mechanics, simultaneous 

events remained so in all frames of reference, in 

special relativity simultaneity is not an absolute 
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notion. In R, E1 and E2 are simultaneous, in R', E1 is 

earlier than E2.

 C. Causality

7    CAUSALITY

We can only go from the past to the future. It is pure 

logic, the cause produces an e5ect and not the 

opposite! The world is One, and this is only an 

obvious principle of consistency. If you could go 

back in time and travel in the past, you would 

destroy the present... 

For example, you go 50 years in the past and during 

this time travel you die in a car accident, or just your 

actions do that your parents don't actually meet, 

etc. If you want to travel to the past at all costs, then 

you would need several presents and suppose 

parallel worlds which realize all possibilities.

In physics, we choose the simplest theory to explain 

the facts, there is only one world, One reality, the 

past cannot be changed, the future does not pre-

exist, we cannot go back and the arrow of time is 

constantly advancing from the present to the future. 

Special relativity of course respects the principle of 

causality. Not as simply as in the old mechanics, but 

just as rigorously. The fact that there are several 

times, the possibility of traveling in the future, a 

relative simultaneity, can create a confusion that we 

will clarify immediately.
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Let us take any two events E1 and E2. If there is a 

causal link between them we can determine which 

event is prior, and this temporal ordering must be 

independent of the observation frame of reference. 

Two di5erent cases can occur, let us represent the 

events on a diagram in an arbitrary observation 

frame R.

First case: there is a possible causal link between E1 
and E2. The two events have a constant temporal 

order whatever the observational reference frame.

In R, E2 is subsequent to E1 because t2>t1.

We then consider R', a frame that is immobile with 

respect to R but with a new origin O' = E1.
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We note a possible causal link between the two 

events, for example a ship can connect the two 

points (its speed would not have to exceed the 

maximum speed), or a succession of events which 

propagate step by step like in a line of dominoes 

that fall and establish a causal chain.
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We can then place ourselves in the ship's proper 

frame R'', the chronological order is not changed 

and we always have E2 later than E1 and t2''>t1''.

Events E1 and E2 occur at the same place in R''. It is in 

this proper frame of reference that the time interval 

between events is minimal:  t2'' - t1'' = ∆t'' = τ < ∆t' = ∆t.

Second case: there is no possible causal link 

between E1 and E2. The temporal order is not 

de,ned, E1 is prior to E2 in one frame of reference, 

the reverse in another, and the events are 

simultaneous in a third. This does not call into 

question the principle of causality, because there is 

no possible cause and e5ect link between these two 

events.
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No material object or luminous object passing 

through E1 can join E2, and vice versa. No object 

can go faster than light. These two events are 

independent and cannot interact. Looking for a 

timeline between them does not make sense. There 

is no proper frame where these two events are at 

rest.

 D. Composition of Velocities

7    COMPOSITION OF VELOCITIES

Two ships hurtle towards each other at 75% of 

maximum speed. If you get into one of the ships, 

how fast will you see the other ship coming towards 

you?

If we had the additivity of the speeds as in classical 

mechanics we would ,nd 150% of c, speed above 
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the limit, which is, in fact, impossible. 

We are going to represent on a diagram the 

worldlines of the two vessels in the galactic 

reference frame R. The two vessels approach, cross 

in O, then move away. 

From the frame of reference R' of one of the two 

vessels, we measure the coordinates of the second 

and we will simply have its speed in R'.

The distance OG corresponds to t' and measures 

4.8 cm on the drawing. The distance EG corresponds 

to x' and measures 4.6 cm on the drawing. By 

dividing EG by OG we get the relative speed of the 

vessels:

v' = 96% of c
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 E. Use of Equations

7    USE OF EQUATIONS

◦  Lorentz transformation

For an event E, we want 

to express its coordinates 

(x',t') in R' in relation to 

that (x,t) in R.
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For t' :      t '=
OG

γ√1+β2
  

We have applied the scaling factor to go from R to 

R', a factor established in the previous chapter.

The coordinates of point G are given by the inter-

section of the two following lines:

 t=
1
β

x

c
      and      t−tE=β(

x

c
−

x E

c
)

(t' axis and straight line parallel to the x' axis which 

passes through E with a slope inverse to that of the t' 

axis) 

After solving this system of equations :

 tG=γ2(tE−β
xE

c
)      and     

xG

c
=β tG

So :   OG=√ tG

2+( xG

c )
2

=γ2√1+β2(tE−β
xE

c
)

And ,nally :   t '=γ(tE−β
xE

c
)

Proceeding in a similar way for x', we ,nd : 

x '

c
=γ(

xE

c
−βtE)

We obtain what is called the Lorentz transformation 

of the coordinates of an event. For a motion of R' 

with respect to Ox and the setting to zero of clocks 
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and spatial coordinates when they coincide in 

O=O', we can, without losing generality, write :

Lorentz

transformation

At t=0 and t'=0, O and O' coincide, then O' moves 

away to the right as time passes. On a Minkowski 

diagram, in full agreement with the one above, O 

and O' are no longer points but worldlines, the axis 

of t and the axis of t'. The origins O and O' indicated 

are the spatio-temporal positions at t=t'=0.
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x '

c
=γ(

x

c
−β t )

y '= y

z '=z

t '=γ(t−β
x

c
)



To get the coordinates in R from 

those in R', simply change the 

sign of the speed and thus β :

Within the limits of low speeds we ,nd the classical 

transformation of coordinates. Spatial and time 

coordinates are then disconnected to let space and 

time both absolute: 

Galilean

transformation

In this book we made the pedagogical choice to 

start from the triangle of times to construct the 

special relativity. We could also start from the Lorentz 

transformation. In what follows we ,nd the time 

dilation, the length contraction and the existence of 

a relativistic invariant using this transformation.
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• Time dilation: we have events that occur at the 

same location in  R, so  x2=x1 and  Δx=x2-x1=0, 

separated by a time interval Δt=t2-t1. What happens 

to this time interval in R' ? Δt'=(γΔt-βΔx/c) then 

Δt'=γΔt. QED

• Length contraction: we can imagine a ruler at rest 

in R placed on the x-axis,  L=Δx=x2-x1. The protocol for 

measuring a length in a given frame of reference 

requires to determine the positions of the ends at the 

same time in this frame. Measurement of the relative 

length L' in R' : Δx=γ(Δx'+βcΔt') and t'2=t'1 then L=γL', 

and L'=L/γ. QED

• Lorentz invariant: In classical mechanics we had 

two invariant quantities: length L=√Δ x
2+Δ y

2+Δ z
2 

and duration Δt.  Whatever the observational frame 

of reference, we had the Euclidean distance and 

the duration unchanged. This is no longer the case 

in special relativity. But we have another quantity 

that veri,es this property: Δ s
2=c

2Δ t
2−Δ x

2−Δ y
2−Δ z

2. 

Δs is the spacetime interval between any two events, 

it corresponds to a sort of Minkowskian distance.  

Its property of invariance is veri,ed by carrying out 

the calculation of Δs in a second inertial reference 

frame R' :
Δ s '

2=c
2 Δ t '

2−Δ x '
2−Δ y '

2−Δ z '
2

Δ s '
2=γ2(cΔ t−βΔ x)2−γ2(Δ x−βcΔ t)2−Δ y

2−Δ z
2=Δ s

2

We can write Δs2 as a function of the speed v of an 

object which joins the two events along a rectilinear 
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and uniform trajectory:

Δ s
2
=c

2
Δ t

2(1− v
2

c
2 )

Δ s
2 can be of di5erent signs, if there is a possible 

causal link between the events, vVc, Δ s
2 is positive or 

null and the interval is said to be timelike or lightlike 

(null vector), if it is negative, v>c, Δ s
2 is spacelike. 

When Δ s
2 is not spacelike, we can link the interval Δ s 

to the proper time  :

 τ=
Δ s

c
=Δ t √1−

v
2

c
2
 

Proper time is the fundamental notion on which 

special and general relativity is built. This measure of 

the aging of a particle is invariant and absolute, 

unlike the space-time coordinates (ct, x, y, z) which 

are relative and have no physical meaning in 

themselves.

◦  Composition of velocities

We use the notations in the 

,gure on page 61. β1 and β2 
are the speeds in R of starships 

1 and 2 expressed as a per-

centage of c. β' is the speed 

of vessel 2 in R'.
The ,rst equation is for the 

world line of ship 1 in R, the 
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t=

1
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x

c

t−tE=β1(
x

c
−

xE

c
)

tE=
1
β2

xE
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second for the line  (EG) and the third the 

relationship between the coordinates of a point E on 

the worldline of ship 2 .

The ,rst equation applied to point G gives:

OG=√ tG

2+( xG

c )
2

=√1+β1

2
tG

Besides :

tG−tE=β1(β1tG−β2 tE)     and     tG(1−β1

2)=tE(1−β1β2)

After some calculus, we have EG as a function of β1, 

β2 and tG. We calculate the relative speed:

 β '=EG /OG.

Then :

β '=
β2−β1

1−β1β2

   (vessels in the same direction),

β '=
β1+β2

1+β1β2

   (vessels in opposite directions).

We ,nd the good results for the two examples of the 

course:

β '=
0.75+0.75

1+0.75×0.75
=0.96    and    β '=

0.75−0.5

1−0.5×0.75
=0.4

In terms of speeds we have:   v '=
v1+v2

1+
v1 v 2

c
2

If the speeds are small compared to c, the 

denominator tends towards 1 and v '=v1+v2, we ,nd 

the classical additivity of the velocities again.
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Second method :  We reasoned with objects which 

move at constant velocities. We can do a more 

general calculation using the Lorentz transformation.

De,nition of the instantaneous velocities with 

respect to (x,t) and (x',t') in R and R' :

v= lim
Δ t→ 0

Δ x

Δ t
=

d x

d t
   and   v '=

d x '

d t '

these quantities should be noted vx and vx', we will 

write v and v'  for ease of reading.

From Lorentz's transformation:

x '=γ( x−β c t)  and  c t '=γ(c t−β x)  with  β=u/c

hence for in,nitesimal variations:

 dx '=γ(dx−β cdt ) and c dt '=γ(cdt−βdx)

And by dividing the two equations:

dx '

cdt '
=

dx−βc dt

cdt−βdx
, 

v '

c
=

v

c
−β

1−β
v

c

and v '=
v−u

1−
u v

c
2

u is the speed of R' compared to R.
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We can easily obtain the two other components of 

the velocity for y and z 6, but we limit ourselves here 

to the rectilinear motion.

◦  Transformation of accelerations

With respect to x and x' :    ax=
d v x

d t
  and  ax ' '=

d vx ' '

d t '

Simply noted a and a' thereafter.

a '=
d v '

d t

d t

d t '
=

a(1−
u v

c
2
)+(v−u)

u

c
2

a

(1−
uv

c
2
)

2

1

γ(1−
uv

c
2
)

(quotient rule)

Then :  a '=
1

(1−
u v

c
2
)

3

γ3

a

In the case where M is initially at rest in R' the initial 

velocity v is zero and   a '= a

γ3
.

6 Done in exercise on page 101 (composition of velocities and 
accelerations in 3D).
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 F. Exercises

Exercises

1.  ▲△△ Composition of velocities

a -  Two vessels are heading towards each other at 

50% of c. What is their relative speed? 

b -  Two vessels are moving in the same direction, 

one at 80% of c and the other at 50% of c. What is 

their relative speed? 
Answers p351.

2.  ▲▲△ Two vessels

Two spaceships A and B produce the following 

events in the galactic frame R :

EA ,1(x A=0 , y A=0 , z A=0 ,t 1=0)

EB ,1(xB=2 , y B=2 , zB=2 , t 1=0)

EA ,2(2 , 0 ,0 ,t 2=4 )     EB ,2(4 , 4 , 4 , t2=4)

EA ,3(4 , 0 , 0 ,8)           EB ,3(5 , 5 ,5 , 8)

Distances and times in light-years and years. 

R considered of inertia.

a -  What are the average velocities of the ships 

between t=0 and t=4 ?

Same question between t=4 and t=8.

b -  What are the average accelerations of the ves-

sels between t=0 and t=8 ?
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c -  Vessel A has a translational, rectilinear and 

uniform motion. We call R' the reference frame of 

vessel A. Is the frame of reference R' inertial? 

Determine the coordinates of the events of vessel B 

as seen from vessel A.

Can the trajectory of vessel B in R be rectilinear? Is it 

the same for the trajectory of B seen from R' ?

d -  In R', determine the average velocity of vessel B 

between t'1 and t'2, then between t'2 and t'3.

e -  In R', determine the average acceleration of 

vessel B.

f -  Could you determine the average acceleration 

felt by the passengers of vessel B?

g -  Accelerations are calculated here in ly/yr2, how 

to convert them into m/s2? 

Deduce the acceleration to which the astronauts 

are subjected as a percentage of the Earth's gravity 

,eld at sea level: g=9.81 m/s2.
Answers p351.

3.  ▲▲△ Low speeds limit

Two cars drive face to face at 90 km/h. What is their 

relative speed? Determine the di5erence with the 

classical limit.
Answers p356.
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 IV. The Appearance of Things

THE APPEARANCE OF THINGS

Sometimes we naively forget to take into account 

the duration of the propagation of the signals to our 

eye, as if we were spontaneously seeing spacetime 

as a whole.

We will begin by studying the Doppler e5ect where, 

due to relative motion, the color of objects is 

modi,ed. The color of light depends on the period 

of the light wave. This quantity is a time, and we 

could think that it is suCcient to take into account 

the time dilation. The perceived period would simply 

be multiplied by γ as the travel time in the twin 

experiment. Except that the twins end up in the 

same place and there is no delay due to the 

propagation of a signal at ,nite speed. For the 

Doppler e5ect the frequency will not simply be 

divided by γ, and moreover, it will di5er depending 

on whether the vessel is moving closer or further 

away.

After studying the Doppler e5ect, we will take 

pictures of a relativistic ruler, followed by a 

contemplation of the starry sky in a starship each 

time faster.
 A. Doppler Effect

75

4



7    DOPPLER EFFECT
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light, with a wavelength of 600 nm, emitted by a 

vessel moving at 60% c. To simplify, let's imagine that 

the vessel emits regular Sashes of light at the 

frequency of the wave. We have drawn the world- 

lines of these Sashes on a Minkowski diagram. We 

see on Earth the Sashes closer when the ship is 

approaching and further apart when the ship is 

moving away. The time between the reception of 

two Sashes corresponds to the period of the signal, 

we measure on the diagram, when the ship is 

approaching the Earth:

T=T'/2 so f=2f' and λ=λ'/2 then λ=300 nm,

the light received is in the ultra-violet.

When the ship moves away:

T=2T' so f=f'/2 and λ=2λ' then λ=1200 nm,

the light received is in the infrared.

◦ Use of equations
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Pythagorean theorem in OHA :

r+=OB=OH +HB=γ+√γ2(1+β2)−γ2

When moving away :  r+=γ(1+β)=√ 1+β
1−β

When getting closer :  r-=γ(1−β)=√ 1−β
1+β

In terms of frequencies, f=1/T :

f '=√ 1±β
1∓β

f    and    T=√ 1±β
1∓β

T '

Interval : 0<r<2γ

In the example of the course, β=0.6, γ=1.25 and the 

numerical application gives correctly f=2f' when 

transmitter and receiver are approaching, and f=f'/2 

when they are moving away.

The Doppler e5ect shows that the color of a photon 

is not an absolute quantity. A photon is neither red, 

blue, nor yellow, it all depends from where you look 

at it. Its wavelength depends on the observational 

inertial frame of reference and there is no privileged 

observer. 

A photon has other characteristics, such as chirality, 

which is intrinsic. A photon is either left or right and, 

unlike its color, it does not depend on the point of 

view. 

 B. Photograph of a Moving Ruler
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7    PHOTOGRAPH OF A MOVING RULER

A ruler moves at the velocity ⃗v in the observational 

reference frame R. A graduated optical bench, 

,xed in R, makes it possible to locate the position of 

the two ends of the ruler. The proper length of the 

ruler, in the frame of reference R' where it is at rest, is 

denoted L. The length in the laboratory is the 

contracted length L/γ. We take di5erent pictures of 

the ruler as it passes. On each photograph, we note 

the apparent length La, the di5erence between the 

abscissas of the two ends marked on the bench.

The contracted length corresponds to measure-

ments at the same instant t of the position of the 

ends, while the image of the ruler which appears on 
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the photographic plate is formed by photons which 

reach the sensor at the same instant and which, due 

to time of di5erent routes, were not emitted at the 

same time at the object level. 

We do not yet know how to make a camera with 

such sensitivity and such a short shutter time, but it is 

not out of reach given current advances in opto-

electronics. Second challenge, to animate a 

macroscopic object at a  relativistic speed. The 

thinking exercise is excellent anyway, as it allows us 

to deepen our understanding of the theory. 

Let us think in the laboratory reference frame R. The 

ruler of length L/γ comes from the right. The light rays 

emitted at the same time from the A and B ends will 

not reach the eye at the same time and will 

therefore not be in the same image. The ray emitted 

by B will arrive late. 

There is an earlier moment when the ray emitted by 

this end compensates this delay, it is the case of 

point C on the diagram. The apparent length is then 

greater than the contracted length.

When at t=0, the ruler is centered on O, the rays are 

emitted symmetrically and the apparent length is 

equal to the contracted length. This occurs for a 

photo taken at t≃1.7 ns (light travel time from D, or E, 

to M). 

For t positive, when the ruler moves away, the 

apparent length is instead smaller than the 

contracted length. 

80



Below we have the curve of the apparent length 

versus time t :

We can easily ,nd the extreme values. When the 

ruler is still far away, the delay of the light beam from 

C is about AC/c. Moreover the ruler moves at the 

speed v, so, to catch up, BC is worth v times the 

delay.

Then :   La=AB+BC=
L
γ +v

La

c
 

So :    La=
L

γ(1−β)
=L√ 1+β

1−β
≃75 cm

On the contrary, when the ruler moves away, to the 

limit of t+∞,
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HF

c
=

La

c
=

L/ γ−La

β c
,   and   La=L√ 1−β

1+β
≃5cm.

We ,nally ,nd the same kind of formula as for the 

Doppler e5ect with inverted e5ects :

La, t→±∞=L√ 1∓β
1±β

When an object gets closer, the perceived period is 

shorter and its length seen, in the direction of 

motion, is greater, on the contrary, when it moves 

away the perceived period is greater and its length 

seen smaller. 

We also had an inversion of behavior between time 

and space with time dilation and length 

contraction.

We just did the long-distance calculations. To ,nd 

the complete curve of the length on the photo-

graph as a function of time, we consider a three-

dimensional Minkowski diagram (x, y, ct).

The camera is represented by a vertical world line 

(0, D, ct). The optical bench by the world plane y=0. 

The ruler by an inclined world strip. The resolution of 

the problem is in principle simple: ,nd the inter-

section between the past light cone from the eye at 

time t with the world strip of the mobile ruler.

The intersection gives the position of the two ends in 

R : E1(x1, 0, ct1) and E2(x2, 0, ct2). We then have the 

apparent length La=x2 - x1. Except at O, we have well 

t1≠t2.
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The detailed calculation is left in exercise. The 

explicit expression La(t) is then given. The compu-

tation, although it only uses notions of space 

geometry as seen in high school, is a bit long.
 C. The Starry Sky Seen From the Ship
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7    THE STARRY SKY SEEN FROM THE SHIP

Let's determine the change in the perception of the 

starry sky as a function of the speed of the ship. In 

addition to the change in the perceived color of the 

stars by Doppler e5ect, their position in the sky is 

modi,ed, this is called the aberration of light. When 

we are at rest in the galactic frame of reference, the 

stars are, as a whole, motionless. To simplify, we will 

consider yellow and homogeneously distributed 

stars. 

Let's take the case of a star seen at rest in the 

galactic frame of reference perpendicular to the 

direction of motion of the spacecraft. Under which 

angle θa is this same star seen from the ship's frame 
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of reference?

We can make an analogy with the rain that falls, 

seen through the windshield of a car it looks like the 

rain comes from the front, even if from the road it 

falls vertically. The demonstration in classic 

mechanics is quite simple, just apply the addition of 

the velocities. You can imagine that here the result 

will be, at least quantitatively, di5erent.

We have to think again in a three-dimensional 

Minkowski diagram (x, y, ct). As soon as we measure 

an angle, there are at least two dimensions of 

space. However, there is no need to use the third 

dimension of space, because there is invariance by 

rotation according to the direction of the vessel, 

otherwise, in addition to colatitude θ, we would 
have had to use longitude φ and we would have 
had to work in a four-dimensional Minkowski 

diagram (x, y, z, ct). 

We consider the galactic frame of reference and 

we start by studying the case θ=90°. The ship is 
moving in the direction of increasing x and the star is 
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located on the y axis at a distance D. We have 

three world lines, one for the spacecraft in the (x, ct) 

plane, one for the star, vertical, and one for the light 

ray in the (y, ct) plane.

We de,ne a straight line by the intersection of two 

planes de,ned in Cartesian coordinates.

Light ray worldline : { x=0

y+c t=0

We then use the Lorentz transformation to obtain this 

equation in the ship's reference frame R' :

{ x '=γ(x−β c t)
y '= y

c t '=γ(ct−β x )

  and { x '=γβ y '

γ y '+c t '=0

also tan (θa)=
y '

x '
then tanθa=

1
γβ
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In the case of a starship moving at 87% c, we ,nd for 

θ=90°, θa=30°. We notice that the result does not 
depend on the distance D. The e5ect is 

accentuated with respect to the Newtonian formula 

where tan(θa)=1/β and θa≃49°.
Now let's look for any angle θ between 0° and 180°.

A unit vector parallel to ⃗OH  has for coordinates 

(cosθ ,sinθ ,0). The vector ⃗u1 orthogonal to the OHM 

plane has the coordinates  ⃗u1(sinθ ,−cosθ ,0).
As collinear vector to the light beam we can choose 
n⃗2(cosθ , sinθ ,−1). We verify that ⃗n3(cosθ , sinθ ,1) is 

orthogonal to ⃗u1 and ⃗n2. 
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Hence the world line of the light ray:

 { sinθ x−cosθ y=0

cosθ x+sinθ y+c t=0

Using the same Lorentz transformation as the one 

used in the previous case, we obtain, after a 

somewhat long but simple calculation:

y '=
sin θ

γ(β+cosθ)
x ' .

Thus the expression for tan(θa), or, simpler to use, 
after some mathematical manipulations, detailed in 

exercise, the expression of  tan(θa/2) : 

tan (θa

2 )=√ 1−β
1+β

tan (θ2 )
For the color of the star, we give the expression of 

the wavelength perceived in the vessel which takes 

into account the transverse Doppler e5ect :

λa=
1−β cosθa

√1−β2
λ

For example, for β=0.3 and λ=600 nm, we have the 

results in the following table which we then reported 

in a circular diagram.

Angles in degrees and wavelengths in nm:

As the ship gains speed, the stars in the front turn 
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blue and those in the back red. Laterally we have all 

the spectral shades with an zone where the stars 

remain yellow. The forward hemisphere, under which 

we saw the stars at rest, is narrowing. Some stars 

present in the rear hemisphere appear in the front of 

the vessel, for example for θ=105°>90°, we have 
θa=87°<90°.

For even higher speeds, the stars fade in the front by 

passing in the UV, and in the back as they pass in 

the infrared. At 87% of c, only a visible ring is left in 

the front around 50°. However, new objects will 

appear, celestial objects in the infrared in the 

galactic frame of reference will be visible at the bow 

of the ship and objects in the UV will become visible 

at the stern.

89



From the galactic frame of reference, the light 

intensity received from the di5erent parts of the sky is 

homogeneous. On the other hand, in the frame of 

the vessel, the overall energy received is greater and 

the luminosity dominates forward. 

The energy received from the starry sky depends on 

the speed of the vessel according to two factors, 

light aberration and the Doppler e5ect. A star sees 

its position and its intensity change. The intensity of a 

star varies according to the following formula:

I a=
1−β2

(1−βcosθa)
2

I 
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The intensity corresponds to the energy received per 

m2 and per second. 

The energy comes from photons, of individual 

energy e=hνa=hc/λa. Due to the Doppler e5ect, the 
photons see, on the one hand, individually, their 

frequency, and thus their energy modi,ed, and on 

the other hand, taken as a whole, they arrive with a 

di5erent rhythm. The two e5ects have the same 

Doppler factor √1−β2 /(1−β cosθa), hence the square 

in the expression of Ia. The photons shoot more 

frequently and violently at the front, and more slowly 

and softly at the back.

Now let's look at a group of stars, they occupy a 

certain area, also called a solid angle, on the 

celestial vault. As the ship speeds up one group of 

stars in the front tightens and another, in the rear, 

stretches. To calculate the total energy received, we 

must also take into account this density of stars 

which varies. 

To ,nd the total energy received, we integrate the 

light intensity on a spherical surface S of radius R, 

centered on the vessel. We have the following 

results, established in exercise:

Ea= ∫
θa=0

π

I a dΩa=γ2(1+ β2/3)E

with    E=∫
θ=0

π

I dΩ=4 π I=E (β=0) 

Ω is the solid angle, it corresponds by de,nition to 

the cut surface on a unit sphere,  =S�, R=1.
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To illustrate, at 30% of c, the frontal solid angle, of 

vertex angle 30° in R, reduces to 22° in R', thus the 

apparent density of stars in this frontal part of the sky 

becomes 80% greater7. In addition, the photons 

received have a higher energy, from yellow they 

become blue, and moreover they are received in 

greater number.

At 50% of c, the stars become even more rare at the 

back, and 91% of the light energy comes from the 

front hemisphere. 

At 95% of c, the sky is 13 times brighter.

Now what about the number of photons arriving on 

the ship? We have N photons which arrive on the 

ship during a proper time interval. From the galactic 

7 ratio of the surfaces seen under the solid angles Ω=2 π(1−cosθ).
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frame of reference, we observe these same photons 

arriving on the vessel during a relative dilated 

interval. Thus, the more the vessel gains speed, the 

more the number of photons received per second 

by the astronauts increases with the factor γ.

At 50% c, the vessel receives 15% more photons, and 

84% of the photons come from the front hemisphere.

At 95% of c, the vessel receives 3 times more 

photons, the front celestial hemisphere is 26 times 

brighter, and the back hemisphere 350 times less. 

Now let's focus on a half-degree disk, which is the 

apparent size of the Moon or Sun as seen from Earth. 

This disc located at the zenith of the ship will have a 

luminosity 1500 times greater than that of the sky at 

rest. For comparison with what is observed from the 

Earth's ground, this luminosity is 40,000 times less than 

that of the Sun, and 12 times greater than that of 

the full Moon8. But beware, this central disk emits in 

the ultraviolet, the visible corona is located between 

34 and 52°.

Of course the stars are not all the same color, the 

Sun is yellow, but Rigel is blue and Betelgeuse red. In 

addition, a star does not emit only one wavelength 

but a continuous spectrum given by what is called 

the spectrum of the black body:

8 Data: Starry sky 0.002 lux / Moon 0.25 / Sun 120,000 lux.
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Thus stars of the Sun type, such as Alpha Centauri A 

or B, can be seen with the naked eye at the front of 

the ship even at 50% of c, because they also emit in 

the IR which shifts in the visible by Doppler e5ect, 

and, although the emitted intensity is lower in the IR, 

this is compensated by an increase in the perceived 

intensity towards the front. So, no navigation 

problem by ,nding your way in the starry sky to 

reach Proxima Centauri. On the other hand, towards 

the rear of the ship, the stars will fade much faster. 

Regarding the energy and the number of total 

photons received the results do not change 

because they do not depend on the wavelength. 

The Doppler factor does not depend on λ and the 

aberration displaces all the chromatic components 

of a star's spectrum by the same angle. There is no 

dispersion, as in the phenomenon of refraction of 

light rays (through a prism  the frequency 

components are deSected di5erently and create an 

iridescence in the form of a rainbow).
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 D. Exercises

Exercises

  : resolution by numerical simulation.

1. ▲△△ The suicidal physicist

A driver arrives at a crossroads and the traCc light is 

red. The driver, who is going crazy after reading a 

physics book, decides, instead of stopping, to 

increase his speed so that by Doppler e5ect, the 

light of the traCc light appears green to him. 

What speed should his vehicle reach?

λred=700 nm, λgreen=500 nm

Answers p357.

2. ▲▲△ Laser sail

A Terajoule laser battery based on the ground 

bombs photons for 10 minutes on a sail placed in 

orbit. The sail reaches a speed of 20% of c.

a - What is the radiation pressure exerted on the sail 

depending on the light power Φ received?

b - For a constant luminous power incident on the 

sail in the terrestrial reference frame, will the force 

felt on the sail remain constant? 

By what factor is it modi,ed?
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c - By what factor is the radiation pressure modi,ed 

at the end of the acceleration phase?

Answers p357.

3. ▲▲△ Optical molasses

To slow down atoms and thus cool them we place 

two identical lasers face to face. If an atom placed 

between these two beams is stationary, it remains so, 

because the radiation pressures are in equilibrium.

a - Show that, for an atom moving along the axis of 

the lasers, a force appears that causes it to come to 

a standstill.

This force is similar to viscous friction, hence the 

name optical molasses for this phenomenon. Atomic 

clocks use optical molasses to cool atoms.

b - Show that, for low speeds compared to c, this 

force is analogous to the friction force of viscous 

Suids in laminar regime: ⃗f =−α v⃗ .

The radiation pressure can be explained at the 

microscopic scale by the absorption then emission 

of a photon by the atom. The momentum of the 

atom is modi,ed, in the direction of the laser during 

absorption and in a statistically isotropic manner 

during spontaneous emission. The atom is thus 

slowed down and con,ned. The resonance 

frequency of the atom is slightly higher than that of 

lasers.
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c - As with viscous friction, we have an energy 

dissipation phenomenon. Explain qualitatively how 

the process of absorption/emission of a photon by 

the atom allows it to lose kinetic energy and thus to 

cool down.

d - In the context of perfect gas, the mean kinetic 

energy of an atom is given by the relation e=
3

2
k B T , 

where T is the temperature in Kelvin. Once slowed 

down, the atom will have a minimum kinetic energy 

of the order of the di5erence of energy between the 

absorbed photon and the photon emitted during 

de-excitation. The line width of the laser is very small 

compared to that of the atom, which predominates. 

In the extreme case, at rest, the line width of the 

atom is just below that of the laser. The distance 

between the two lines then corresponds to the width 

of the atomic line. The lifetime τ of the excited level 
of the atom is related to the energy di5erence by 

the Heisenberg uncertainty relation. From this an 

approximation of the temperature of the atom 

obtained by Doppler cooling can be deduced. 

Numerical application: τ=27ns for a rubidium 87 
atom. 

e - Give the speed of an atom thus cooled.

Answers p358.
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4. ▲△△ Detection of exoplanets

by Doppler e@ect

A large number of exoplanets have been detected 

until now and their known number continues to 

increase. One method of detection, called Doppler 

method, or radial-velocity method, consists in 

observing the periodic variation of the wavelength 

of a star. The motion of the star is due to the 

presence of an exoplanet. When the star is moving 

towards us, and thus the planet backwards, the 

characteristic lines of its spectrum move towards 

blue, and when the star is moving away, towards 

red.

We consider a two-body system consisting of a star 

and a planet. The two masses are in a gravitational 

bound state. Let's conduct a Newtonian study. Each 

of the bodies revolves around the center of mass G 

of the system. We can ,ctitiously return to a problem 

with one body M of reduced mass μ which orbits 
around G, a ,xed point of origin in the center-of-

masse frame:
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μ=
m1 m2

m1+m2

.     Kepler's law for the ,ctive particle M:

                  
a

3

T
2
= α

4 π2μ
   with     α=G m1 m2

a: semi-major axis of the ellipse traveled by M. 

T: period of revolution around G. 

We then ,nd the trajectories of the two bodies M1 
and M2 by applying the following homothetic 

factors:

G⃗M1=−
m2

m1+m2

G⃗M     and     ⃗GM2=
m1

m1+m2

G⃗M  

We will consider the cases of a two-body system 

with circular orbits and a plane of revolution that 

contains the long-distance observation site of the 

Doppler e5ect. 

Let's take the example of a star slightly smaller than 

the Sun around which a giant Jupiter orbits. The Sun 

is a small star, a yellow dwarf, here we will take an 

orange dwarf of 0.8 solar mass. We will have a 

supermassive giant planet of 80 Jovian masses (this 

planet may be similar to a brown dwarf, not very 

luminous and not detectable by direct methods). 

The star in this case has a mass ten times greater 

than that of the planet. There are many stellar 

systems of this type: HD 87883, HD 4747, Epsilon 

Eridani, etc.

a - Determine the speed of the star on its orbit 

around the system's center of gravity. Show that this 
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speed is indeed non-relativistic.

b - Give the classical limit of the Doppler e5ect 

formula.

c - What will be the relative wavelength variation 

Δλ/λ of the light emitted by the orange dwarf 

observed from the Earth in its plane of revolution?

Data: G=6.67×10-11N.m2/kg2,    MS=2×10
30 kg,

MJ=MS/1000,    dG-Planet=540×10
6 km

Answers p359.

5. ▲▲▲ Calculations for the moving ruler
 

We detail the calculations that allow us to ,nd the 

exact expression of the apparent length of the 

moving ruler on the photographic plate as a 

function of time. We rely on the notations given in 

the course.

a - Determine the equations of the worldlines for the 

E1 and E2 ends of the ruler.

b - We seek to express the equation of the past 

cone of M(0, D, ctM). We consider the vector 

u⃗=(a ,b ,1) with √a
2+b

2=1 and collinear with a 

generatrix line of the cone. Let be C=(x , y ,c t) a 
point of the cone.

We have two constraints, ⃗MC collinear to ⃗u  and 

point C belongs to the ends of the worldsheet of the 

ruler. Deduce the apparent length La as a function 

of t.

100



Answers p360.

6. ▲▲△      Velocity transformation

                       and aberration of the light

a - From the Lorentz transformation determine the 

three components of the velocity in R' as a function 

of those in R.

v⃗=(v x , v y , v z),   ⃗v '=(v x ' , v y ' , v z ' )   and   ⃗β=
u⃗

c
=

u

c
i⃗

From the transformation of velocities we can quickly 

,nd the formula of the relativistic aberration of light 

which gives θa as a function of θ.

b - Give the components of the velocity of a photon 

that arrives in O at an angle θ with respect to Ox.

c - Give the expression of ⃗v '  and check that we 

have ⃗v '⋅⃗v '=c
2
.

d - Express tanθa as a function of θ.
Answers p361.

7. ▲▲△                Composition of velocities

                      and accelerations. 3D generalization

a - Two vessels move at 50% c and cross perpen-

dicularly in O in R. 

What is their relative speed?

b - In the general case of two vessels animated by 

velocities ⃗v1 and ⃗v2, one does not lose in generality 

by taking ⃗i co-directed with ⃗v1, ⃗j co-directed with 

v⃗1∧ v⃗2 and ⃗k= i⃗∧ j⃗. 
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The angle between the velocities is θ=(̂ v⃗1, v⃗2). 

Express the relative velocity v' as a function of v1, v2 
and θ.

Numerical application for two vessels of γ=2 and 

trajectories that make an angle of 30°.

c - We continue the exercise Two vessels on page 71.

   1 -  Starting from the velocity ⃗v  in R, ,nd again, 

with the velocity transformation laws, the velocity v' 

of vessel B.

   2 -  Establish the law  of transformation of 

accelerations in three dimensions. From the velocity 

v⃗  and acceleration  ⃗a in R, ,nd again the 

acceleration a' of the starship B.

                                      Answers on page 362.

8. ▲▲△ Starry sky at the halfway point

We start our journey to Proxima Centauri with an 

acceleration of one g. As we will show in the next 

chapter the speed is then 95% of c at mid-course 

(after 2 ly traveled in the galactic frame of 

reference). We wonder if the Sun and Proxima 

Centauri are at that moment visible to the naked 

eye from the spacecraft. In astronomy we use the 

apparent magnitude to determine the brightness of 

a star. A star of magnitude greater than 6 is invisible 

to the naked eye. The star Vega is taken as a 

reference with a magnitude of zero. A star brighter 

than Vega has a negative magnitude. 

Magnitude formula:  M=−2.5 log(L /L0).

102



L and L0 are the luminosities of the star and Vega 

perceived at the point of observation. 

The luminosity LV of Vega, which corresponds to the 

total power emitted, is expressed as a multiple of the 

luminosity LS of the Sun: LV= 37LS. 

Distance Vega-Sun: DVS=25 ly.

For Proxima Centauri: LP= 5×10
-5LS. 

The perceived luminosity of a star decreases with 

distance, and is inversely proportional to the square 

of the distance. 

a - Determine the apparent magnitude of the star 

Proxima Centauri from Earth. Is the star visible to the 

naked eye? 

b - Determine the apparent magnitude of Proxima 

Centauri at midpoint if the spacecraft was 

motionless with respect to the stars. Would the star 

be visible to the naked eye? 

c - Determine the apparent magnitude of Proxima 

Centauri at mid-course when the spacecraft is at 

95% of c. Will the star be visible to the naked eye? 

d - Determine the apparent magnitude of the Sun at 

mid-course if the spacecraft was stationary. Would 

the Sun then be visible to the naked eye? 

e - Determine the apparent magnitude of the Sun at 

the halfway point when the spacecraft will be at 

95% of c. Will the Sun then be visible to the naked 

eye? 

f - Here you are on the exoplanet Proxima b orbiting 

the star Proxima Centauri. A well-deserved rest. Will 
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you see the Sun in the night sky?            Answers p366.

 ▲▲△ Numerical simulation of the sky

In the analytical model of the course we have a 

continuous distribution of light energy to model the 

starry sky. Here we will have a discrete distribution of 

point stars. We will take N=10,000 stars, identical, 

monochromatic, and, randomly and uniformly 

distributed. 

This numerical model allows us to better understand 

the perception of the sky from the moving vessel, to 

better understand the meaning of the integrals 

calculations and to verify them. 

a - Uniform spherical   probability law: We place stars 

on the celestial sphere using two angles θ, the 

colatitude, and ϕ, the longitude. These are the 

spherical coordinates. The positioning is analogous 

to the one used to ,nd our bearings on the surface 

of the Earth. The colatitude is zero at the celestial 

North Pole, 90° at the celestial equator and 180° at 

the South Pole. The longitude is 0° at a meridian 

taken for origin and returns to it after a full 360° turn. 

Propose laws of probabilities Θ and Ψ which ensure 

a uniform distribution on the celestial sphere as a 

function of the continuous uniform law  U(0,1)9.

b - We use a spreadsheet and the function that 

generates a random number between 0 and 1. On 

the ,rst two columns we have N values for θ and for 

9 For the laws of probability and their simulation, see, for example, 
the book Probability, Statistics and Estimation, by the same author, 
on pages 109 and 118.
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ϕ. Then we calculate for the N stars θa and Ia with the 

formulas of the course. You can thus ,nd the values, 

for a speed of 50% of c, of the energy and the total 

number of photons received with respect to rest. 

Answers on p367.

10. ▲▲▲ A bit of math...

To do physics in higher education you have to be 

comfortable with math and I prefer to put 

everything on the table in the same book to be 

clear and avoid multiple tergiversations. Nature is 

logical, logic is mathematical, so let's indulge in a 

little trigonometry.

According to the relation between y' and x' given 

page 88:

θ belong to ]0, π[ and tanθa=
sinθ

γ(β+cosθ)
 if the 

denominator is positive. θa then belong to ]0, 

π/2[ and in this case: β+cosθ>0 so 0≤θ<θ0  with 

θ0=arcos(−β).

If the denominator is negative. θa belong to ]π/2, 
π[ and in this case θ0<θ≤π then:

   tan (π−θa)=
sinθ

−γ(β+cosθ)

This is very complicated. The tangent function is 

made up of an in,nity of branches, and, therefore, 

for one value of the tangent there are an in,nity of 

possible angles. A traditional calculator gives the 

105



value of the angle on the central branch on ]-π/2, 
π/2[. Our star observation angle is between -π and 
π, and by symmetry we restrict to ]0, π[.  We are then 
on two branches of the tangent. To solve this thorny 

and exciting (!) problem we prefer to have tan(θ/2), 

because θ/2 belongs to ]0, π/2[. We stay on the 
same central branch whose values are given by the 

calculators. 

a - After recalling the expressions of cos(a+b) and 

sin(a+b) give the expression of tan(a+b) as a 

function of tan(a) and tan(b).

b - Deduce tan(θ) as a function of tan(θ/2).

c - Solve a quadratic equation to show that

 tan (θa /2)=√ 1−β
1+β

tan(θ/2).

Answers p368.

11. ▲▲▲ Energy distribution

We establish here the formulas giving the energy 

received from the starry sky in the reference frame of 

the vessel as a function of β.

a -  Use the relationship between θa and θ to express 
dθ as a function of dθa and θa. Deduce how the 
solid angle d Ω=2 πsinθ dθ transforms in the vessel's 
frame of reference. You will be able to express dΩ as 
a function of d Ωa and θa. The factor gives us the star 
density n as a function of θa. Express this density at 
the stern and bow as a function of β, then make a 
numerical application for β=0.5.
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b -  Verify by integrating over the whole space that 

the number of stars remains well constant when the 

ship gains speed.

c -  Find again the expression of Ea as a function of β 
of the course.

d -  Determine how the energy is distributed 

between the front and back hemispheres of the 

vessel. Expression as a function of β, and numerical 
application for β=0.5.

Answers p369.

12. ▲▲▲ Number of photons

The number of photons reaching the vessel every 

second is proportional to gamma. Within the 

framework of the model of yellow photons uniformly 

emitted in the galactic frame of reference, in the 

moving frame of reference, the photons are more 

numerous and of di5erent frequencies. They are 

each time less numerous and of low energy towards 

the rear and each time more numerous and 

energetic towards the front. 

a - By a complete integral calculation ,nd the 

factor: Na/N=γ. You can use symbolic computation 
software.

b - What proportion of photons is received from the 

front hemisphere? Calculation as a function of β, 
then numerical application for β=0.5.

Answers p371.
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13. ▲▲▲ Power emitted by a star 

To obtain the total power emitted, we integrate the 

luminance i on all wavelengths, solid angles and 

surfaces:

 P=∫ i(λ)d λdΩ dS

The expression of the luminance is given on page 93.

For a black body, an in,nitesimal area dS emits 

uniformly over a half-space, i.e. an integrated solid 

angle of 2π.

a - In the case of the Sun, do you ,nd the known 

total emitted power of 4×1026 W? The surface 

temperature is taken equal to TS=5000 K and the 

solar radius RS=700 000 km. You can estimate the 

integral by a numerical integration.

b - How is the power emitted by the Sun divided 

between visible, infrared (>800 nm) and UV (<400 

nm)?

c - For Proxima Centauri, we take T=3000K and 

R=0.14 RS. We read on the Wikipedia page of 

Proxima Centauri that "Its total luminosity over all 

wavelengths is 0.17% that of the Sun". Does your 

calculation con,rm this assertion?
Answers p372.
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 V. Accelerated Motion

ACCELERATED MOTION

We have so far studied vessels in uniform rectilinear 

motion: an object animated at a constant speed 

and which moves along a straight line. For realistic 

interstellar travel the trajectory can remain recti-

linear, but, on the other hand, the speed necessarily 

varies. We are going to be interested in uniformly 

accelerated rectilinear motion: the vessel has a 

constant acceleration, the speed constantly varies 

by the same amount. We can thus create an 

arti,cial gravity in the rocket: we will consider the 

case where the speed increases (or decreases) by 

10 m/s every second.

 A. STUDY OF AN ACCELERATED FRAME

7    STUDY OF AN ACCELERATED FRAME

The basic principles of special relativity are stated for 

inertial frames of reference. Once we have a 

starting inertial frame of reference, all frames of 

reference in uniform rectilinear translation with 

respect to it are also inertial frames of reference. A 

frame of reference accelerated with respect to a 

frame of inertia does not belong to this set, which 

does not prevent the application of special relativity 

indirectly if we know the motion of this reference 
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frame with respect to an inertial reference frame, 

which we will name R. We proceed in the same way 

in Newtonian mechanics, the fundamental relation-

ship of dynamics ⃗F=m a⃗ is only valid in inertial 

frames of reference and therefore Newton's laws are 

used to study any type of motion in any type of 

frame of reference.

Classical mechanics is used to construct special 

relativity by using it as the limit of low speeds. In 

addition, the principle of additivity of the proper 

times on the particle worldline is added as a 

construction element. With this principle, we are not 

limited to inertial frames of reference: the particle 

proper frame of reference can have any motion (it is 

the clock hypothesis seen page 19).

Then τ=∫d τ=∫d t
γ where τ is the proper time in the 

particle proper reference frame, t is the time in the 

inertial frame of reference and γ is expressed as a 

function of the instantaneous speed v of the particle 

in this same frame of reference.

At any time t there is always an inertial frame of 

reference named R' which coincides with the proper 

reference frame Rp. The frame R' has a constant 

velocity v with respect to R and, at the moment it 

coincides with the proper frame Rp, the particle has 

a zero velocity in R'. Its acceleration is a' and that in 

R is then a=
a '

γ3 (demonstrated page 69). This is 

where classical mechanics comes in, indeed, the 

particle then has a low speed in R' between t and 
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t+dt. It is like if an accelerated vessel passed a vessel 

moving at constant velocity. If at the moment they 

are at the same level their velocities are equal, their 

relative velocity is zero. The vessel accelerated by 

the thrust of its engines then moves away slowly with 

respect to the speed of light and we can use 

classical mechanics to study the motion of the 

accelerated vessel from the other vessel taken as a 

reference. 

Let's take the example of a car that ,rst stands still at 

a red traCc light and then accelerates to green. 

From  the reference frame of the road, the 

acceleration of the mobile is ⃗a, but what is the 

acceleration felt by the passenger in the proper 

reference frame of his car?

According to the classical acceleration transfor-

mation formula: ⃗a=a⃗
r
+a⃗

e
+a⃗

c where we have the 

absolute acceleration ⃗a in R, relative acceleration ⃗a
r
 

in Rp, coincident acceleration a⃗
e
 10 and Coriolis 

acceleration ⃗a
c
.

Let's write Newton's second law in R' :

F⃗=m(a⃗r+ a⃗e+ a⃗c)  and  m a⃗r=F⃗+ F⃗ ie+ F⃗ ic.

In an accelerated, non-Galilean frame of reference, 

we feel new forces, called inertial forces. Here the 

accelerations ⃗a
r
 and  ⃗a

c
 are null because the 

passenger is motionless in his car. The driver feels a 

10 Advanced remark: a⃗e= a⃗R(C), C (t=t
0
)=M (t

0
) and v⃗ Rp

(C)=0⃗

 a⃗e= a⃗R(O' )+
d Ω⃗

Rp /R

dt
∧O⃗ ' M+Ω⃗Rp/R∧(Ω⃗Rp/R∧O⃗ ' M )

The coincident point C coincide instantaneously with M. For a non- 
rotating frame a⃗e= a⃗R(O' ). For a uniformly rotating frame we 
obtain the centrifugal acceleration. e for entraînement in French.
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inertial force ⃗F ie=−ma⃗e that pushes him to the 

bottom of his seat when starting. This is due to the 

inertial acceleration which equals that of the car: 

a⃗=a⃗
e
. For the same reason, the acceleration felt by 

the particle in its proper frame also worth ⃗a ', 

acceleration of the particle in R'.

 B. Artificial Gravity

7    ARTIFICIAL GRAVITY

When the car accelerates at the green traCc light, it 

is as if a force exerted at a distance pulls the driver 

towards the rear of the car. Like a non-contact 

force, analogous in these e5ects to a gravitational 

force due to a mass placed at a distance at the 

back of the car. When a spaceship starts at the 

green traCc light at an interstellar crossroads, the 

passengers ,rst in weightlessness are then pressed 

during the acceleration phase to the walls 

perpendicular to the displacement. In our case the 

acceleration is maintained and the vessel has a 

uniformly accelerated rectilinear motion. 

The acceleration is equal to the Earth's surface 

gravity g, thus:

a=
d v

d t
=

g

γ3
      and      τ=∫ γ2

g
d v=c

g
∫ dβ

1−β2

then   τ=
c

g
∫
0

β

( 1/2
1−β

+
1/2
1+β)dβ   and   τ= c

2 g
ln (1+β

1−β)
where v=β c is the speed reached in R after a 
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proper duration τ.

Let us express the distance x traveled in R as a 

function of  v:

v=
d x

d t
   then   x=∫dx=∫γ3

g
v d v=c

2

g
∫ β

(1−β2)3 /2
dβ

and after integration:  x=
c

2

g ( 1

√1−β2
−1)

Let's calculate the galactic time t :

t=∫dt=∫γ3

g
d v=

c

g
∫ 1

(1−β2)3 /2
dβ

We perform the change of variable

 β=sin θ  and we ,nd:

t=
c

g

β

√1−β2
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We can now express the position, speed and 

acceleration as a function of time t :

{
x=

c
2

g [√1+
g

2
t

2

c
2
−1]

v=
c

√1+
c

2

g
2
t

2

a=
g

(1+
g

2
t

2

c
2 )

3 /2
=

g

γ3

        and  γ=√1+
g

2
t

2

c
2

We can also express the proper time τ as a function 

of galactic time t :

t=
c

g
γβ    then    τ=

c

g
ln(√1+

g
2
t

2

c
2
+

g t

c )
and    τ=

c

g
argsh(g t

c )

t=
c

g
sh (g τ

c )     x=
c

2

g [ch( g τ
c )−1]

(c t)2−( x+
c

2

g )
2

=( c
2

g )
2
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Curves :

The speed tends towards the maximum speed c. For 

low speeds, the speed increases linearly with time, 

we ,nd the classic limit v=gt.

Next page, the variation of the temporal dilation 

factor as a function of galactic time. We have a 

horizontal tangent at low speeds. When the speed 

increases, we tend towards the ultrarelativistic 

asymptote γ∼g t /c , γ then varies linearly with 

galactic time.
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Previous page, the acceleration of the ship seen 

from the starting frame of reference. Although the 

acceleration remains constant in the proper frame, 

observed from the Earth, the speed reaches a 

ceiling and the acceleration decreases in gamma 

cubed. We have a horizontal tangent at low speeds, 

a zero in,nity limit, and an inSection point at t=c /2g.

119



Previous page, we see, after 6 months, the position 

move away from the forecasts of classical mecha-

nics. In Newton's theory we had a parabolic branch 

while in the context of special relativity we have a 

hyperbolic branch with an ultrarelativistic asymptote 

x=c t−c
2 /g where the galactic distance traveled 

increases linearly with time. 

Below, the traveler's time accelerated according to 

that of those who remained on Earth:
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Horizon concept: 

We get the Minkowski diagram by simply reversing 

the x and t axes. We ,nd that the asymptote 
t=x /c+c / g represents a horizon. For terrestrial 
observers, it is impossible to communicate with the 

vessel after a period of time t lim=c /g (approximately 

11.4 months). Indeed, after this period, a photon will 

no longer be able to reach the vessel. On the other 

hand, the occupants of the accelerated vessel will 

be able to continue to send us messages throughout 

their journey. They will also be able to permanently 

receive messages from Earth, but they will be earlier 

than t lim.
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As the proper time τ increases, the astronauts see 
the inhabitants of the Earth slow down their motions 

and freeze at the time limit t lim.

 C. Round Trip

7    ROUND TRIP

We want to join an exoplanet at a distance D from 

our planet Earth. We will be under arti,cial gravity for 

the entire round trip. We accelerate the ,rst half of 

the trip and then, after turning the ship around, 

decelerate to the exoplanet. We repeat the reverse 

procedure for the return.

First phase:    
D

2
=

c
2

g ( 1

√1−βmax

2
−1)

Maximum speed halfway:

 βmax=√1−
1

(1+g D

2 c
2)

2
  

( for D=4 light-years, βmax≃95% and γ≃3)

Duration T for the round trip:

T

4
=

c

g

βmax

√1−β
max

2
     and     T=

4 c

g √(1+g D

2c
2)

2

−1

Proper time τ for the round trip:
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τ=
2 c

g
ln(1+βmax

1−βmax
)=4 c

g
argthβ

max

( for D=4 l.y., T≃11.2 years and τ≃6.84 years)
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Photon rocket:

A light beam, created by the rocket, propels it by 

reaction. For example, matter and antimatter, in 

equal parts, are placed at the focus of a parabolic 

mirror, and, by annihilation, produce pure energy 

projected backwards in a parallel beam.

Consider the following case, a particle and its 

antiparticle meet and create two photons which go 

in opposite directions. One goes backwards and the 

other forwards. The backward one does not 

contribute to the propulsion, on the other hand, the 

second one contributes doubly, because the 

reSection on the mirror is supposed to be perfect. On 

average, each photon transfers its impulse to the 

rocket. Ultra-relativistic particles are just as eCcient 

as their mass energy converted into light.

More realistically, a photon is sometimes absorbed 

by the gamma shield. The eCciency is then 50%. 

Also, part of the energy of the absorbed gamma 

rays can be reused to heat a gas to a very high 

temperature. The thermal agitation generates a very 
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important ejection speed11.

On the contrary, if a neutrino is created by the 

reaction, it carries away energy that is lost for 

propulsion. 

The photon rocket is close to the perfect model, we 

can otherwise talk about an antimatter rocket.

Annihilation reactions

Proton-antiproton annihilation is more complex and 

creates cascades of particles. γ photons, even more 
energetic than for electron-positron annihilation, are 

created.

11 NASA proposes a rocket propelled by a positron reactor. These are 
annihilated with electrons in gamma photons. The heat produced 
heats liquid hydrogen. www.nasa.gov
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Technical data :

Travel To Proxima Centauri / Distance 4.2 ly.

Traveler duration 3.3 years - Galactic 5.5 years. 

Astronauts: 6. 

Pressurized module: 3 / 10t / 6mx10m

Main Module - Technical Module - Leisure Module

Total height 126m / Diameter 15m / Total mass 2420t / 

Payload 20t / Antimatter mass 1200t.

Antimatter: Proximium / Density 0.2 / 200 kg/m3. 

Matter: Everything, except the payload, is progressively 

annihilated with the Proximium (shields, motors, etc).

Acceleration max 3 g / Speed max 89 % of c / γmax 2.2 / 
Periods Acceleration: aavg 2 g, sleep 2.8 g

Periods Speed: aavg 0.3 g, sleep zero g.

Interstellar shield: 140t / Protects from the interstellar 

medium 0.6 proton/cm3 / vertex angle 38° / Tmax 498°C. 

This shield is used on the ?rst half of the course. After 

turning over, the motors are forward, and the radiation 

pressure pushes the interstellar medium away.

Gamma shield: 860t / Protects passengers and Proximium 

from the rays γ emitted by the motors / Armoring Pb of 
20 cm, or concrete 1.2 m, reduces the Fux by a factor 106.

Rocket motor: eCciency 50 % / 1st phase 7 M P-2 / Thrust 

10 MN / De 1g max 11 g/s  Proximium / 2nd 1 M P-2 /  3rd 1 M 

P-1 Thrust 2 MN / ve=150 000 km/s.

Comparison :

Saturn V / M=3038t / H=111m / D=10m / Mpropellant=2829t / 

Pmax 34 MN / 1st stage 5 Motors F-1 ve=2.6 km/s De=13.6 t/s 

Kerosene~O2(l) / 2nd 5 M J-2 / 3rd 1 M J-2 ve=4.1 km/s 

H2(l)~O2(l) / Duration 11 min 30 s from 0  to 164 km.
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 D. Exercises

Exercises

1. ▲△△   Half-time

Leaving Earth, the ship reaches Proxima in a 

uniformly accelerated motion in two steps: the 

rocket cuts o5 its engines halfway through the 

journey, giving it time to turn around, and then 

arrives at Proxima at zero speed. 

Compared to the stars considered ,xed, what will be 

the distance traveled at half the time elapsed 

before the turning point? Is the result modi,ed 

according to whether one considers the time of a 

,xed observer with respect to the stars, or that of a 

,xed observer with respect to the rocket? What 

about classical mechanics ? 

We take, as usual, the following values :

D=4 al, a=g=10 m/s2 and c=3×108m/s.

Answers on page 374.

2. ▲▲△    Reality show

On January 1, 2100 at 12:00 noon, the crew of the 

Galaxys spaceship leaves at constant acceleration 

for the other end of the Milky Way. 

Every day on Earth a reality show tells the 

adventures of the astronauts. And conversely, the 

astronauts also produce a daily program with the 

information received from the Earth during a proper 
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day on the spaceship. But due to time dilations, 

during a day on Earth we don't receive the news of 

a whole day lived on board the spacecraft, and 

vice versa. Light signals are used to transmit 

information. 

a -  Preamble: Determine the expression of position x 

as a function of γ, and that of γ as a function of τ.

b - Reality TV programs on Earth :

1-  Let tobs be the instant when the message 

corresponding to a proper time τ is received (the 
instant t is simultaneous to τ in the galactic 
reference frame, but the reception of the message 

due to the ,nite speed propagation of the wave is 

of course later). Illustrate the situation on a Minkowski 

diagram using the di5erent worldlines (Earth / Ship / 

Photons).

2-  Express tobs as a function of τ, and τ as a 
function of tobs.

3-  Six months after their departure the 

astronauts send a message to Earth. How long after 

departure is the message received on Earth?

4-  One year after departure, the daily reality 

shows will correspond to how much time spent in the 

spacecraft? Same question ten years after 

departure.

c -  Reality show in the vessel:

1-  Let τobs be the instant when the message 

corresponding to a terrestrial time t is received. 

Illustrate on a Minkowski diagram.
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2-  Express τobs as a function of t.

3-  Six months after departure a message is 

sent to the astronauts. How long after their 

departure do they receive it?

4-  One year after departure, the daily reality 

TV shows will correspond to how much time spent on 

Earth? Same question ten years after departure.

d - Doppler e5ect   for an accelerating frame :

Both from the Earth and from the spacecraft a blue 

light signal is regularly emitted (λ=400 nm). 

1-  Establish the relations between the emitted 

frequency and the received frequency for the two 

reference frames, the inertial and the accelerated 

one.

2-  After how long will the signal emitted from 

the Earth be perceived as red on board the vessel 

(λ=800 nm) ?

3-  For the same time elapsed on Earth, what 

will be the color of the light signal received?

4-  Is the Doppler e5ect symmetrical as in the 

case of inertial reference frames?

Answers on page 375.

3. ▲▲△     Head-to-head

Two vessels are traveling in opposite directions, at 

the same time and under the same conditions, the 

routes from Earth to Proxima and Proxima to Earth. 
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The rockets are animated with uniformly accele-

rated motions and complete the journey as 

described in this chapter.

a -   Halfway, at the equidistant point, two light-years 

away, the ships shut down their engines to turn 

around. What is the galactic speed of the ships? 

What is their relative speed?

b -  Same questions a quarter of the way.

c -  Propose a technical means that would allow the 

ships to measure their relative speed.

d -  Express the galactic speed v as a function of the 

proper time τ.

e -  Express the relative speed vr as a function of τ.

f -  Determine the acceleration ar of the spacecraft 

coming from Proxima from the point of view of the 

reference frame of the spacecraft coming from 

Earth as a function of τ.
Determine this relative acceleration at the start, 

halfway and a quarter of the time of the 

spacemen's outward journey. 

Is the relative motion of the spacecrafts uniformly 

accelerated? 

What results would we ,nd in Newtonian mecha-

nics? 

Answers on page 379.
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 VI. Metric

METRIC

A metric is used to measure distances. In relativity, 

the tool is generalized to space-time. We will give 

the metrics of the inertial frame of reference, of the 

uniformly accelerated frame in rectilinear translation, 

and of the uniformly rotating frame. We will then be 

able to determine the spacetime structure in our 

spaceship on its way to Proxima. What will be the 

geometric properties in the vessel? How does time 

Sow at the di5erent stages of the rocket? 

Finally, we will make a parallel with the black hole 

metric and thus build a bridge to general relativity. 

To answer these questions we will introduce the 

concept of metrics through various examples.

 A. Euclidean Metric

7    EUCLIDEAN METRIC

We measure the distance between two points. The 

metric can be expressed in di5erent coordinate 

systems to calculate a distance, which is invariant. 

Let us take the case of two points M1 and M2 on a 

plane. If the coordinates of the points are Cartesian, 

M1(x1, y1) and M2(x2, y2), the distance is given by:
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L=d M 1 M 2
=√(x2−x1)

2+( y2− y1)
2

We can also determine the length of a curved path 

taken by a particle by integrating between the two 

points:

L=d M
1
M

2
=∫

M 1

M 2

d l   with   d l
2=dx

2+dy
2

This element d l
2 is our metric for this example. 

In the case where our physical problem has a 

central symmetry (common case, as for the motion 

of planets), the polar coordinates may be better 

adapted. We will have the same ,nal result, but, in 

one case the computation can be very long, and in 

the other, very short. In polar coordinates these 

same points have the coordinates M1(r1, θ1), M2(r2, θ2) 

and d l
2=dr

2+(r dθ)2
. With x=r cosθ and y=r sinθ, 

we ,nd the Cartesian metric, the steps are well 

equivalent .

136



In Euclidean geometry the length of an object (like 

the duration of a phenomenon) is the same for all 

observers. Whether one carries out a translation, a 

rotation, or a Galilean transformation of the coordi-

nates, the length L is invariant (done in exercise on 

page 159).

More generally, the laws of Newtonian mechanics 

are invariant according to these transformations.

This is not the case for a dilation: if x '=k x, y '=k y 

and  z '=k z with  k the dilation factor, then, 

d l '
2=dx '

2+dy '
2+dz '

2, d l '=k d l and L '=k L. The laws 

of physics depend on the scale, they are not the 

same for the in,nitely small and the in,nitely large.

The straight line is the shortest path between two 

points. We can take a rope and pull it to get a 

straight line. It is the path between M1 and M2 which 

minimizes L. 

The Euclidean metric corresponds to a Sat space: 

The sum of the angles of a triangle is equal to 180°, 
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the ratio between the perimeter and the diameter 

of a circle is equal to π, and every straight line has a 
single parallel line passing through a point outside it.

 B. Metric on the Sphere

7    METRIC ON THE SPHERE

To better illustrate our point, let us take the case of a 

two-dimensional spherical space. You have to put 

yourself in the place of two-dimensional beings (the 

bidiz) who live on the surface of the sphere and are 

unaware of the third dimension. Euclid's postulates 

are no longer veri,ed. We have simple counter-

examples: 

◦ To draw a circle, we ,x a point, we attach a 
rope to it, and, with a tight rope, we turn around to 

trace it. The circle centered on the north pole and 

perimeter of the equator has a perimeter/diameter 

ratio equal to 2, a value much less than π.

◦ Now let's construct a particular triangle: we 
have a ,rst point at the north pole, we get a second 

point by joining along a straight line the equator, we 

turn at right angles to the east and we then follow 

the equator for a quarter turn, we turn at right 

angles to the north, and we return to the north pole 

to ,nish the triangle. We have an equilateral triangle 
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and all three angles are right. The sum of the angles 

of this triangle is 270°, a value much greater than 

180°.

◦ Imagine yourself living on the surface of this 
sphere. You want to go on an adventure and 

discover unknown lands. You are unaware of the 

curvature of your 2D space, you go in a straight line, 

deviating neither to the right nor to the left, and 

,nally you end up reaching your starting point from 

the opposite side! This is very disconcerting. The 

straight lines of the sphere are circles of the same 

radius as the sphere (the largest circles that can be 

drawn). For example, the line of the equator, a 

meridian, are straight lines for the sphere. You 

cannot draw parallel straight lines because they 

intersect. A latitude forms a circle with a radius less 

than that of the sphere, it is not a straight line: an 

airplane, to reach two cities at the same latitude, 

does not follow a latitude because it is not the 

shortest path . 

We can clearly see, on these three examples, that 

the space on the surface of a sphere is not 

Euclidean. It is not a Sat space but a curved space.
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The curvature can also be seen on the metric that 

bidizs would use, we give it for information12:

d l
2=

dx
2+dy

2

(1+ x
2+ y

2

4 R
2 )

2

x and y are the two Cartesian coordinates internal to 

their two-dimensional space. Even if they don't "see" 

the third dimension, they could deduce it concep-

tually. It's a useful analogy for the little three-

dimensional human beings that we are. Perhaps we 

ourselves live on the "surface" of a four-dimensional 

hypersphere, just as bidiz live on the surface of a 

hypercircle (a sphere for us!).

Here is a nice way to solve the problem of the edge 

of the Universe: if the Universe is not in,nite, there 

should be a wall to de,ne its limit, but what is behind 

the wall? If we live on the volume of a hypersphere, 

we have a Universe of ,nite 

volume, without border and 

without center. 

An elegant vision allowed with 

a curved space.

12 Geometry, Relativity and the Fourth Dimension, Ruldolf v. B. 
Rucker, 1977.
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 C. Minkowski Metric

7    MINKOWSKI METRIC

The time is now a coordinate integrated with the 

other three of space. It is the metric of special 

relativity. We have shown page 65 that the new 

invariant is:

d s
2=c

2
dt

2−dx
2−dy

2−dz
2

We discern a temporal part and a spatial part, dt  

and d l
2=dx

2+dy
2+dz

2
, then T=∫ d t  and L=∫ d l.

But this two quantities T and L are not invariant.

Straight lines, also called geodesics, maximize the 

proper time τ, invariant quantity:

τ=∫√d t
2−dl

2/c2         (particle : ds
2>0)

Minkowski metric is invariant by translation, rotation 

and Lorentz transformation.

 D. Metric of an Accelerating Frame

7    METRIC OF AN ACCELERATING FRAME

We give the metric of the frame of reference in 

uniformly accelerated rectilinear translation studied 

in the previous chapter. This frame is not inertial and 

the metric is therefore necessarily di5erent:

d s
2=(1+

g x

c
2 )

2

c
2
dt

2−dx
2−dy

2−dz
2

We recognize a Euclidean-type spatial part, so 
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space is Sat in the ship. Regarding the structure of 

space-time as a whole, we prove that this metric 

corresponds to a spacetime, also Sat. For that it is 

shown that the components of the Riemann 

curvature tensor are all zero. This is very consistent 

with what we say about general relativity: in the 

absence of mass, spacetime is not curved13.

For an immobile object in the reference frame of the 

rocket:

 

We note, for observers motionless with respect to 

each other in the accelerated frame of reference, 

that time does not Sow at the same rhythm 

according to where one stands in the vessel. It is a 

phenomenon of time dilation very di5erent from that 

observed between two inertial frames of reference 

where the clocks are in motion relative to each 

other. Here, the clocks are at rest in the reference 

solid (the rocket), they are motionless with respect to 

each other, and yet they do not work at the same 

rate and cannot be synchronized. Let us consider, in 

our rocket, three clocks which we will place at three 

di5erent levels spaced 120 meters apart. We start by 

synchronizing them on the ,rst level at the back of 

the ship. We leave one clock at the stern, we place 

the second 120 meters forward and the third at 240 

13 It's  more  subtle  than  that.  For  example,  gravitational  waves 
propagate a spacetime curvature that persists even in the absence of 
mass.
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meters at the bow (we move them slowly so as not 

to add another source of time dilation):

After a day we take them back down to the ,rst 

level to compare the elapsed times. First obser-

vation, they are no longer at the same date, 

moreover the clock on the second level has turned 

faster and is one nanosecond ahead, the third clock 

has turned even faster and is two nanoseconds of 

advance. 

The advance, of the clocks placed "higher" in the 

vessel, is calculated using the following expression 

which derives directly from the metric : 

Δ τ=
gH

c
2
Δ t

with  Δ t=1 day,  H=120m  and  g=10 m/ s
2
.

We will now send photons from one Soor to the 

other. The result will be fun, and, in addition, we will 

,nd the metric, in a simple and intuitive way, without 

using a mathematical arsenal. You are on the 

second level and you send a photon down. By the 

time the photon moves to the bottom, the ship has 
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gained speed. Speed measured in the inertial frame 

of reference which coincides with the accelerated 

frame of reference of the rocket at the time of the 

emission of the photon.

Put yourself in the place of the one receiving the 

photon at the bottom stage; it is now at a velocity v 

with respect to the emitter at the moment the 

photon was emitted. So we have a Doppler e5ect 

and as we get closer to the source, the photon 

"blues". The photon passes very quickly from one 

stage to the other and the speed of the rocket 

acquired over this time is very low; we will therefore 

only use classical formulas. 

Speed acquired by the rocket :  v=g t

and t=
x

c
 for the photon, then v=

g x

c
.

Frequency received:  f R=(1+β) f E=(1+ g x

c
2 ) f E

We ,nd the expected blueshift. Of course, if the 

photon is now sent forward, its frequency decreases, 

and there is a redshift:

f R=(1−g x

c
2 )f E  and  T R=(1+ g x

c
2 )T E (small variations)

This result is directly related to the metric, because 

the clocks are motionless with respect to each other 

in the rocket's frame of reference, and each 

oscillation of the light wave can be considered as a 

mini-Sash emitted by the clocks. For example, for an 

emission wavelength of 600 nm, the source clock 

emits 500,000,000,000 mini-Sashes every second, and 

a clock placed 120 meters forward receives 7 less 
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mini-Sashes during one of its own seconds (by 

Doppler e5ect the signal reddens as it rises and the 

frequency decreases).

The observer placed higher up thus deduces that 

the time Sows slower on the Soor below and faster 

on the Soor above.

And that's not all, we can still broaden our 

understanding through an energetic approach. In 

physics we have the conservation of energy, and 

this fundamental law applies to special relativity by 

including the mass energy given by the famous 

formula E=m c
2.

We are going to move an atom from one Soor to 

another. At the lower stage the atom is excited, we 

take it up in this state to the upper stage. Raising a 

mass requires energy from the operator. In a uniform 

acceleration ,eld the energy received by an object 

of mass m is m g H. The energy of the atom increases 

by mI g H, where mI is the initial mass of the excited 

atom. 

Then, the atom returns to its ground state and emits 

a photon of energy eE=h f E. We then go back down 

the atom, so the operator receives an energy mF g H 

where mF is the ,nal mass of the de-excited atom. 

And ,nally the photon of energy eR=h f R is 

reabsorbed by the atom. The balance of this little 

game must be null because the energy must not 

vary:
−mI g H−h f E+mF g H+h f R=0
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then  f R−f E=(mI−mF)
g H

h
=
Δ E

c
2

g H

h

An excited atom A* is heavier than a de-excited atom. 

The di5erence in mass gives the energy of the emitted 

photon: A*→A+γ 

Δm c
2=(m*−m)c2=Eγ     Eγ=ΔE=E2−E1=h f

By spontaneous emission, the electron, linked to the 

atomic nucleus, passes from the upper level E2 to the 

fundamental level E1 by emitting a photon of energy 

equal to the energy di5erence of the electronic levels. 

More particles are linked, more binding energy is 

important and more the mass of the edi?ce is low.
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The variation of the mass of the atom is due to the 

emission of the photon:

so   Δ E=h f E   and   f R=f E(1+ g H

c
2 ).

The received photon has a di5erent energy than the 

emitted photon and we ,nd the same expression as 

before. The photon gains energy when it goes down, 

it turns blue, and loses energy when it goes up, it 

reddens. The conservation of energy makes it 

possible to ,nd the Doppler e5ect, the time dilation 

as a function of the position and the metric of the 

uniformly accelerated frame. 

We will study the link between the uniformly 

accelerated reference frame and the reference 

frame of Schwarzschild, used for massive objects 

with spherical symmetry (planets, stars, black holes, 

etc.), in the following pages. 

 E. Metric of a Rotating Frame

7    METRIC OF A ROTATING FRAME

We are now going to approach another textbook 

case which can also be treated with special 

relativity. A case whose study opens the doors of 

practical applications, such as the  ring laser 

gyroscope14 which allows orientation much more 

precisely than with a mechanical gyroscope or a 

magnetic compass. The ring laser gyro has been 

used in ships, submarines, airplanes and satellites 

since 1963.

14 Use of the Sagnac effect conceptualized in 1913.
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We have a disk of radius R rotating uniformly around 

a ,xed axis. The disc is a rigid solid15 whose speed 

increases linearly with the distance from the axis..

The speed is measured in an inertial reference frame 

R where the axis is ,xed. We now place ourselves in 

the non-inertial frame of reference R' of the disc. Let 

us take a circle concentric with the axis of rotation, 

we measure the radius ρ with a stick of unit length. 
Then we begin to measure the circumference by 

transferring the stick as many times as necessary. For 

each report we use the inertial frame of reference 

coinciding at the location and given time. There is 

no contraction of the lengths radially, because the 

speed is perpendicular to the measured length, on 

the other hand in the orthoradial direction we are 

collinear with the speed and the length is 

contracted. 

By dividing the perimeter of the circle by its 

15 The rigidity criterion is verified for the disc in uniform rotation and 
the uniformly accelerated rocket: L'espace-temps de Minkowski, 
Nathalie Deruelle.
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diameter, the value is greater than π, the space is 
curved16.

Let's determine the metric by performing the 

following change of coordinates17:

{
t '=t

ρ '=ρ
θ '=θ−ω t

z '=z

The metric in the inertial frame R is:

d s
2=c

2
dt

2−dx
2−dy

2−dz
2

This standard expression given in Cartesian coordi-

nates is also written in cylindrical coordinates, a 

coordinate system that facilitates calculations for this 

problem which has an axis of symmetry:

d s
2=c

2
dt

2−dρ2−ρ2
d θ2−dz

2

The interval becomes in  R', removing the  z 

coordinate for simplicity:

d s '
2=d s

2=c
2
dt '

2−dρ '
2−ρ '

2(d θ '+ωdt ')2

from where, by removing the prime symbols to 

lighten:

 
d s

2=(1−
ρ2ω2

c
2 )c2

dt
2−2 ρ2ω d t dθ−dρ2−ρ2

dθ2

16 It is a new pseudo-paradox of special relativity, presented in 1909 
by Ehrenfest as an internal contradiction of the theory. If we accept 
that  the space for an observer of  the disk is  non-Euclidean,  the 
contradiction disappears.

17 Detailed  articles:  Space  geometry  of  rotating  platforms:  an  

operational  approach,  and, The  relativistic  Sagnac  effect:  two  

derivations, Guido Rizzi and Matteo Luca Ruggiero (2008).
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By calculating the components of the Riemann 

curvature tensor (done in the next chapter) we ,nd 

that all the components are zero. The spacetime of 

the uniformly rotating disk is therefore Sat18. We are 

well within the framework of special relativity, there is 

no spacetime curvature, no mass present19, and the 

spacetime is well Sat.

Special relativity applies in Sat spacetime: a change 

of coordinates allows us to ,nd the standard 

Minkowski metric again. In general relativity, in the 

presence of gravitation, this is only possible locally 

around an event: orders zero and one can always 

coincide with an inertial frame of reference 

(Minkowskian spacetime), on the other hand, this is 

no longer possible for order two, this is where the 

spacetime curvature is expressed.

We can create an arti,cial gravity with a rotating 

circular platform. The advantage, compared to the 

rocket continuously accelerated by the thrust of its 

reactors, is zero energy to spend. Once the disk in 

rotation, by conservation of energy, the disk keeps its 

kinetic moment, and gravity is maintained inde-

,nitely for the occupants. On the other hand, the 

created gravity is not uniform, and, in addition to the 

centrifugal force that simulates gravity, there is the 

18 You  will  have  noticed  the  subtlety  encountered  here:  space  is 
curved and spacetime is flat.

19 As with the uniformly accelerated rocket, there is no mass present 
which creates a gravitational field and curves spacetime. The mass 
of the rocket, or of the disc, is here totally negligible and does not 
influence the metric. We are talking about test mass.
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Coriolis force that complicates the motion of the 

astronauts.

To minimize these two drawbacks, the radius of the 

centrifuge must be large enough. The centrifugal 

acceleration gives: g=ω2ρ and Δ g /g=Δρ/ρ. For a 
variation in arti,cial gravity of less than 1% between 

the feet and the head, a radius of about 200 meters 

is required. And the corresponding angular speed of 

rotation is two revolutions per minute:
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 ω=2π f    and   f =
1

2 π √ g
ρ .

The Coriolis acceleration is written ⃗ac=2 ω⃗∧ v⃗r. When 

the astronauts run around the wheel, they feel 

heavier running in the same direction as the 

centrifuge and lighter running in the opposite 

direction, it is not very disturbing. On the other hand, 

if they bend up and down, they can be pushed 

sideways by the Coriolis force, which can be 

annoying.20. Let's calculate: ac /g=2 vr /ωρ=2 vr /√gρ, 

for a speed of 20 km/h, ac /g≃24%. This is not 

negligible, but we can consider it reasonable.

Now let's look at the time dilation. For an observer at 

rest:

d τ=√1−
ρ2ω2

c
2

dt≃(1−ρ2ω2

2c
2 )dt

For observers who are immobile in respect to each 

other, time does not Sow at the same pace. A set of 

rest clocks at di5erent points on the disk cannot be 

synchronized. The farther away from the axis, the 

slower the clocks go. 

We place, according to the same protocol as for the 

rocket, a ,rst clock at ρ=370 m, a second at 
ρ=300 m, and a third at ρ=200 m.

We ,nd:    Δ τ=
(ρ2

2−ρ1
2)ω2

2 c
2

Δ t.

20 Funny video: www.voyagepourproxima.fr/ManegeTournant.mp4
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After a day we bring the clocks back down to a 

radius of 370 meters: the one at 300 meters 

advances one nanosecond and the one at 200 

meters advances two nanoseconds. Here, the 

advances do not vary linearly with the distance. The 

gravity is 1.5 g at 300 m and 1.85 g at 370 m, a good 

exercise to build muscle and stay young!

We take back our excited atom. We count the work 

received by the atom at each step. We mount it 

from ρ1=300 m to ρ2=200 m. The atom then gains a 
potential energy:

w I=−Δ ep I=∫mI g(ρ) dρ=mI ω
2∫ρ d ρ=

1

2
mI ω

2
(ρ2

2
−ρ1

2
)

It emits the photon:  wE=−eE=−h f E

It goes up:  wF=−Δ e p F=
1

2
mFω

2
(ρ1

2
−ρ2

2
)

It receives the photon:  wR=eR=h f R

We perform the energy balance: 

1

2
mI ω

2
(ρ2

2
−ρ1

2
)−h f E−

1

2
mFω

2
(ρ2

2
−ρ1

2
)+h f R=0

and we obtain:  f R=f E(1+ω2(ρ1

2−ρ2

2)

2 c
2 )  

The photon turns blue as it moves away from the axis 

of rotation. We always have the same phenomenon, 

the photon reddens as it goes up and blues as it 

goes down.

 F. SCHWARZSCHILD METRIC
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7    SCHWARZSCHILD METRIC

For comparison, we give the metric of spacetime 

around a massive object with spherical symmetry. It 

is the Schwarzschild metric of general relativity which 

replaces Newton's force of gravity to calculate the 

orbits of celestial bodies. For example, it can be 

used for studying the motion of the space station in 

the gravitational ,eld generated by the Earth. In 

order to respect the central symmetry, the metric is 

given in spherical coordinates:

d s
2=(1−2G M

r c
2 )c

2
dt

2−
d r

2

(1−2G M

r c
2 )

−r
2
dθ2−r

2
sin

2θd ϕ2

M is the mass of the central body (planet, star or 

black hole). This mass creates a gravitational ,eld 

and spacetime is curved. There is no global 

coordinate change that makes this metric 

Minkowskian. Gravitation and spacetime curvature 

are absent in the special relativity. 

Appears in the metric a quantity with the same units 

as a radius, this characteristic distance of the system 

is called Schwarzschild radius: 

we de,ne   rS=
2G M

c
2 .

As for the accelerated frame in special relativity, we 

have an event horizon, here located in rS. 
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For an object at rest we obtain the temporal part:

d τ = √1−
2G M

r c
2

dt

The further we move away from the massive object, 

the lower the curvature. At great distance, space 

can be approximated as Sat, and, according to the 

equivalence principle of general relativity, we must 

,nd the form of the metric of the uniformly 

accelerated rocket:

d τ≃(1−G M

r c
2 )dt    for   r≫rS .

For example, for the Earth, the radius rS is about 9 

millimeters. On the Earth ground, about 6370 km 

away, the approximation is extremely good21.

With r=r0+ x and r0≫rS  :

d τr
0
=(1−G M

r0 c
2 )dt    and   d τr 0+ x=(1−G M

r0 c
2 (1−

x

r0
))dt

gives   d τr
0
+ x=(1+G M x

r0

2
c

2 )d τr
0

The form  is the same as for the uniformly 

accelerated rocket: 

d τ=(1+ g x

c
2 )dt.

21 Also, we can forget the Earth's rotation because the ground speed 
can be neglected in front of the escape velocity (geocentric 
reference frame).
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We ,nd the equivalence principle when:

 g=
G M

r0
2
.

Here we have also the highest clocks faster and the 

ascending photons that redden. On the Earth 

ground, over a height of 100 meters, the time lag 

reaches 0.9 nanoseconds in 24 hours22. Result close 

to that obtained in the rocket23. Locally, nothing 

allows astronauts to di5erentiate the arti,cial gravity 

,eld created by the acceleration of the rocket, from 

a natural gravity generated by a mass. On the other 

hand, over a suCciently large space domain, they 

could di5erentiate the two situations: the space of 

the uniformly accelerated rocket is Euclidean while 

that of the massive celestial body is not24.

22 In the case of the space station, even if the 110 meters beam can be 
maintained directed towards the Earth with a tidal stabilization, the 
clocks remain synchronized. At the level of the station, the gravity 
field is still 90% of the one on the ground, but there is no redshift,  
because during the rotation around the Earth, the external part goes 
slightly  faster  than  the  internal  part  and  the  effect  is  perfectly 
compensated. This is the principle of equivalence, for the astronauts 
everything happens as if there was no more gravitation (they are in 
weightlessness) because they are in free fall. 

23 In both cases we have clocks at rest in relation to each other, which 
become desynchronized. For the rocket, by changing the reference 
frame,  we  can  consider  that  it  is  a  Doppler  effect.  This  is  not 
possible for gravitation and we speak of a redshift or blueshift.

24 Also in the rocket the proper acceleration is inversely proportional 
to the horizon distance, while for the massive object it varies with 
the  square  of  the  distance  to  the  center  of  the  body.  The 
equivalence principle is only true very locally.
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 G. Exercises

Exercises

1. ▲△△ Euclidean metric

d l
2=dx

2+dy
2+dz

2

Show that the Euclid metric is invariant by translation, 

rotation and a Galilean transformation.
Answers p381.

2. ▲△△ Rapidity

1 - Show that the standard Lorentz transformation 

can be written:

{
ct '=ct chϕ+ x shϕ
x '=ct shϕ+x chϕ
y '= y
z '=z

We used hyperbolic trigonometry and ϕ is the 
rapidity.

2 - Show that, for two successive Lorentz transfor-

mations in the same direction, the rapidities are 

additive.
Answers p382

3. ▲△△ Rindler metric25

d s
2=r

2
d τ2−dr

2−dy
2−dz

2

1 - What are the invariances of the Rindler 

25 W. Rindler, Relativity, Oxford Univ. Press, 2d Ed, 2006, 430 pages.
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coordinate system  by rotation and Lorentz 

transform?

2 - Show that this coordinate system corresponds to 

that of a uniformly accelerating reference frame.

3 - Show that the following change of coordinates 

makes it possible to ,nd a Minkowskian metric: 

Deduce the change of coordinates between the 

frame of reference (x, t) of the uniformly accele-

rated rocket and the galactic frame of reference 

(x', t'). 

Draw on a Minkowski diagram, in the inertial frame 

R', the set of coordinate lines for x and t.
Answers p382

 ▲▲△ Free fall in the rocket

In our uniformly accelerated rocket, to pass the time 

during this trip of a few years, we have fun throwing 

objects at each other. Whether you drop a ball with 

no initial speed, or throw it to your partner, we call 

this motion of the object free fall, because it is not 

subjected to any force. We explained that the 

acceleration of the rocket generates arti,cial 

gravity. This is locally equivalent to a uniform gravity 

,eld, but, given the metrics of the accelerated 

frame, we suspect that the trajectory of an object in 
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free fall will be modi,ed. We will approach the 

question in two phases: a ,rst qualitative approach 

and then a complete computation.

1 - We take two clocks initially synchronized and 

stationary in the same place. As in the course, one 

will stay in the same place, and the second one will 

be moved and brought back to the starting point. 

You play the following game: At the start both 

clocks indicate zero. You have the mobile clock that 

you can move as you wish. The only constraint is that 

at one minute exactly as indicated on the ,xed 

clock, your clock will have to be back, placed very 

quietly next to it. The challenge is to get the greatest 

possible time on your clock. How do you have to 

move it to win? 

Variation of the game: Previously the starting point 

was the end point. If now the ,nish point, while 

remaining at the same level, is di5erent, how do we 

proceed to maximize the time on our clock?

2 - The path followed by a free particle to go from 

the initial event Ei to the ,nal event Ef maximizes its 

proper time:

τ=∫
Ei

Ef

d τ=∫
C √g (x)−

v
2

c
2

dt    with  g(x )=(1+ a x

c
2 )

2

Lagrangian: L(x , v)=√g( x)−
v

2

c
2
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δ v

Thus: ∫
C '

L(x+δ x , v+δv )dt

=∫L(x , v )dt+∫( ∂L

∂ x
δ x+

∂ L

∂ v
δv )dt=τ+δ τ

For the searched path δ τ=0.

a- Continue the reasoning and establish the 

equation of motion of an object in free fall. Show 

that this equation, at the start of the throw and at 

low speeds, gives the equation of free fall in 
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Newtonian mechanics. 

Finally, how will you move your clock to win?

   b- Demonstrate the following conservation law:

L−
∂L

∂v
v=cst

We consider the case of a release from rest. Find the 

expression of position, velocity and acceleration as 

a function of g(x ). How does g vary during the fall? 

Show that the falling velocity reaches a maximum 

and then cancels on the horizon. What is the 

maximum falling speed? At what distance from the 

horizon?

   c- Perform a numerical simulation to plot position, 

velocity and acceleration curves as a function of 

time. When is the maximum speed reached? When 

does the object reach the horizon for an observer of 

the rocket?

   d- Proper time: Give the expression of the proper 

time. In its proper reference frame, when does the 

object reach the horizon? Suppose that the object is 

a mini auxiliary rocket that leaves the mother ship in 

free fall. What will happen to the occupant of the 

mini-rocket when it reaches the horizon? This small 

rocket is very fast, the pilot decides to ignite the 

engine to return to the main ship, will he succeed? 

You can illustrate the situation on two Minkowski 

diagrams (galactic and rocket frames).
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   e-  Local Minkowskian observer: The coordinate 

system of the accelerated rocket is not Minkowskian. 

The velocity previously determined in a non-

Minkowskian metric is called the coordinate velocity. 

This coordinate system has been constructed in a 

non-inertial frame of reference and the assumptions 

of special relativity do not apply directly to it. This 

reference frame is nevertheless very useful and 

necessary for the occupants of the rocket, but the 

speed of light is not ,xed at c. This is why we will 

consider a new observer, an inertial one. At each 

instant and position of the object in free fall, we 

consider the Minkowskian reference frame 

coinciding with that of the rocket: 

For example, imagine two rockets ,xed relatively to 

each other and uniformly accelerated. All of a 

sudden, one of them cuts its engine, its reference 

frame becomes inertial, and for some time it 

coincides with the rocket still accelerated. Thus an 

observer in the rocket which cut its engine is 

minkowskien, and he can observe the fall of the 

object. What speed will he measure for the falling 

object? What will be the velocity of the falling 

object at the horizon for a Minkowskian observer? 

3 - Analogy with the fall into a black hole:

   a- The Schwarzschild coordinate system is that of 

an outside observer at the black hole. We can 
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compare the radial fall of an object towards a black 

hole with the vertical fall of an object observed by 

the occupant of a uniformly accelerated rocket:

d τ2=g (r )dt
2−

d r
2

c
2
g (r)

   with   g(r )=1−
2G M

r c
2

τ=∫ L(r , v )dt      and     L(r , v )=√ g(r )−
1

g(r )
v

2

c
2

Describe the velocity pro,le of a falling body, 

dropped without initial velocity, to the horizon of the 

black hole r H=r S=2 G M /c2
. You will draw curves for 

speed and acceleration as a function of r. 

What is the maximum speed reached? At what 

distance from the horizon?

   b- Perform a numerical simulation to plot position, 

speed and acceleration curves as a function of 

time. When is the maximum speed reached? When 

does the object reach the horizon for an observer 

outside the black hole?

   c- Proper time: Give the expression of the proper 

time. In its proper reference frame, when does the 

object reach the horizon? Suppose the object is a 

spacecraft in free fall. What will happen to the 

occupant of the spacecraft when he reaches the 

horizon? This rocket is very fast and powerful, the 

pilot decides to start the reactor to leave the black 

hole, will he succeed?

d- Local Minkowskian observer: The Schwarz-

schild coordinate system is not Minkowskian. We 
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have previously determined the coordinate velocity 

and coordinate acceleration in this coordinate 

system. This coordinate system is very convenient 

and useful but the speed of light is not ,xed at c. 

That is why we will consider a new observer, him 

inertial. At each instant and position of the falling 

object, we consider the Minkowskian frame motion-

less with respect to the black hole and coinciding 

with the Schwarzschild frame of reference: 

Which speed is measured in this way for the object 

in free fall? What will be the speed of the falling 

object for a Minkowskian observer at the horizon?

   e- Comparison to experimental data: 

In 2018, a study26 of the measurements made by the 

XMM-Newton probe, which observed a super-

massive black hole of 40 million solar masses, shows 

a wind of matter in free fall towards the black hole 

that reaches relativistic speeds:

v~0.3c     for    r~20 RS
v~0.1c     for    r~200 RS

Do these results seem consistent with those found in 

the exercise?

 Answers p384.

26 An ultrafast inflow in the luminous Seyfert PG1211+143 , 2018, 
K.A.Pounds, C.J.Nixon, A.Lobban and A.R.King. University of 
Leicester, United-Kingdom.
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5. ▲△△     Fall of a blue ball

We release from rest a blue ball into the uniformly 

accelerated rocket and watch it fall in free fall. What 

will be the color of the ball perceived during its fall 

by the astronauts of the rocket?
Answers p404.

6. ▲▲△    Trajectory of a ray of light

                   in the Einstein's Elevator

Albert Einstein proposes a thought experiment in his 

book Relativity written in 1916. We imagine a portion 

of empty space in,nitely distant from all masses. We 

have at our disposal a large box in which an 

observer evolves in weightlessness. A hook makes it 

possible to exert a constant force on the box by 

means of a rope, which is then animated by a 

rectilinear translation motion uniformly accelerated. 

The observer thus experiments an arti,cial gravity. 

Compared to the immobile box, constituting an 

inertial frame of reference, the trajectory of a light 

ray of speed c is rectilinear. On the other hand, in 

the box accelerated by the traction of the rope, a 

light ray, here, initially perpendicular to the direction 

of motion, will take a curved trajectory. Let's quote 

Einstein: "It can easily be shown that the path of the 

same ray of light is no longer a straight line". 
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1 - Newtonian   

     approximation:

We consider the speed of 

light constantly equal to c, 

and the rectilinear trajec-

tory, in the Galilean frame 

of reference which initially 

coincides with the box.

For a constant 

acceleration box a,

determine ∆x.

Express the equation of the 

trajectory y(x) and of the 

light speed v(x) in the 

accelerated frame. 

2 - Special Relativity:

We answer the same questions as above. For that, 

we ,rst consider the equation of the light ray 

worldline in an inertial reference frame. Then, with 

the appropriate change of coordinates, we obtain 

the equation of the worldline in the non-inertial box.

3 - Drawing of curves.

Answers p404.
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7. ▲▲△     Spherical coordinate system

Spherical coordinate system de,nition:

1 - Conversions between spherical and rectangular 

coordinates.

2 - Express the position vector ⃗r=O⃗M and the 

in,nitesimal element vector ⃗dr=M⃗M ' between M 

and M' in,nitely close.

3 - Find by integration the surface and the volume of 

a sphere.

4 - De,nition of plane angles and solid angles: from 

an observation point O, we observe an object. The 

extensions of the periphery of the object cuts an arc 

on the circle unit of center O. The length of this arc 
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gives the value of the angle in radians under which 

we see the object. In 3D space the circle is replaced 

by a sphere unit on which a surface is cut out. The 

area of this surface gives the solid angle in 

steradians under which we see the object. 

  a- From which solid angle do we see the whole 

space? The starry sky on a clear night? A room from 

one of its corners?

  b- Calculate the solid angle of an angle cone α.

  c- What is the probability that a star is in the plane 

of the ecliptic within ten degrees?

Answers p407.
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 VII. Four-Vectors

FOUR-VECTORS

We have introduced special relativity through the 

Minkowski spacetime: events space with its metric27. 

We can extend this points space to build more 

complex elements such as vectors or tensors.

The following presentation is a bit formal but 

necessary for a full understanding of relativity. We 

will continue to rely on a geometrical vision as soon 

as possible.

The elements of a vector space E are vectors, noted 

in this book with bold letters : v.

If we need to specify that we are in a Euclidean 

vector space, we will use the classic notation with 

arrows : ⃗v.

In the case of the Minkowski space, we can clarify 

the context by talking about four-vectors noted with 

tildes : ~v.

27 We considered the standard Minkowski metric of an inertial frame 
d s

2=c
2
dt

2−dx
2−dy

2−dz
2 in  an  orthonormal  Cartesian  coordinate 

system. While keeping an inertial reference frame, the form of the 
metric can be different. For example, in cases where the metric is 
expressed  in  a  non-orthonormal  or  non-Cartesian  coordinate 
system. We then speak of  Minkowskian metric. When the change 
of coordinates gives a non-inertial frame of reference (as for our 
rocket  and  the  rotating  disk)  the  special  relativity  is  applied  by 
adding metric effects (page 229).
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In general, a vector can be uniquely de,ned from 

two points (or events) in our space (or spacetime):

Vector space is aCne and with a third point we have 

the relation AC = AB + BC :

By multiplying by a real we have a new vector  k AB 

and the vector is directed BA = - AB. Any linear 

combination of E vectors is a new E vector.

We express a v vector in a basis. 

The basis vectors are denoted ei 

and form  a spanning and 

generating set of E.

For a vector space of dimension n:

v=v1
e1+v2

e2+...+vn
en=∑

i=1

n

v i
ei=vi

e i
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We use  Einstein summation convention, the 

summation is implied for a repeated index up and 

down. The v 

i are the components of v expressed 

with the basis vectors (e1 , e2 , ... , en).

Scalar product of two vectors a and b :

a⋅b=(ai
e i)⋅(b

j
e j)=ei⋅e j a

i
b

j

We de,ne the components of the metric tensor g 

such as:  gi j
=e

i
⋅e

j.

so      a⋅b=gi j a
i
b

j
.

For example, for n=2, we have:

 a⋅b=g11 a
1
b

1+g1 2 a
1
b

2+g21a
2
b

1+g2 2 a
2
b

2

The scalar product28 is commutative and the 

components of the metric tensor are symmetrical:

 g
i j
=g

j i

We can write the components of the metric tensor in 

a matrix.

For example, for n=3 in the basis (e1 , e2 , e3) :

g=(
g1 1 g12 g13

g2 1 g22 g23

g3 1 g3 2 g33
)

We have a second way to project a vector. The ,rst 

28 In math, we talk about bilinear form, it associates to two vectors a 
number, called scalar.
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components, given above, are obtained parallel to 

the basis vectors. We can obtain a new set of v i 

components with orthogonal projections:

v⋅ei=(v
j
e j)⋅ei=gi j v

j=v i

We then have a new basis associated with these 

new components: e
i=g

i j
e j. The g

i j
 are calculated 

from the g
i j
 with: gik g

k j=δi

j
 where δi

j
 is the 

Kronecker delta, null, if the indices are di5erent, and, 

equal to one, if they are equal. 

We then have a new writing :

v=v ie
i

Lower-index objects are covariant quantities, while 

upper-index objects are contravariant quantities.

For example, the components v i are covariants 

and the basis vectors e
i
 are contravariants. The 

components g
i j
 are two times covariants and the 

tensor g
i j
 is two times contravariants. We will see the 

precise meaning and importance of this vocabulary 

at the moment of the change of basis.

The metric tensor allows us to switch between these 

two types of quantities. 

In the end, we can have four di5erent writings for 

the scalar product:

a⋅b=gi j a
i
b

j=a
i
bi=ai b

i=g
i j

ai b j
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Orthogonal vectors:  a⋅b=0.

In the case of orthogonal bases:

if  i≠j  then  g
i j
=0.

For example, for n=2:  a⋅b=g11 a
1
b

1+g2 2 a
2
b

2

and    g=(g1 1
0

0 g2 2
).

Vectors, tensors and scalars are essential mathe-

matical objects for physics. The laws of nature are 

expressed using equations constructed from these 

three types of objects, because if we change the 

basis, the laws keep the same form. The new basis is 

associated with new coordinates used to realize a 

translation, a rotation or a change of Galilean or 

inertial reference frame. We will study the change of 

coordinates later. 

Following this somewhat abstract interlude, let us 

approach di5erent practical cases. 
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 A. EUCLIDEAN VECTOR SPACE

7    EUCLIDEAN VECTOR SPACE

Newton's laws and all classical mechanics is built 

with vectors, scalars and tensors.

Newton's second law:

 ⃗F=m a⃗,

Kinetic power:

 Pk=
d E

k

dt
=

d

dt (
1

2
m v⃗⋅⃗v )=P=F⃗⋅⃗v ,

Angular momentum:

d σ⃗
dt

=
d

dt
(m r⃗∧v⃗ )= r⃗∧F⃗ .

All these laws keep the same form by translation, 

rotation and Galilean transformation. The use of 

vectors assures us that.

In Euclidean geometry the scalar product of a 

vector with itself can only be positive or zero, we can 

then de,ne a norm:

‖v⃗‖=√ v⃗⋅⃗v

The norm is positive de,nite:

• v⃗⋅⃗v⩾0.

• v⃗⋅⃗v=0 if and only if ⃗v=0⃗.
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In Euclidean geometry, the norm of a vector is repre-

sented by its length and this length is independent of the 

chosen basis. Starting from O, all the ends of vectors of 

the same norm are placed on the same circle (we have 

represented four vectors of norm 2). 

A property of the circle: if we draw a radius OM, the 

tangent (T) is always perpendicular to (OM). We thus 

obtain a pair of orthogonal vectors:

 ⃗u⋅⃗v=0.

For a set of concentric circles of radii multiple of unity, a 

line through O intersects the circles at a set of equidistant 

points.
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Geometric determination of the scalar product:

   ⃗a⋅⃗b=‖a⃗‖‖b⃗‖cos (
^
a⃗ , b⃗)

O⃗A⋅⃗OB=OA×OB×cosθ

                =±OH A×OB

                = ±OH B×OA

a⃗⋅⃗b=O⃗A⋅⃗OB=(O⃗H+H⃗A )⋅⃗OB=( c⃗+n⃗)⋅⃗b=c⃗⋅⃗b+ n⃗⋅⃗b  

In the end, if we ,nd an orthogonal vector ⃗n, the 

dot product comes down to that of two collinear 

vectors and the value is the product of their radii:

a⃗⋅⃗b=c⃗⋅⃗b=±Rc×Rb

The sign is positive if the two collinear vectors are in 

the same direction, and negative if they are in 

opposite directions. We have two equivalent 

options, ,nd a vector orthogonal to ⃗a or to ⃗b.

◦ Orthonormal Cartesian bases:

We can always go back to 

an orthonormal Cartesian 

basis:

 ⃗ei
⋅⃗e

j
=δ

i j.

For example, for n=2, we 

have in this case:
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g=(1 0

0 1)
a⃗⋅⃗b=a

1
b

1+a
2
b

2

and for the norm:

 v=√‖v⃗‖=√(vx)2+(v y)2

The covariant and contravariant components are 

then identical. The same applies to the bases.

◦ Normal and non-orthogonal Cartesian bases:

Case for a vector of the plane (2-vector) :

We know the contravariants 

components of ⃗v  in the 

covariant base:

v⃗=v
1
e⃗1+v

2
e⃗2= e⃗1+2 e⃗2

with   gi j=( 1 cosθ
cosθ 1 )

and   θ= π
3
.

Let's determine the covariant components of ⃗v :

v i=gi j v
j=gi1 v

1+gi 2 v
2

v1=g11 v
1+g12 v

2=v
1+cosθ v

2=2= v⃗⋅⃗e1
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v
2
=g

21
v

1+g
22

v
2=cosθ v

1+v
2=

5

2
=v⃗⋅⃗e

2

We now have two 

possible decompositions 

for ⃗v  :

v⃗=e⃗
1
+2 e⃗

2
=2 e⃗

1+
5

2
e⃗

2

Let us determine the metric tensor components in 

the contravariant base:

gi1 g
1 j+gi2 g

2 j=δi

j

g11 g
11+g12 g

21=1   then   g
11+cosθ g

21=1

g11 g
12+g12 g

22=0   and   g
12=−cosθ g

22

g21 g
12+g22 g

22=1   and   cosθ g
12+g

22=1

g21 g
11+g22 g

21=0   and   g
21=−cosθ g

11

so:  g
11=g

2 2=1 / sin
2θ
and   g

12=g
21=−cosθ/sin

2θ

Metric :   g
i j=

1

sin
2θ (

1 −cos θ
−cosθ 1 )

182



Let's ,nd the contravariant basis:

e⃗
i=g

i j
e⃗ j=g

i1
e⃗1+g

i2
e⃗2

so  ⃗e
1=g

11
e⃗1+g

12
e⃗2=

e⃗
1
−cosθ e⃗

2

sin
2θ

=
4

3
( e⃗1−

1

2
e⃗2)

e⃗
2=g

21
e⃗1+g

22
e⃗2=

−cosθ e⃗
1
+ e⃗

2

sin
2θ

=
4

3
(−

1

2
e⃗1+ e⃗2)

Now, if you are a math teacher in middle school and 

when studying non-orthogonal coordinate systems a 

pupil asks you, "Why do we project along parallels 

and not perpendiculars?" you will know what to 

answer. The pupil is absolutely right, both types of 

projections are possible and even complementary.
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 B. MINKOWSKI VECTOR SPACE

7    MINKOWSKI VECTOR SPACE

We will establish the new physical laws of special 

relativity based on four-vectors. For the formulas, we 

will be inspired by Newton's mechanics via the low 

speed limit. 

We note the components of an event E with indices 

from 0 to 3 :

~x=x
μ (x0

, x
1
, x

2
, x

3)

x
0=c t,    x

1=x,    x
2= y,   and   x

3=z

~v=~O E=x
μ(E)−x

μ (O)  
29

For the scalar product:   ~a⋅~b=gμ νa
μ
b
ν.

With the Minkowski metric:

gμ ν=(
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1
)
 

We will show that this metric gives back the triangle 

of times.

We have:  ~a⋅~b=a
0
b

0−a
1
b

1−a
2
b

2−a
3
b

3
.

29 Vectors, or tensors, are regularly misidentified with their 
components. In general, this does not lead to confusion.
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For the spatial part, we recognize a Euclidean scalar 

product, we can then write:

~a⋅~b=a
0
b

0−a⃗⋅⃗b.

The scalar product of a vector ~v with itself can be 
positive, zero or negative:

 ~v⋅~v=(v0)2−‖v⃗‖2
.

Contrary to the Euclidean case, the Minkowskian 

scalar product of a vector with itself is not always 

positive. Moreover, ~v⋅~v=0 does not imply ~v=~0. 
There is no norm for a vector in Minkowski space. The 

quantity ~v⋅~v  is sometimes called pseudo-norm30.
In Euclidean space the length of a vector, 

represented on an orthonormal coordinate system, 

corresponds to its norm, and the vectors of the same 

norm, starting from the same point, are distributed 

on the same circle. This is no longer the case on a 

Minkowski diagram: two vectors can have the same 

pseudo-norm and not appear with the same 

length.31. The 4-vectors of the same pseudo-norm 

are distributed on hyperbolas. 

30 Term used and debatable: this term refers to the Euclidean norm 
without  taking  up  all  its  principles.  Contrary  to  the  norm,  the 
pseudo-norm does not have the same units as the vector (the square 
root is missing). We could consider the quantity: k=√|~v⋅~v| where 
k is the parameter of the hyperbola associated with the 4-vector. 
We could name k, the timelike or spacelike norm depending on the 
case (as in Euclidean where R is the parameter of the circle and the 
norm of the vector). We will use the term intensity for the  k of a 
four-vector. 

31 We represent the two-dimensional  Euclidean space on a sheet of 
paper which is itself a 2D Euclidean physical object. On the other 
hand,  using  a  Euclidean  sheet  to  represent  Minkowski's  plane 
requires an effort of abstraction.
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We have three kinds of 4-vectors :

• timelike :     ~v⋅~v >0

• lightlike :   ~v⋅~v=0

• spacelike :  ~v⋅~v <0

The light-like vectors are on the light cones 

associated with the world-lines of photons. The time-

like vectors are in the cone (towards the vertical), 

and the space-like vectors towards the outside of 

the cone. 

Depending on the sign of the time component, a 

four-vector can point towards the future or the past. 

This property and that of the time, light or space-like 
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kind do not depend on the inertial frame of 

reference considered. 

When the scalar product of two vectors is null we 

have orthogonal vectors:

~a⋅~b=0

This property of orthogonality is also valid in all 

inertial frames of reference. 

Again, the situation is not as intuitive as in Euclidean, 

it is not because two vectors are orthogonal that 

they appear perpendicular on a diagram.

We have two types of hyperbolas, those time-like, 

internal to the light cone, of equations t2−x
2=k

2 (to 

simplify we have set c=1), and the external ones, 

space-like, of equations t
2−x

2=−k
2
  32.

k de,ned as positive.

32 "Space and Time",  Hermann Minkowski, lecture delivered at 
Cologne on 21st September 1908.
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We easily ,nd again the hyperbolas by a 

construction with the triangle of times:

Plot of an internal hyperbola of parameter k. For a given x 

it corresponds to a value of t which forms a right-angled 

triangle with k: t
2=k

2+x
2
. For a 4-vector position xμ, time-

like, k corresponds to a proper time τ. For an external 
hyperbola, k is represented by a vertical line and it is x 

which is placed at the hypotenuse: x
2=k

2+t
2
.
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A hyperbolic geometry: vectors of the same pseudo-

norm, that start in O, end on the same pair of hyperbolas. 

We have represented four 4-vectors which have the same 

pseudo-norm 1, they join the unit hyperbola on one or the 

other of these two branches. The time-like hyperbolas are 

indexed by k and the space-like hyperbola by -k. 

A property of the hyperbola: if we plot a radius OM, the 

tangent (T) is always symmetrical, with respect to the 

bisectors, at (OM). We thus obtain a pair of orthogonal 

vectors: ~u⋅~v=0. 

For a set of hyperbolas with the same center O, the same 

orthogonal axes, and parameters multiple of the unit, a 

straight line passing through O cuts the hyperbolas into a 

set of equidistant points. 
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In 2D, in Minkowski's plane:

 ~a⋅
~
b=0    ⇒  a0

b
0=a

1
b

1

Two orthogonal 4-vectors are symmetrical with 

respect to the photon worldlines:

tan θ=
a

1

a
0
=

b
0

b
1

Triangles

Four isosceles triangles, one equilateral triangle, one right-

angled triangle and one isosceles right triangle. All these 

triangles keep their properties by 90° rotation and change 

of scale.
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Examples of 4-vectors orthogonal

For all pairs represented: ~a⋅
~
b=0

By taking the opposite of one of the vectors of the pair, or 

by multiplying it by a constant, the pair remains 

orthogonal. 

Geometrical methods:

• Use of the hyperbola.

• Symmetry with respect to the photon worldlines.

• Passage through the Euclidean: two perpen-

dicular vectors and we take the symmetry with 

respect to the vertical of one of them.
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Case of 4-vectors collinear :

Two examples, the pair (~a, ~b) and the pair (~u, ~v)

Pythagorean theorem in Minkowski space:

~a+~b=~c  with ~a and ~b orthogonal.

k a

2−k b

2=±k c

2

k : parameter of the 
hyperbola / 

magnitude / intensity 

of the 4-vectors.
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◦ Geometric determination of the scalar product

To evaluate ~a⋅
~
b in the space of Minkowski:

• We break down one of the two four-vectors 

as the sum of an orthogonal vector and a 

collinear vector to the second one.

~a⋅~b=(~c +~n )⋅~b=~c⋅~b+~n⋅~b

• We determine with a compass the para-

meters of the hyperbolas of the two collinear 

vectors obtained.

• The scalar product is the product of the two 

parameters:  ~a⋅~b=~c⋅~b=±kc×kb.

The sign is positive if the two collinear vectors 

are timelike and in the same direction, or, if 

they are spacelike and in opposite directions. 

In other cases the sign is negative.
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Examples of geometric determination 

of the scalar product :
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◦ Orthogonal bases

We can always go back to an orthogonal base such 

as ~eμ⋅~e ν=0 for  μν.

 • Reference frame R

Let's look at the case of the contravariant and 

covariant components on a Minkowski diagram:

Let's check, on this particular case, the general 

formulas:

gμν=~e μ⋅~e ν,    
~x=x

μ~e μ,

xμ=gμν x
ν,    ~eμ=g

μ ν~e ν    and    
~x=xμ

~e μ.

We have well, by graphically calculating scalar 

products : ~e 0⋅
~e1=(e⃗0⋅s( e⃗1))Euclid=0=g10.

Also  ~e 0
⋅~e

0
= e⃗

0
⋅⃗e

0
=1, ~e 1

⋅~e
1
=−e⃗

1
⋅⃗e

1
=−1 then 
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~x=3~e
0
+2~e

1

=3~e 0−2~e 1



g
00
=1 and g11

=−1. ~e 0 pseudo-norm worth 1 and 
~e

1 pseudo-norm worth -1.

2D metric :  gμν=(1 0

0 −1).
For the covariant components :

x0=g0 0 x
0+g0 1 x

1=x
0
  and  x1=g10 x

0+g11 x
1=−x

1

~e 0=g
00~e 0+g

0 1~e 1=
~e 0  and  

~e 1=g
1 0~e 0+g

11~e 1=−
~e 1

~x=x0
~e 0+x1

~e 1=x
0~e 0+x

1~e1=x0
~e 0−x1

~e 1

 • Reference frame R'

Let's now take the case of the inertial frame R' seen 

from R :
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An unwarned Euclidean glance would naively see a 

non-orthogonal coordinate system, and, basis 

vectors longer than one. It is not so, the basis vectors 

are well orthogonal because they are symmetrical 

with respect to the worldline of a photon, and, 

besides, the time vector of the bases of R' is along 

the unit hyperbola and, therefore, of pseudo-norm 1, 

the space vector is along the hyperbola corres-

ponding to a pseudo-norm -1. The metric is thus the 

same as for R, which is to be expected because 

there is no privileged inertial frame of reference:

 g 'μ ν=(1 0

0 −1).
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For the covariant components and the contra-

variant basis, we necessarily have the same 

relationships as for R :

x '0=x '
0
,    x '1=−x '

1
,    ~e '

0=~e '0    and    
~e '

1=−~e '1.

~x=x '
0~e '0+x '

1~e '1=x '0
~e '

0+x '1
~e '

1

~x=2~e ' 0+
3

2
~e '1=2~e '

0−
3

2
~e '

1=
11

2√3
~e 0+

5

√3
~e 1

 C. Change of Coordinates
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7    CHANGE OF COORDINATES

We can switch from a system of n coordinates x i to 

a new system of n coordinates x' i, where each of 

the n coordinates  x' i depend on the n coordinates 

x i :

x '
i(x

1
, ... , x

2
, ... , x

n)

We have a function with n variables. For a function f 

with two variables, we add the variations in both 

directions :

df (x , y)=
∂ f

∂ x
dx+

∂ f

∂ y
dy

When we move from M (x , y) to M ' (x+dx , y+dy), 
in,nitely close, the function f varies by df.

The generalization gives :    df (x i)=∑
i=1

n
∂ f

∂ x
i
dx

i.

Then    d x '
i=

∂ x '
i

∂ x
j

dx
j
    and    d x

i=
∂ x

i

∂ x '
j
d x '

j
.

We note :     Λ
i

j=
∂ x '

i

∂ x
j     and    Λ j

i=
∂ x

i

∂ x '
j.

These two tensors are used to switch from one 

coordinate system to the other, they are the change 

of basis matrices. The superscript indices correspond 

to the rows and the subscript indices to the columns.
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Let's do the product of the two matrices33 :

  Λ
i

k Λ j

k=
∂ x '

i

∂ x
k

∂ x
k

∂ x '
j
=
∂ x '

i

∂ x '
j
=δ j

i
.

The matrices are inverse to each other : 

Λ Λ−1=Λ−1Λ=I

The  covariant components of a vector are 

transformed according to Λ, and the contravariant 
components according to Λ−1

. This is where the 

famous name comes from. The same is true for the 

base vectors :

v ' i=Λi

j
v j    v '

i=Λi

j v
j
    v i=Λ j

i v ' j    v
i=Λ j

i
v '

j

e ' i=Λ i

j
e j    e '

i=Λi

j e
j
    ei=Λ j

ie ' j     e
i=Λ j

i
e '

j

We can easily verify that the scalar product of two 

vectors is invariant by basis change :

A⋅B=Ai B
i=Λ j

i A ' jΛk

i
B'

k=δ k

j
A ' j B '

k=A ' j B '
j

Also if two n-vectors are equal, they are still equal 

after changing the coordinate system:

A
i=B

i  ⇒ Λi

k A
k=Λ i

k B
k  ⇒ A '

i=B '
i  ⇒ A=B

33 Some additional mathematical tools :

If x ' (x , y)  and y ' (x , y)  then 
∂ x '

∂ y '
=
∂ x '

∂ x

∂ x

∂ y '
+
∂ x '

∂ y

∂ y

∂ y '
.

Generalized : 
∂ x '

i

∂ x '
j=

∂ x '
i

∂ x
k

∂ x
k

∂ x '
j

 and 
∂ f

∂ x '
j=

∂ f

∂ x
k

∂ x
k

∂ x '
j
.
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Fundamental properties for constructing physical 

laws, whether in classical mechanics, special 

relativity or general relativity.

Let's look for the new metric:

g' i j=e ' i⋅e ' j=Λi

k
ek⋅Λ j

l
el=Λi

kΛ j

l
gk l

In general, the change of basis matrix is applied as 

many times as there are indices on a tensor. For 

example, on the Riemann curvature tensor :

R ' β γ δ
α =Λα

μΛβ
νΛγ

ρΛδ
λ

R ν ρ λ
μ

◦ Rotation in Euclidean geometry :

{ x (r ,θ)=rcos θ

y (r ,θ)=r sinθ

x '
1= x(x

1=r ; x
2=θ)

x '
2= y

Λ1

1=
∂ x

∂ r
=cosθ Λ1

2=
∂ x
∂θ

=−rsinθ

Λ2

1=
∂ y

∂ r
=sin θ Λ2

2=
∂ y
∂θ

=r cosθ

then Λ=(
cosθ −r sin θ

sin θ r cosθ )
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Λ1

1=
∂ r

∂ x
=

x

r
=cosθ because    r=√x

2+ y
2

Λ1

2=∂θ
∂ x

=−
sin θ

r
     as    ∂θ

∂ x

∂ x
∂θ

+ ∂θ
∂ y

∂ y
∂θ

=1

Λ2

2=∂θ
∂ y

=
1/ x

1+ y
2/x2

=
cosθ

r
       Λ2

1=
∂r

∂ y
=sinθ

,nally : Λ−1=(
cosθ sinθ

−
sinθ

r

cosθ
r

)
we well have   ΛΛ−1=Λ−1Λ=I.

e1= e⃗r=Λ1

1 e ' 1+Λ
2

1e '2=cos θ i⃗+sin θ j⃗

e2= e⃗θ=Λ1

2 e ' 1+Λ
2

2 e ' 2=−r sinθ i⃗+rcos θ j⃗

The basis (e⃗ r , e⃗θ) is orthogonal and not normalized. 

For an orthonormal basis we have the unit vectors as 

follows  ⃗er
=u⃗

r  and  ⃗eθ=r u⃗θ.

Metrics :  g' i j=( i⃗⋅⃗i i⃗⋅⃗j

j⃗⋅⃗i j⃗⋅⃗j )=(1 0

0 1)

and  gi j=Λk

iΛ
l

j g 'k l=(1 0

0 r
2)

for example  g22=Λ1
2Λ

1
2 g' 11+Λ

2
2Λ

2
2 g ' 22+0+0=r

2
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Invariant length element :
 

dl
2=d⃗l⋅⃗dl=d x ' i d x '

i=g ' i j d x '
i
d x '

j=dx
2+dy

2

dl
2=d x i d x

i=gi j d x
i
d x

j=dr
2+r

2
dθ2

Vector components : ⃗v(v
x
,v

y)

v
1=v

r=Λ1

1
v '

1+Λ2

1
v '

2=cosθ v
x+sinθ v

y

v2=vθ=Λ
1

2 v '1+Λ
2

2 v '2=−
sinθ

r
vx+

cosθ
r

v y

we well have ⃗v⋅⃗v=gi j v
i
v

j=(vx)2+(v y)2=g' i j v '
i
v '

j

◦ Lorentz transformation :  { ct ' (ct , x)=γ(ct−β x )

x '(ct , x)=γ(x −β ct)

x '
0=ct ' (x

0=ct ; x
1=x)    x '

1= x '

Λ0

0=
∂ ct '

∂ ct
=γ

   
Λ0

1=
∂ ct '

∂ x
=−γβ

Λ1

0=
∂ x '

∂ct
=−γβ

   
Λ1

1=
∂ x '

∂ x
=γ

then Λ=Λμ
ν=(

γ −γβ

−γβ γ )
Inverse standard Lorentz boost :{ ct=γ(ct '+β x ' )

x=γ(x ' +β ct ' )

Then :Λ−1=Λν
μ=( γ γβ

γβ γ ) and  ΛΛ−1=Λ−1Λ=I.
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Basis vectors :

~e 0=
~e t=Λ0

0
~e '0+Λ

1

0
~e '1    and    

~e t=γ(~e t '−β~e x ')

~e 0=
~e t=Λ0

0
~e '0+Λ

1

0
~e '1   and   

~e x=γ(−β~e t '+
~e x ')

also   ~e t '=γ(~e t+β
~e x)   and    

~e x '=γ(β~e t+
~e x)

For the Minkowski diagrams, we ,nd the results given 

on page 42 and following. On a Euclidean sheet of 

paper the vector ~e t ' appears longer than 
~e

t : 

‖~e t '‖Euclid=γ√1+β2
.

Apparent angle : ̂(~e t ,
~e t ' )Euclid=arctanβ.

Metrics : gμ ν=(
~e

t
⋅~e

t
~e

t
⋅~e

x

~e x⋅
~e t

~e x⋅
~e x

)=(1 0

0 −1)
~e t '⋅

~e t '=γ2(~e t⋅
~e t+2β~e t⋅

~e x+β
2~e x⋅

~e x)=1

and so on, hence  g'μ ν=Λμ
αΛν

β
gαβ=(1 0

0 −1)
The metric remains the same.

The invariant ds2 :   ds
2=gμ ν d x

μ
d x

ν=c
2
dt

2−dx
2

                                 =g 'μ ν d x '
μ
d x '

ν=c
2
dt '

2−dx '
2

Vector components : ~v (vt
, v

x)

v '
0=v

t '=Λ0

0 v
0+Λ0

1v
1=γ(vt−β v

x)

v '
1=v

x '=Λ1

0 v
0+Λ1

1 v
1=γ(−β v

t+v
x)
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We ,nd the Lorentz transformation that applies to 

any four-vector.

Also :   ~v⋅~v=gμ ν v
μ
v
ν=(v t)2−(v x)2=(v t ' )2−(v x ')2

And the scalar product is well invariant :

~u⋅~v=gμ νu '
μ

v '
ν=u '

0
v '

0−u'
1
v '

1−u'
2
v '

2−u'
3
v '

3
 

=γ2(u0−βu
1)(v0−β v

1)−γ2(u1−βu
0)(v1−β v

0)−u
2
v

2−u
3
v

3

=γ2(1−β2)u
0
v

0+0+0−γ2(1−β2)u1
v

1−u
2
v

2−u
3
v

3

=u
0
v

0−u
1
v

1−u
2
v

2−u
3
v

3=gμ νu
μ
v

ν

For all 4-vectors we have the standard Lorentz 

transformation :

{
v

t '=γ(vt−β v
x)

v
x '=γ(vx−β v

t)

v
y '=v

y

v
z '=v

z

The change of basis lambda matrices :

  

Λ=Λμ
ν=(

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1
)

Λ−1=Λν
μ=(

γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1
)

 D. FOUR-VELOCITY
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7    FOUR-VELOCITY

After building a new geometry of space and time, 

let us build the new physics associated with it. The 

position vector and universal time have been 

replaced by the four-vector ~x. What about the 
other physical quantities introduced by Newton: 

velocity, acceleration, momentum, energy, force, 

etc?

First of all, we are looking for quantities that 

transform according to Lorentz's transformation, then 

we will establish laws that give back the classical 

mechanics at low speeds, and of course, the 

supreme criterion, the experimental veri,cation will 

,nalize the selection. 

We will construct the covariant velocity from the 

four-vector x 
μ. We resume the classical approach 

which allows to build a vector tangent to the 

trajectory of an object. For two in,nitely close events 

on a worldline, we have the in,nitesimal 4-vector :

 d~x=~E E '=~x (E ' )−~x (E).

To de,ne the velocity, simply divide by the duration, 

just as in,nitesimal, which separates these two 

events. Of course, in Newton's mechanics, there is 

no hesitation to have, on the other hand, in special 

relativity, we have the duration dt measured in the 

same frame of reference as the dx 
μ, or, the duration 

dτ  measured in the proper reference frame of the 
moving object. No hesitation because dτ  is the only 
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duration invariant by the Lorentz transformation34, 

hence the expression of the four-vector velocity :

~u=
d~x
d τ
     and     u

μ=
d x

μ

d τ

For the three spatial components, we ,nd well the 

classical velocity ⃗v  at low speeds :

~u=(γc ,γ v⃗ )

with   γ=
1

√1−β2
,    β=

v

c
,   v=‖v⃗‖,

γ(v )=
d t

d τ
,     v

i=
d x

i

d t
    and    ⃗v=(v

1
, v

2
,v

3).

This four-velocity transforms well according to the 

Lorentz transformation given on page 205, which 

was not the case for the classical velocity (easy to 

convince oneself by looking at the relations on page 

362).

For example, along the x axis :  u
x=

d x

d τ
=γ v

x
.

To think about relativity, it seems logical to reason 

with the velocity provided by this same theory, and 

not with that of Newton. But as with the notion of 

absolute space and absolute time, habits are 

tenacious, and it must be noted that Newton's 

velocity makes resistance. 

34 dτ is  obtained  by  doing  the  scalar  product  of  two  four-
vectors,  it  is  therefore  invariant  by  the  Lorentz  transfor-

mation : d~x⋅d~x=gμ ν d x
μ
d x

ν=c
2
dt

2−dl
2=c

2
d τ2
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"You can't go faster than the speed of light" we hear. 

Everything would then happen as if there were a 

forbidden zone from c to in,nity. We don't like the 

prohibitions, and neither does nature, it seems to 

realize everything that is possible. So, not supporting 

limits, in this supposedly inaccessible zone, we put 

strange particles, tachions, particles that would 

always have been faster than light... except that 

these tachions violate causality, a basic principle in 

physics. 

Let's think di5erently, let's use the right de,nition for 

velocity, the one that respects the symmetries of 

spacetime. When you give each time more energy 

to a particle to accelerate it, it gains speed and its 

velocity tends towards in,nity : 

v
Newton

=
d x

d t
→c,    γ→∞    and    v

Einstein
=

d x

d τ
→∞.

The prohibited zone no longer exists!

Let's take again the example of the journey for 

Proxima. From the Earth the astronaut travels 4 ly, his 

journey lasts 3 years, and 5 years for the Earthlings. 

Sometimes I hear "but he goes faster than light!". He 

is going well, slower than light, he arrives after a ray 

of light, and in the ship's frame of reference he has 

traveled a distance of only 2.4 ly. But it is interesting 

to note that the person ,nally refers to the covariant 

velocity u=∆x/∆τ=4/3 c, and, in terms of covariant 

velocity, that of light is in,nite. Finally, we are not so 

limited as that, at speeds close to c we ,nd 
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ourselves on the other side of the galaxy very 

quickly. For example, an ultra-relativistic electron 

can travel 100,000 ly in one year (in its own frame of 

reference!).

The temporal component of ~u is always positive, the 
four-velocity is always directed towards the future. 

Let's calculate the pseudo-norm :

~u⋅~u=γ2
c

2−γ2
v

2=c
2>0

The 4-velocity is a time-like vector whose end is 

located on the upper branch of the c parameter 

hyperbola. The 4-velocity cannot be null. For a 

particle at rest there is only the time component 

which corresponds, in a way, to the speed of the 

Sow of time.

Particle at rest :  ~u=(c , 0⃗).

Particle in motion :  ~u=γ c(1 , β⃗).
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Minkowski Diagram for the 4-velocity :

~u1 : relativistic velocity of an object at rest in R. 

The vector is vertical. 

~u2  : 4-velocity of an object moving to the right. 

The tip is on the hyperbola of parameter c.

The corresponding gamma is 1.15 and v=50%c.

~u3  : 4- velocity of an object moving to the left.

~u4  : The more gamma increases, the closer the 

velocity vector gets to the asymptote and the 

light cone.

We have built the frame where the particle 2 is 

motionless. By projecting the tip of ~u1 into R',  we obtain 

a particle 1 that moves to the left at 50 % of c.
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The velocity triangle :   ~u⋅~u=(ut )2−(ux)2=c
2

(Triangles for γ=2 and β=√3/2)

Here is the worldline of a particle. The 

velocity is always tangent to the worldline 

and contained in the future light cone. In 

E1 the tangent is vertical, the particle is at 

rest, then it starts moving to the right, slows 

down and stops further to the right in E2. It 

resumes its motion to the left, accelerates 

and reaches its maximum speed at the 

point of inFection in E4.

 E. FOUR-ACCELERATION
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7    FOUR-ACCELERATION

The approach is of course quite similar:

~w=
d~u
d τ

    and    w
μ=

d u
μ

d τ

As for the 4-velocity, we do not use the classical 

notations so that the di5erences appear without 

ambiguity : ~w  for the 4-acceleration and ⃗a  for the 
Newton acceleration.

To begin with, we have a nice property, 4-velocity 

and 4-acceleration are orthogonal vectors :

d

d τ
(~u⋅~u)=0=

d~u
d τ

⋅~u+~u⋅
d~u
d τ
    then    ~u⋅~w=0.

As we have established the link between ~u  and ⃗v, 
we are going to make the link between ~w  and ⃗a. 
There, however, the link will be much less immediate 

and the calculations are longer:

~w=
d~u
d τ

=(d γ
d τ

c ,
d γ
d τ

v⃗+γ
d v⃗

d τ )
after calculation  

d γ
d t

=
γ3

c
2

a⃗⋅⃗v   with  ⃗β=
v⃗

c

we have   ~w=(γ4
a⃗⋅⃗β , γ4(a⃗⋅⃗β)β⃗+γ2

a⃗)

Now let's determine the pseudo-norm of ~w. The 
scalar product is the same in all inertial frames of 

reference. We then place ourselves in the inertial 

frame of reference which coincides at a given 
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moment with the proper frame of reference. In this 

coinciding reference frame, by de,nition, ⃗v= 0⃗ at 

t=0. Thus ~w=(0 , a⃗(0)) and ~w⋅~w=−ap

2
, where ap is 

the acceleration felt in the proper frame of 

reference. All inertial observers will agree on the 

value of the proper acceleration  ap. The 4-

acceleration is a space-like vector, in accordance 

with the orthogonality with the 4-velocity.

In the Minkowski plane (w0)2−(w1)2=−ap

2
 and ~w  is 

placed on a space-like hyperbola of parameter ap.

The acceleration triangle:

For one-dimensional motion :  ~w=γap(±β,±1)

Generally speaking, one can always place oneself 

locally in an inertial reference frame that contains 

the worldline in a Minkowski plane coinciding on a 

portion. We then have an osculating hyperbola that 

allows us to determine the proper acceleration.
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◦ A look back on the trip to Proxima

We are on a particular case of rectilinear motion at 

constant proper acceleration, where the worldline 

of the rocket corresponds with the hyperbola of 

parameter g.

We will elegantly retrieve the expressions of the page 

116.

In the coinciding inertial reference frame ~w=(0 , g).
We perform a Lorentz transformation to obtain the 

coordinates of this same acceleration in the terres-

trial frame of reference:

~w=(γβg ,γ g),

as    γβg=γ4
a⃗⋅⃗β    we have   a(t)=

d v

d t
=

g

γ3

after integration we ,nd the expressions for v(t )  and 
x (t ).
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Voyage to Proxima :

We have represented the Minkowski diagrams for the 

three four-vectors ~x, ~u and ~w. We have made an 
appropriate choice of units so that the hyperbolas 

correspond: OJ worth c2/g for the 4-position, c for the 4-

velocity and g for the 4-acceleration. We study the 

uniformly accelerated motion in its generality, both for 

positive and negative t : in the latter case ⃗v and ⃗a are in 

opposite directions, the rocket decelerates, and 
~w=(−γβg ,γ g). For this motion, the rocket worldline is a 
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hyperbole branch of equation c
2
t

2−x
2=−c

4 /g2 which 

coincides here with the space-like hyperbole branch of ~w 
The hyperbola branch of ~u is simply rotated by 90°. For 
any event E of our worldline, ~u and ~w are as it should be 
symmetrical with respect to the bisectors, but, in this 

particular situation, they appear, moreover, of the same 

length on our Euclidean sheet. Indeed we have in this 

case ~u /c=γ(1 ,β) and ~w / g=γ(±β, 1). The drawing is 
very simple, for any event E, you draw the line (OE), ~w 
corresponds with 

~
OE, and ~u is the symmetrical with 

respect to the photon worldline. Although the 4-

acceleration remains constantly on the spacelike 

hyperbola of parameter g, on the diagram, the Euclid's 

length of the relativistic acceleration ~w increases with γ, 
while that of the classical acceleration ⃗a decreases in γ3.

◦ Geometric determination of 4-acceleration
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For any event 

of a world line, 

there is always a

tangent 

hyperbola 

unique that 

gives the proper

acceleration. 
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 • From three close events :
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 F. MASS-ENERGY EQUIVALENCE

7    MASS-ENERGY EQUIVALENCE

Let us look for the relativistic equivalent of the 

Newton's second law. In classical mechanics :

m a⃗=F⃗    or   
d p⃗

d t
=F⃗

with the momentum  ⃗p=m v⃗  

We will also need the kinetic power theorem : 

Pk=
d Ek

d t
=F⃗⋅⃗v

219



◦  Four-momentum

The mass is a property speci,c to a particle, it does 

not depend on the frame of reference. It thus seems 

natural to consider the four-vector ~p=m~u.

For the 4-momentum we keep the letter p because 

contrary to the 4-velocity or the 4-acceleration, this 

one has been directly adopted in the scienti,c 

mores. Its spatial part is commonly called 

momentum and the 4-vector as a whole can be 

called the 4-momentum or more precisely the 4-

vector energy-momentum: ~p=(m γc , mγ v⃗).

 ~p=(E/c , p⃗)   with  E=mγ c
2
  and  ⃗p=m γ v⃗

The temporal component shows a quantity with the 

units of an energy. Let's ,nd out what this energy 

corresponds to. In the coinciding reference frame 
~p=(m c, 0⃗) and ~p⋅~p=m

2
c

2. In the observational 

frame ~p⋅~p=E
2 /c2− p⃗

2. In the proper frame, where 

the particle is at rest, ~p⋅~p=E r

2 /c2
, then Er=m c

2
.

A completely new notion, absent in classical 

mechanics, appears, an energy is associated with 

the mass of an object. Even at rest, a particle has an 

energy, it is an energy of mass.

When the particle is in motion :

m
2
c

2=E
2/c2− p⃗

2    and    E
2=(m c

2)2+(p c)2
.
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The Energy-Momentum Triangle :

E corresponds to the total energy of the particle, 

which includes its mass energy and its kinetic 

energy: 

E
2=m

2
c

4+ p
2
c

2=m
2
c

4+m
2γ2

v
2
c

2=m
2γ2

c
4

and we ,nd: E=mγc
2

For the kinetic energy: Ek=E−Er .

At low speeds:

E=m(1−β2)−1/2
c

2≃mc
2+

1

2
m v

2

We ,nd again the classical expression of kinetic 

energy. 

For a massless particle, like a photon, E=p c, 
~p=( p , p⃗) and ~p⋅~p=0.

◦  Four-force

For the 4-force ~g  we suggest :

d~p
d τ

=~g

Equation covariant with respect to the Lorentz 

transformation. In the classical limit, the temporal 
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part gives back the kinetic power theorem, and the 

spatial part gives the Newton's second law:          

d~p
d τ

=m~w=(γ4
F⃗⋅⃗β , γ4 (F⃗⋅⃗β)β⃗+γ2

F⃗)=~g

The link between 4-force and Newton's force is not 

obvious. Classically, the force ⃗F is collinear and has 

the same direction as acceleration ⃗a, in relativity it is 

the case for ~g and ~w.

Pseudo-norm :   ~g⋅~g=−F p

2
   with   F

p
=ma

p
.

Force Triangle :

For one-dimensional motion : ~g=γ F p(±β ,±1).

For the spatial part :    
d p⃗

d τ
=g⃗    and   

d p⃗

d t
=

g⃗
γ .

We have the spatial part ⃗g of the 4-force, and on 

the other hand the classical force ⃗F, the Newton's 

second law then takes the following form:
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d p⃗

d t
=

g⃗
γ=γ3( F⃗⋅⃗β)β⃗+γ F⃗= f⃗

The relationship between ⃗g and ⃗F is not simple and 

we ,nd that they are not collinear.  Within the limit of 

low speeds, we ,nd Newton's second law m a⃗= F⃗.

Most often, to build relativity, the third force ⃗f is used. 

When one injects, in Newton's law, the relativistic 

momentum instead of the classical one, it is the 

force that appears. This force ⃗f is commonly used as 

an equivalent of the classical force at the relativistic 

level. This standard force has a de,nition similar to 

that of classical mechanics, but it is not the spatial 

part of a covariant four-vector.

In Newtonian mechanics the force is independent of 

the inertial frame of reference ⃗F '= F⃗, in relativity it is 

also the case for the four-force ~g '=~g. On the other 

hand, we have in general  ⃗f '≠ f⃗ and  ⃗g '≠g⃗.
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◦ Power

~w⋅~u=0 ⇒ ~g⋅~p=0

d~p
d τ

⋅~p=
d E /c

d τ
E /c−

d p⃗

d τ
⋅⃗p=0

γ
d E

d τ
=g⃗⋅⃗u    and   

d E

d t
= f⃗⋅⃗v
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◦ Conservation of momentum and energy

For an isolated system, ~g=
~
0  and the momentum-

energy four-vector is constant. For a set of particles, 

the total momentum is the sum of the individual 

momenta, and the same applies to the energy : 

~p=∑~pi
,     E=∑ Ei

     and     ⃗p=∑ p⃗i

This quantities are then conserved:

~p=~cst,     E=cste     and     ⃗p= c⃗st

For example, during a collision, the particles may 

change in nature and number, but whatever 

happens there will always be conservation of these 

three quantities: they will have the same values 

before and after the impact. We can consider an 

isolated system in three situations: no force is exerted 

on the system, the sum of the forces is zero, or, as in 

a collision, the interaction being very brief, the 4-

momentum of the system has no time to vary 

signi,cantly. The forces internal to the system do not 

intervene in these balances. 

  • Annihilation of an electron with a positron

Two gamma photons are produced :

e
-+e

+→2γ     with     ~p
e

-+~p
e

+=~pγ1
+~pγ2

We take the case where the electron and the 

positron have the same velocities (opposite 

directions). In the frame of reference where the 
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particle and the antiparticle are at rest, we have the 

following Minkowski diagram  of momentums-

energies:

We have at least two photons produced by 

annihilation. It is not possible that only one photon is 

produced because a photon cannot be at rest and 

its momentum cannot be annulled to respect the 

conservation of the momentum in the considered 

frame of reference. If two photons are created, they 

necessarily have the same energy and they go in 

opposite directions. The energy of a photon 

corresponds to the mass energy of an electron (or 

what is the same of a positron). Photons thus have 

energies of 511 keV. They are very energetic 

photons, as a comparison the visible photons have 

an energy of the order of eV. 

We study in exercise the collision of two protons with 

the creation at the threshold of a proton-antiproton 

pair. 
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Summary

Quantity
Classical 
Physics

Links /
Standards

Special
Relativity

position r⃗=( x , y , z )

velocity v⃗=
d r⃗

d t

u⃗=γ v⃗

γ=
d t

d τ

~u=
d~x
d τ

~u=(γ c , u⃗ )

~u⋅~u=c
2

momentum p⃗=m v⃗ p⃗=m γ v⃗

~p=m~u
~p=(E /c , p⃗)

p⃗=m u⃗

acceleration
a⃗=

d v⃗

d t

w
0=γ4

a⃗⋅⃗β

w⃗=γ4( a⃗⋅⃗β)β⃗

~w=
d~u
d τ

~w=(w0
, w⃗)

~w⋅~w=−a p

2

~u⋅~w=0

force F⃗=m a⃗

f⃗ =
d p⃗

d t

g⃗=γ f⃗

g⃗=
d p⃗

d τ
~g=m~w

~g=(g0
, g⃗)

energy

d E k

d t
=F⃗⋅⃗v

Ek=
1

2
mv

2

d E

d t
= f⃗⋅⃗v

γ
d E

d τ
= g⃗⋅⃗u

E=γm c
2

Ek=E−mc
2
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electro
-magnetic 

field

F⃗E=q E⃗

F⃗B=q v⃗∧B⃗

Lorentz force :

f⃗ =

q ( E⃗+ v⃗∧B⃗)

g⃗=γ f⃗

~g=F
~
j

~
j=q~u

g⃗=

q (γ E⃗+u⃗∧B⃗)

The standard de,nition ⃗f for force is widely used by 

the scienti,c community, which summarizes relativity 

in a few equations: 

  ⃗p=mγ v⃗     ⃗f =
d p⃗

dt
     ⃗f L=q ( E⃗+ v⃗∧B⃗) 

 
d E

dt
= f⃗ ⋅⃗v        E=γm c

2=T +m c
2
.

Taught directly in this way it is fast and e5ective, but 

at the same time, if the student wants to deepen 

the concepts it will be necessary for him to enlarge 

his view in order to have a clear vision and avoid 

confusion. Moreover, in our book we put forward a 

geometrical perspective which is mainly based on 

the approach of Hermann Minkowski. These are of 

course the covariant quantities that are naturally 

represented in a diagram  and are simply 

transformed with the Lorentz boost.

For the electromagnetic ,eld, the quantities are 

detailed in exercise on page 252.

 G. NON-INERTIAL REFERENCE FRAMES
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7    NON-INERTIAL REFERENCE FRAMES

As we know how to do in Newtonian mechanics, we 

must also learn to apply special relativity in non-

inertial frames. 

Let us recall the approach in classical mechanics. 

Newton's laws are veri,ed in Galilean frames and by 

a change of frame of reference we ,nd their new 

expressions in any moving frame:

m a⃗r=F⃗+ F⃗ ie+ F⃗ ic

Everything happens as if we had new forces, called 

inertial or ,ctitious. One may wonder if these forces 

really exist. Indeed, these forces are not related to 

fundamental interactions but to the change in the 

frame of reference. Nevertheless, the driver and 

passengers of a car experience these di5erent 

dynamic e5ects as real during the acceleration 

phases, such as a sudden start, more or less tight 

bends and braking strokes. 

Classical mechanics give an interpretation of these 

e5ects in terms of forces: coincident forces and 

Coriolis forces. 

It goes without saying that special relativity must 

allow all these e5ects to be found. At low speeds, 

they must be equivalent. We will have new e5ects 

that will appear with increasing speed. But also at 

low speeds, for precise measurements and for the 

behavior of light which is now included in the 
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theoretical framework. The interpretation is however 

very di5erent.

In special relativity, there are no inertial forces but 

metric e5ects. By a non-inertial change of frame, we 

deviate from the Minkowskian metric and a free 

particle follows a geodesic which modi,es its initially 

rectilinear and uniform motion to follow a curved 

and accelerated trajectory.

For example, when the car accelerates at a green 

traCc light, it is not an inertial force that puts you 

against the seat, but a metric modi,cation that puts 

you in free fall towards the back of the car (as in the 

uniformly accelerated rocket). At the same time, the 

watches of the passengers in the back of the car 

are slow with respect to those in the front. Quite the 

opposite when you brake, the metric modi,cation 

makes you plunge in free fall towards the windshield.

In a turn, the metric change causes you to fall 

towards the outside of the bend, the watches will 

also go out of sync and Euclid's postulates will no 

longer be veri,ed.

In special relativity, the notion of inertial force is 

replaced by that of metric e5ect. We have 

previously studied the two particular cases of the 

uniformly accelerated reference frame and the 

uniformly rotating frame and we will now focus on 

the general case35.

35 Here we make the analogy between classical mechanics and special 
relativity, but historically we are rather used to the analogy made 
with general relativity. In this analogical framework, during a brake 
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◦  Coordinate lines, local basis and connections

Here we complete our description of a vector 

space. These are very general mathematical 

concepts that can be used in all scienti,c ,elds.

Coordinate lines are obtained when one coordinate 

varies and all others are ,xed.

At each point of this network we have a local basis 

with the basis vectors tangent to the lines. When we 

go from M to M' in,nitely close, we have a small 

variation of the basis vectors :

stroke, we say that everything happens as if a gravitational field was 
pulling you forward. This gravitational field is of course fictitious. If 
it were real, at the same time as you brake, a gigantic massive wall 
of infinite size would have to appear in front of the car to justify 
such a gravitational field! In general relativity, the gravitational field 
creates an additional metric effect, spacetime is then curved, and 
the gravitational field is very real (it exists in all observation frames 
of reference).
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d ei=
∂e i

∂ x
j
dx

j=Γ ij

k
ek dx

j

 

This variation can be projected on the starting basis. 

The quantities Γ ij

k
 allow to encode the variation of 

the local basis at this point. We will call connection 

the object Γ ij

k
. For a global basis, which does not 

depend on the point, all the components of the 

connection are null.

The connection is symmetrical on the last two 

indices:

Γ ij

k
ek=

∂ ei

∂ x
j
= ∂
∂ x

j ( ∂MM '

∂ x
i )=∂2

MM '

∂ x
j∂ x

i
=
∂2
MM'

∂ x
i∂ x

j
=Γ ji

k
ek

The metric contains all the information about space. 

We can establish the expression of the connection 

coeCcients according to the metric:

gij=ei⋅e j    d gij=∂k gij dx
k=(d ei)⋅e j+ei⋅(d e j)

gij , k dx
k=(Γ i r

l
el dx

r )⋅e j+ei⋅(Γ jn

m
em dx

n)

gi j , k=gl jΓ i k

l +gimΓ j k

m

gi j , k+gk i , j−g j k ,i

=gl jΓ i k

l +gimΓ j k

m +gl iΓ k j

l +gk mΓ i j

m −gl kΓ j i

l −g jmΓ k i

m

gi j , k+gk i , j−g j k ,i=2 gimΓ j k

m

g
ni(gi j , k+gk i , j−g jk ,i)=2 g

n i
gimΓ j k

m

Finally :    Γ jk

i =
1

2
g

i l(gl j , k+gk l , j−g j k ,l )
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◦  Covariant derivative

Variation of a vector A when moving from M to M' : 

dA=A(M')-A(M). In the Minkowski basis, or in a 

Cartesian basis, we are in particular cases where the 

basis is global, the basis does not depend on the 

point and only the variations on the components 

are to be taken into account.

In the general case:  d A=d (A
i
ei)=d(A

i)e i+A
i
d ei.

d A=∂ j A
i
dx

j
ei+Γ ij

k
A

i
dx

j
ek=(∂ j A

i+Γ kj

i
A

k)dx
j
ei

Notations: D j A
i=A ; j

i =∂ j A
i+Γ kj

i
A

k
 ,   D A

i=A ; j

i
dx

j

The capital D makes it clear that all variations have 

been taken into account. For inertial frames of 

reference, the connections are null in the Minkowski 

basis, and ∂μ was our covariant derivative. In non-

inertial frames Dμ is the covariant derivative.

◦  Illustration on an example

⃗ ⃗
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usually take unit vectors. 

Basis Variations :   
d u⃗ρ

dθ
=u⃗θ   and   

d u⃗θ

dθ
=−u⃗ρ.

Then :   ⃗OM= r⃗=ρ u⃗ρ   gives   ⃗v=ρ̇ u⃗ρ+ρθ̇ u⃗θ   and

a⃗=(ρ̈−ρ θ̇2)u⃗ρ+(ρθ̈+2ρ̇ θ̇) u⃗θ

We can retrieve this result with the metric and the 

connections :

ds
2=gi j dx

i
dx

j=dl
2=dρ2+ρ2

dθ2

     dl
2/dt

2=gi j v
i
v

j

e⃗ρ=u⃗ρ     ⃗eθ=ρ u⃗θ
     ⃗OM=ρ e⃗ρ+θ e⃗θ   v⃗=

d l⃗

dt
=(ρ̇ , θ̇)

   g22,1=2ρ       Γ 11

1 =0       Γ 22

2 =0       Γ 11

2 =0

Γ 22

1 =−
1

2
g11 g22,1=−ρ      Γ 12

2 =
1

2
g22 g22,1=

1
ρ     Γ 12

1 =0

d v⃗=(∂ j v
i+Γ kj

i
v

k)dx
j
e⃗ i

a⃗=(∂ j v
i+Γ kj

i
v

k) ẋ
j
e⃗i=∂t v

i
e⃗i+Γ kj

i
v

k
ẋ

j
e⃗i

a⃗=v̇
1
e⃗1+v̇

2
e⃗2+Γ 22

1
v

2
ẋ

2
e⃗1+Γ 12

2
v

1
ẋ

2
e⃗2+Γ 21

2
v

2
ẋ

1
e⃗2

then   ⃗a=ρ̈ e⃗ρ+θ̈ e⃗θ−ρθ̇ θ̇ e⃗ρ+
1
ρ ρ̇θ̇ e⃗θ+

1
ρ θ̇ρ̇ e⃗θ.

We have a new method that uses the metric to 

account for local basis variations using connections.

◦  Geodesics

Geodesics are the worldlines followed by free 

particles. These curves, the equivalent of Euclid's 

straight lines, maximize proper time. 
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On a geodesic, the proper acceleration is zero. 

Let us take up again the building of special relativity 

for non-inertial frames of reference:

ds
2=gμνdx

μ
dx

ν=gμνu
μ
u
ν
d τ2
,   uμ=

d x
μ

d τ
  and  pμ=mu

μ.

With the covariant derivative, we can generalize the 

Newton's second law :

d p⃗

d t
=F⃗   and   ⃗a=

F⃗

m
−a⃗e−a⃗c    becomes   

D~p
D τ

=~g

Equations of Motion:   
d u

μ

d τ
=

g
μ

m
−Γ αβ

μ
u
α
u
β.

For the geodesics equation:   gμ=0.

The metric e5ects, equivalent to the classical forces 

of inertia, are expressed through the connections, 

which themselves reSect the variations of the metric 

in a non-inertial frame.

In classical mechanics :  d v
i

d t
=

F
i

m
−Γ j k

i
v

j
v

k.

◦  Classical limit

In the classical case we already noticed that the 

mass of the particle did not play a role:  ⃗a=−a⃗e−a⃗c.

For the calculation of the acceleration ⃗a from the 

velocity ⃗v, we have two kinds of terms, those which 

involve the variation of the coordinates only, and the 

others for the variations of the basis: 

a⃗=a⃗coord+ a⃗base    and    ⃗a coord=−a⃗e−a⃗c−a⃗base
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These are the three terms on the right that are 

expressed using connections.

Uniformly accelerated frame :

→ Mechanics of Newton :

a⃗r=−a⃗e=
d

2
O⃗M

d t
2

=−a⃗R '(O)

R : rocket,     ⃗aR '(O)=
d

2
O⃗ ' O

d t
2

=a i⃗   and   ̈x=−a.

→ Special relativity : as demonstrated in the exercise 
on page 243,  the non-zero connection components 

are Γ 00
1 =

g '

2
 and Γ 10

0 =Γ 01
0 =

g'

2 g
 with g(x)=(1+ a x

c
2 )

2

. 

Then:

d u
1

d τ
=

d
2
x

d τ2
=−Γ 00

1
u

0
u

0=−
a

c
2 (1+ a x

c
2 )γ2

c
2=−γ2

a(1+ a x

c
2 )

We ,nd the classical limit: ̈x=−a.

Rotating frame :

→ Mechanics of Newton :  ⃗ar=−a⃗e−a⃗c

a⃗=ω2
H⃗M−2ω⃗∧v⃗=−ω2ρ u⃗ρ−2ω u⃗z∧(ρ̇ u⃗ρ+ρθ̇ u⃗θ)

a⃗=(ρ̈−ρ θ̇2)u⃗ρ+(ρθ̈+2ρ̇ θ̇) u⃗θ=ω2ρ u⃗ρ−2ωρ̇ u⃗θ+2ωρ θ̇u⃗ρ

→ Special relativity :  ~u=γ(c , ρ̇ , θ̇ , ż)

Only non-zero connections :

Γ 00

1 =−
ρω2

c
2       Γ 02

1 =Γ 20

1 =−
ρω
c
      Γ 22

1 =−ρ
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Γ 10

2 =Γ 01

2 = ω
ρc       

Γ 12

2 =Γ 21

2 =
1
ρ

Then :

d u
1

d τ
~e1+

d u
2

d τ
~e2

=(−Γ 00

1
u

0
u

0−2Γ 02

1
u

0
u

2−Γ 22

1
u

2
u

2)~e1

+(−2Γ 10

2
u

1
u

0−2Γ 12

2
u

1
u

2)~e2

d γ ρ̇
d τ

~eρ+
d γ θ̇
d τ

~eθ

=(−ρω2 γ2+2ρω γ2
v
θ+ρ γ2(vθ)2)~eρ

+(−2ωγ2
v
ρ−2γ2

v
ρ
v
θ)~eθ /ρ

We ,nd the classical limit :

ρ̈ u⃗ρ+θ̈ρ u⃗θ=(−ρω2+2ρωθ̇+ρθ̇2)u⃗ρ+(−2ωρ̇−2ρ̇ θ̇)u⃗θ

We now understand how particles move in a non-

inertial frame of reference. Special relativity gives us 

a new interpretative and experimental framework 

where metric e5ects take the place of the inertial 

forces of the old Newtonian framework. 

In a Sat space-time and a non-inertial frame of 

reference, a free particle maximizes its proper time 

by following a curved trajectory.

This is not simply a new point of view, but a 

generalization to massless particles, and, as a 

correction, with modi,ed experimental measure-

ments.
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The classical notion of force is abandoned in favor 

of a relativistic description in terms of space-time 

geometry. Here, it is the concept of force of inertia 

that becomes useless, we follow the same kind of 

approach in general relativity, where geometry 

makes the concept of gravitational force disappear.

◦  Lagrangian approach

The geodesic equations are found with the 

Lagrange equations. The approach is explained in 

the exercise on page 160. We are looking for 

geodesics that extremes proper time :

c
2 τ=∫ gμ νu

μ
u
ν
d τ, L=gμνu

μ
u
ν
 and 

∂L

∂ x
μ−

d

d τ
∂L

∂u
μ=0

∂L

∂ x
μ=gαβ ,μu

α
u
β    and   

∂ L

∂u
μ=gαμu

α
+gμβu

β

d

d τ
∂L

∂u
μ=gαμ , νu

ν
u
α+gαμ

d u
α

d τ
+gμβ ,ρu

ρ
u
β+gμβ

du
β

d τ

gαβ ,μ u
α
u
β−gαμ , νu

ν
u
α−gμβ , ρu

ρ
u
β−2 gμβ

du
β

d τ
=0

Hence the geodesic equation : Γ αβ
μ

u
α
u
β
+

du
μ

d τ
=0
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No need for the space to 

be curved, for a free 

particle to have a curved 

trajectory.



Conclusion and synthesis

Let's come back to the notion of inertial frame of 

reference. 

We have a circular de,nition: the postulates are true 

in inertial frames of reference, and a reference 

frame is inertial if the postulates are veri,ed.  

If a particle in a reference frame has a curved 

trajectory, is it due to a force or to the non-inertial 

nature of the frame? 

In Newtonian mechanics, if we know beforehand 

the nature of the forces, we can determine whether 

a reference frame is Galilean. Let's take the 

electromagnetic and gravitational forces: if there 

are no charges and masses present, and the 

trajectory is nevertheless curved, you can deduce 

that the reference frame is non-Galilean. You have 

to imagine such a region of empty space, far 

enough away from all matter that the remote action 

of the forces is negligible.

Do you know the Olbers' paradox? 

In cosmology, the universe is like a Suid homoge-

neous and isotropic of galaxies. You see the stars in 

the dark night, the resulting brightness is low, but 

logically the night should be white. Indeed, the 

further away you look, the weaker is the light 

received by the observer from each luminous 

object, but at the same time their number increases 

in the same proportions. The night ,nally is dark 

because the Universe is expanding. 
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But back to the reference frames, if we apply the 

Olbers' Paradox to gravitation, we have the same 

result, the gravitational ,eld would tend towards 

in,nity at all points in the Universe... Here we want to 

illustrate how the foundations of classical mechanics 

are not trivial. Moreover, can we determine the 

nature of forces without the help of Newton's laws?

In relativity, the situation is much simpler, we use 

geometry. The behavior of spacetime alone makes it 

possible to determine if the frame of reference is 

inertial b without using the notion of force.

Beforehand, it is suCcient to have a set of clocks at 

rest and synchronized on the region being studied. 

If, during the experiment, the clocks do not go out of 

sync, the reference frame is inertial. 
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 H. Exercises

Exercises

1. ▲△△    Change of basis

Let consider the basis ~e 'μ of the inertial frame.

1 - Determine the basis ~eμ of the uniformly 

accelerated reference frame of the rocket as the 

function of ~e 'μ.

Place some examples of vectors from this base on a 

Minkowski diagram. 

2 - Determine the basis ~eμ of the uniformly rotating 

reference frame of the disk as the function of ~e 'μ.

Represent this base on a Minkowski diagram.

Answers p409

2. ▲▲▲    Riemann curvature tensor

We give here the curvature tensor without 

justi,cation. We will apply the formulas to show that 

for the accelerated rocket, as for the rotating disk, 

we are in Sat space-time despite the non-inertial 

nature of the reference frames. If all the compo-

nents of the tensor are zero the spacetime is Sat, if 

even one of the components is non-zero the 

spacetime is curved. 

Riemann tensor as a function of the connections:
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R β γ δ
α =Γ β δ, γ

α −Γ β γ , δ
α +Γ σ γ

α Γ β δ
σ −Γ σ δ

α Γ β γ
σ

Connection coeCcients36 :

Γ μ ν
α =

1

2
g

α β(∂μ gβ ν+∂ν gβ μ−∂βgμ ν)

Notation:   
∂
∂ x

μ=∂μ =
,μ   so  Γ β δ , γ

α =∂γΓ β δ
α
.

The curvature tensor is antisymmetric in the last two 

indices. The connection coeCcient is symmetric in 

the last two indices.

1 - Rocket: uniformly accelerated reference frame.

 a- Determine gμν and  g
μ ν
.

 b- Determine all the connection coeCcients. You 

must identify the non-zero coeCcients for the 

calculation of the curvature.

Helps: you can set  g( x)=(1+ ax

c
2 )

2

.

Help yourself as much as possible with the symmetries. 

Identify the non-zero terms of gμ ν and g
μ ν. Are they 

constant? Which coordinates do they depend on? Which 

terms ∂μ gβ ν  are non-zero?

 c- Show that all the components of the curvature 

tensor are zero.
Help: what is the consequence of antisymmetry?

2 - Disk : uniformly rotating reference frame.

 a- Determine gμν and  g
μ ν
.

36 Also called  Christoffel symbols.
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 b- Determine all the connection coeCcients.

 c- Demonstrate that all the components of the 

curvature tensor are zero.

3 - Spherical body: reference frame studied with 

Schwarzschild coordinate system. To compare with a 

situation where spacetime is curved.

We invite you to set  g=1−
rS

r
=e

f
.

 a- Determine gμν and g
μ ν
.

 b- Determine  all the  non-zero  connection 

components.

 c- To show that the spacetime is curved calculate 

the component R 10 1

0
.

Prove that R01 01=
r

S

r
3
.            Answers p412

3. ▲▲▲  A non-uniformly rotating Disk

In the previous exercise we demonstrated that the 

curvature tensor was null in the uniformly rotating 

frame of the disc. We will continue the demons-

tration in the case of any rotational motion of the 

disk. We had for the inertial observer as a function of 

the coordinates of the observer at rest with respect 

to the disc: θ '=θ+ω t. We now take the general 

expression:  θ '=θ+λ (t), where λ (t) is any function of 
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time. Thus are included the possible phases of 

acceleration, deceleration, oscillation, etc. 

1 - Determine the connection coeCcients.

2 - Calculate the Riemann curvature tensor. 

3 - Was the result expected?
Answers p419

4. ▲▲▲     Spatial curvatures

The Riemann curvature tensor applies to any space, 

space-time and sub-space regardless of the number 

of dimensions. We have calculated the curvature of 

4-dimensional space-time and we will calculate the 

curvatures for the spatial parts. We take the three 

examples of the uniformly accelerated, the 

Schwarzschild and the uniformly rotating frames. 

Let us detail the method and explain the general 

approach to measure times and distances37. 

For the time, we determine the proper time interval 

dτ by setting the dxi=0 (i=1, 2 or 3) :

d τ=
1

c
√g00 dx

0
     and     τ=

1

c
∫√g00dx

0
     (x

0=ct )

For the space, if the reference system is synchronous 

g0 i=0 and:  ds
2=g00 c

2
dt

2−dl
2

                        with   dl
2=−gij dx

i
dx

j=γij dx
i
dx

j

The curvature tensor is then calculated with the 

three-dimensional metric tensor γij as before. Here, 

we run the indices from 1 to 3.

37 Landau / Lifchitz, The Classical Theory of Field, § Distances and 

time intervals.
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If the reference system is not synchronous, the 

temporal coordinate is not directly separated from 

the spatial coordinates, and, we show that:

γij=−gij+
g0 i g0 j

g00

      and      dl
2=γ ij dx

i
dx

j

We can then calculate dl with the three-dimensional 

metric tensor. On the other hand, we cannot, in 

general, determine the distance between two 

bodies. Also, the curvature tensor cannot be directly 

calculated in the form previously given38. Never-

theless, in the particular case where the reference 

frame is stationary, metric coeCcients gμν inde-

pendent of time, we can integrate the element dl 

and the curvature tensor is in the usual form :
 

Stationary frame:  
∂ gμν

∂ t
=0,   l=∫dl   and  R jk l

i
.

1 - Rocket:  Is the reference system synchronous?

Is the space curved?

2 - Spherical body:

Is the reference system synchronous?

Is the space curved?

3 - Disk: 

a- Is the reference system synchronous?

b- Determine γij.

c- Is the reference frame stationary? What is 

the ratio of the perimeter of a circle to its diameter? 

38 Cattaneo's projection technique.
Rizzi / Ruggiero, Space geometry of rotating platforms, 2008.
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(circle centered on the axis of rotation) 

Does the observer attached to the rotating disc 

experience a curvature?

d- Calculate R jk l

i
.

e- It is shown that, for a two-dimensional 

space, there is only one independent component of 

the curvature tensor Rijkl (i=1, 2)
39.

Calculate the Gaussian curvature K of the surface:

K=
1

R1 R2

=
R

1212

γ11γ22−γ12

2

where R1 and R2 are the radii of curvature at a point 

of the disk. You can compare it to the Gaussian 

curvature of a sphere.
Answers p419

5.╋ ▲△△    Pair production

A high-energy particle can under certain conditions 

create a particle-antiparticle pair. Let's take the 

example of the collision of two protons. In the 

barycentric reference frame they arrive face to face 

with the same velocity. When their kinetic energy is 

just suCcient, we say at the threshold, they create 

four particles at rest:

p+ p→ p+ p+ p+ p̄

39 Landau, § Properties of the curvature tensor.
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Draw the Minkowski diagram at the threshold in the 

barycentric frame where ∑ p⃗i= 0⃗.

Answers p422.

6. ▲▲▲    Wave equation

The wave equation describes the behavior of a 

multitude of waves: waves on water, sound waves, 

seismic waves, electromagnetic waves, etc. These 

waves, although of di5erent physical natures, all 

obey the same equation. The amplitude of the 

wave  ϕ( r⃗ , t ) is the solution to the following 
di5erential equation:

Δ ϕ− 1

c
2

∂2ϕ

∂ t
2
=0     so     □ ϕ=0

c is the celerity of the wave which depends on the 

type of wave and the medium.

De?nition of the Laplacian in Cartesian coordinates: 

Δ f=
∂2

f

∂ x
2
+
∂2

f

∂ y
2
+
∂2

f

∂ z
2

d'Alembert operator : □=Δ−
1

c
2

∂2

∂ t
2

1 - Demonstrate that the wave equation is not 

invariant under the Galilean transformation.
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Help: In classical mechanics, the amplitude of the wave is 

a physical quantity that should not depend on the 

chosen coordinate system. At a point M and at a given 

time: ϕ ' (x ' , t ' )=ϕ(x , t). Such as, for example, the 
wave height, or the sound pressure. By identifying d ϕ 
and d ϕ ' deduce the relations between the partial 
derivatives.

2 - Show that the electromagnetic wave equation 

in vacuum  is invariant under the Lorentz 

transformation: □ E⃗=0 and □ B⃗=0. In this case the 

amplitude of the wave depends on the reference 

frame, the transformation formulas are given on 

page 427.

Answers p422.

7. ▲▲△    Schrödinger equation

In quantum physics, the wave function obeys the 

following equation of evolution:

i ℏ ∂Ψ
∂ t

=−
ℏ2

2 m
ΔΨ+V Ψ

The probability density of presence of a particle is 

obtained by multiplying the wave function by its 

complex conjugate:

 ρ=
d P

d V
=Ψ Ψ*  
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We can limit the study to the motion in one 

dimension of a free particle of mass m :

iℏ ∂Ψ
∂ t

=−
ℏ2

2 m
∂2Ψ
∂ x

2
,

and a standard Galilean transformation: ⃗vR ' /R=v i⃗

1 - The probability of presence of a particle in a 

given volume should not depend on the reference 

frame. On the other hand, the wave function is not 

unique and the probability density is not modi,ed if 

we multiply the wave function by a complex 

number of modulus one. 

Show that the Schrödinger equation is invariant 

under a Galilean transformation with:

Ψ '=e

i

ℏ
(E t− p x )

Ψ   where   E=
1

2
m v

2   and   p=mv.

2 - Show why the Schrödinger equation cannot be 

invariant under the Lorentz transformation.

Answers p424.
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8. ▲▲▲    The electromagnetic Ield

Electric and magnetic ,elds are not written as 

fourvectors but as components of a rank-2 tensor:

F=F
μν=(

0 −
E x

c
−

E y

c
−

E z

c

E x

c
0 −B z By

E
y

c
B z 0 −B x

E z

c
−B y Bx 0

)
The ⃗E and ⃗B ,elds are in fact one and only one 

physical entity and their components depend on 

the observational inertial frame of reference. We are 

here in the inertial frame R, and we will also consider 

the frame R' in uniform rectilinear translation along x: 

v⃗R ' /R= v⃗=v u⃗x.

The tensor of the electromagnetic ,eld is 

antisymmetric:  F
μν=−F

νμ
. 

1 - Like mass, electric charge is an attribute of the 

particle that does not depend on the reference 

frame. We can simply build a four-vector for the 

charge and its motion:

                          
~
j=q~u          (4-vector current)

We will demonstrate that the 4-vector F
~
j is 

identi,ed with the electromagnetic 4-force:
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d~p
d τ

=F
~
j   and for the components   

d p
μ

d τ
=F

μν
jν

By developing the components, temporal then 

spatial, show that we ,nd the electromagnetic 

power, as well as the expression of the Lorentz force.

2 - Give the expression of the components of ⃗E ' 

and  ⃗B' in R' as a function of those of ⃗E and ⃗B in R.

3 - Determine the components of the tensor Fμν.

4 - Find the expressions of the two Lorentz invariants 

of electromagnetic ,elds. They are scalar invariants 

functions of ⃗E and ⃗B. The ,rst one is obtained by 

contracting all components of the electromagnetic 

tensor with itself: Fμν
Fμν. The second use the 

completely antisymmetric unit tensor of fourth rank: 
ϵμ ναβFμν Fαβ. ϵ

μ ναβ
 components are zero if two 

indices are the same and ±1 else. The tensor 

alternates sign under interchange of any pair of 

indices. We set: ϵ0 123=1.

5 - In the reference frame of the laboratory R, we 

have two planar metallic plates separated by a 

distance e and respective plate charge densities σ 
and -σ. The capacitor plates are assumed to be 
in,nite and we will take the z-axis from the negative 

plate to the positive plate.

We will use the Gauss's and Ampère's circuital laws:
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∯
S

E⃗⋅d⃗S=
Qin

ϵ0
     ∮Γ

B⃗⋅d⃗l=μ0 Ienc
     (ϵ0μ0 c

2=1)

The use of these tools is not explained here. A book 

in itself on this subject would be necessary. Refer to 

a undergraduate level course on electrostatics and 

magnetostatics.

 a- Determine the electric ,eld at any point in the 

space. Write the matrix Fμν in R.

 b- We are now in the frame of reference R' in 

uniform rectilinear translation along the x-axis at the 

velocity ⃗v. For a classical observer of this frame of 

reference the charge density remains the same on 

the plates and the electric ,eld ⃗E '=E⃗. On the other 

hand, as the charges are in motion, a surface 

current density appears: determine the magnetic 

,eld at any point. Write the matrix F '
μν
 in R'.

 c- Starting from the tensor F
μν
 do you ,nd F '

μν
 with 

the change of basis lambda matrices? Do we well 

have the invariance of the two Lorentz invariants? 

6 - In the reference frame of the laboratory R, we 

have a homokinetic beam of protons of velocity ⃗v, 

radius r and density n. We call R' the proper 

referential of protons.

 a- Determine the electric ,eld outside the beam in 

R'.

 b- By general considerations, determine the struc-

ture of this same ,eld in R with few calculations.

        

                                         Answers on page 425.
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9. ▲▲▲    Maxwell's equations

James Clerk Maxwell established in 1864 the theory 

of electromagnetism  which uni,es Michael 

Faraday's theory of electricity and André-Marie 

Ampère's theory of magnetism through the following 

equations:

In vacuum:

 ⃗∇∧E⃗=−
∂ B⃗

∂ t
                         ⃗∇⋅B⃗=0

With sources:

                 ⃗∇⋅E⃗=
ρ
ϵ0
       ⃗∇∧B⃗=μ0 j⃗+μ0ϵ0

∂ E⃗

∂ t

The ,elds are derived from a potential V and a 

vector potential ⃗A according to:

E⃗=−∇⃗V −
∂ A⃗

∂ t
     and     ⃗B=∇⃗∧ A⃗

Lorentz gauge condition:    
1

c
2

∂V

∂ t
+∇⃗⋅A⃗=0

Charge conservation:    ⃗∇⋅⃗j+
∂ρ
∂ t

=0
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De,nition of operators in the Cartesian coordinate

system:

Gradient of f : ∇⃗ f=
∂ f

∂ x
i⃗ +

∂ f

∂ y
j⃗+

∂ f

∂ z
k⃗

Divergence of ⃗C : ∇⃗⋅C⃗=
∂Cx

∂ x
+
∂C y

∂ y
+
∂C z

∂ z

Curl of ⃗C : 

∇⃗∧V⃗=(∂V z

∂ y
−
∂V y

∂ z ) i⃗ +(∂V x

∂ z
−
∂V z

∂ x ) j⃗+(∂V y

∂ x
−
∂V x

∂ y ) k⃗

1 - Galilean transformation:

 a- Show that Newton's second law is invariant under 

the Galilean transformation.

 b- Lorentz's force is considered invariant under this 

same transformation. From this, deduce the Galilean 

transformation laws of ⃗E and ⃗B as a function of 

v⃗
e
=v⃗

R '/ R. Check that they well correspond to the 

non-relativistic limit of the Lorentz transformation of 

these same ,elds.

 c- Show that the ,rst two Maxwell's equations 

∇⃗⋅B⃗=0 and ⃗∇∧ E⃗=−
∂ B⃗

∂ t
 remain invariant under a 

Galilean transformation.

Help to do the calculations in vector form:

Partial derivatives:   ⃗∇=∇⃗ '    and    
∂
∂ t

=
∂
∂ t '

− v⃗e⋅⃗∇ '
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Useful formula:

 ∇⃗∧( A⃗∧B⃗)= A⃗ (∇⃗⋅B⃗)−B⃗(∇⃗⋅A⃗)+( B⃗⋅⃗∇) A⃗−( A⃗⋅⃗∇) B⃗.

 d- Show that the following two Maxwell's equations 

are not invariant under a Galilean transformation (to 

simplify the calculations, we can consider the case 

without the sources ρ and ⃗j).

Useful formula:   ⃗∇⋅( A⃗∧B⃗)=B⃗⋅(∇⃗∧ A⃗)−A⃗⋅(∇⃗∧B⃗).

2 - Lorentz transformation: Let us show that from 1905 

the Maxwell equations could incorporate their 

natural relativistic framework.

 a- Show that Maxwell's equations are invariant 

under the Lorentz transformation. 

 b-  We introduce the 4-vector current density
~
j=ρp

~u where ρp is the charge volume density in the 

proper frame of reference. Show that by using the 4-

vector gradient ∂μ=
~
∇=( ∂∂ct

, ∇⃗ ) we obtain a 
charge conservation equation in covariant form.

 c- We propose to introduce the potential 4-vector 
~
A=(V /c , A⃗). Show that the Lorentz gauge condition 
is simply written in tensor form with A

μ
 and the 4-

vector gradient ∂μ. Show that by judiciously 

combining the four-vectors A
α
 and ∂β

, we obtain 

the tensor F
μ ν
.

 d- Show that the covariant equation ∂μ F
μν=μ

0
j
ν
 

gives back the Maxwell equations with sources.
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 e- Show that the equation ∂
α

F
μ ν+∂μ

F
να+∂ν

F
αμ=0 

gives back the ,rst two Maxwell equations.

 f- Find the expression of the propagation wave 

equations of V and ⃗A.

3 - Show that the ,elds are not modi,ed by the 

following gauge change:

∀ f {V '=V−
∂ f

∂ t

A⃗ '= A⃗+∇⃗ f

This is called gauge invariance. The Lorentz gauge 

condition corresponds to a particular gauge choice 

that gives the potential propagation equations a 

simpler form. Above all, A
μ
 then behaves like a 4-

vector, and the invariance of Maxwell's equations 

becomes immediate.                                  

Answers p431.
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 VIII. Interactions

INTERACTIONS

We study the interaction between two charged particles. 

We want to draw the Minkowski diagram of two electrons 

that repel each other. To do this, we will place ourselves in 

the barycentric frame of reference. The elements of 

electromagnetism treated in the exercises The electro-

magnetic ?eld page 252 and Maxwell's equations page 

255 are assumed to be acquired.
 A. Field created by a charge

7    FIELD CREATED BY A PUNCTUAL CHARGE

A particle of charge q is at rest at P, origin of the 

reference frame R'. We observe the static ,eld created at 

a given point M:

r⃗ '=( P⃗M )R'                  ⃗E '= q

4 πϵ0

r⃗ '

r '
3
                    ⃗B'=0⃗

We now place ourselves in a inertial reference frame R, of 

origin O and in rectilinear and uniform translation with 

respect to R': ⃗v R' /R=v⃗. The particle is in motion in R and 

passes through O at t=0. We want to obtain the expression 

of the ,elds in M in this new frame of reference R. We 

apply the Lorentz transformation and the transformation 

of the ,elds40 :

( P⃗M )R '=(x ' , y ' , z ' )=(γ(x−βct ) , y , z)     with     ⃗v=v i⃗

r⃗=( P⃗M )R=( P⃗O )R+ (⃗OM )R=(O⃗M )R− v⃗ t=(x−vt , y , z)

r '
2=γ2 (x−v t )2+ y

2+z
2=γ2[r2−( y

2+z
2)β2]=r

2 γ2 (1−β2
sin

2θ)

with  θ=( v⃗ , r⃗ ). Moreover   ⃗E=(E '
x '

,γ E '
y '

,γE '
z '
)   then:

40 H. Lumbroso, Relativité, Interaction de deux particules chargées.
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                          ⃗E=
1−β2

(1−β2
sin

2θ)3 /2
q

4 πϵ0

r⃗

r
3

       and           ⃗B=
1−β2

(1−β2
sin

2θ)3/2
μ

0

4 π
q

v⃗∧ r⃗

r
3
= v⃗∧ E⃗

c
2

We obtain the relativistic expressions of the Coulomb's law 

and the Biot-Savart law for non-accelerated charged 

particles. 

The electric ,eld always seems radial, but with a non-

isotropic angular distribution. In fact the situation is more 

complex, because the signal now propagates at ,nite 

speed, and this ,eld was not generated by the particle at 

t=0 in O, but at an earlier position. The corresponding 

event is at the intersection of the past cone of M(t=0) with 

the worldline of the particle. 

In the previous formulas the ,elds at the instant t are 

expressed using quantities themselves function of t, 

whereas it would be judicious that they are expressed 

according to the retarded time tr.

Electric ?eld of a positive charge in rectilinear and uniform 

motion. Even if an obstacle is interposed on the trajectory 

between Pr and P, a radial ?eld with respect to P will be present 

at time t at point M. However, the charge will never be at P. 

Everything happens as if the ?eld anticipated a rectilinear and 

uniform motion of the charge (Boratav and Kerner's book)
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Electric ?eld lines of a charge which, ?rst comes from the left at 

95% of c, then stops abruptly at O at t=0. Picture of ?eld lines in 

the observation frame of reference at t=∆t 41.

Lines and amplitudes of the ?eld. The particle ?rst at rest, then 

begins to accelerate uniformly, then continues at constant 

speed c/√2 (longitudinal factor 1-β2). The electric ?eld 

decreases along the direction of motion and increases in the 

transverse direction42.

41 Picture of Dynamic Electric Fields, Tsien, American J. of P., 1972.
42 Electric field lines of relativistically moving point charges, Daja 

Ruhlandt, Steffen Mühle and Jörg Enderlein, 2019.
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We give the general expression of electromagnetic ,elds, 

as a function of tr, for any motion of the charge43. This 

formula was ,rst established in 1898 by Alfred-Marie 

Liénard44. We might be surprised that this relativistic 

expression of ,elds was expressed even before the special 

relativity was revealed in 1905. In fact, there is nothing 

anachronistic about it, since Lienard relies on Maxwell's 

equations, which, as will be seen later, are purely 

relativistic. 

E⃗(M ,t )=
q

4π ϵ0
[ 1−β2

r2

e⃗−β⃗

(1− e⃗⋅⃗β)3
+

e⃗∧[( e⃗−β⃗)∧ ˙⃗β]

r(1−e⃗⋅⃗β)3 ]
P

r

         ⃗B(M ,t )=
e⃗ P

r
∧E⃗

c
          ⃗r=( P⃗M )R             ⃗e=

r⃗

r

β⃗=v⃗
R
/c and  ⃗̇β are the instantaneous velocity and 

acceleration. ⃗e is the unit vector directed from the 

charge at P to the observation point M.

The date tr veri,es c (t−t
r
)=r

Pr
.

The ,rst term 1/r2 depends only on the velocity of the 

particle and corresponds to that found for the static 

charge. Here, the proper frame R' of the charged particle 

is no longer inertial and the proper acceleration is non-

zero. A second term which depends on the acceleration 

appears, it is a term 1/r, radiative: An accelerated charge 

emits electromagnetic radiation.

The ,elds ⃗E and ⃗B are still orthogonal.

43 Landau, The Lienard-Wiechert potentials. Also: Jackson, Classical 

Electrodynamics, 1962, 641 pages, equation (14.14).
44 A. Liénard, Champ électrique et magnétique produit par une charge  

électrique  concentrée  en  un  point  et  animée  d'un  mouvement  

quelconque, L'Éclairage Électrique, July 2, 1898. Expressions also 
established, independently and two years later, by the geophysicist 
Emil Johann Wiechert.
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For the two electrons arriving head to head:

One-dimensional motion and central symmetry simplify 

the resolution. To lighten, all retarded quantities have not 

been reproduced in gray, only the quantities at time t are 

placed in black. All vectors are along the axis and the 

radiative term is therefore null on the axis: ( e⃗−β⃗)∧ ˙⃗β=0⃗. 

Here, the unit vectors ⃗e1 and ⃗e2 do not depend on time: 

e⃗1= i⃗=−e⃗2. Also, at a given instant, the velocities and 

accelerations according to indices 1 or 2 are in opposite 

directions and have the same values in norm : βi
= ẋ

i
/c, 

before the collision β2
<0.

For M=M1 and P=M2 :     ⃗r r
=(⃗Pr

M )R  

E
x M

( x
M

, t)= e

4 πϵ
0

1

(x M−xP
r
)2

1−β
Pr

1+β
Pr

E
y 1
=0      E

z1
=0      ⃗B

1axis
= 0⃗

We had an instantaneous longitudinal factor (1−β2) that 
did not depend on the direction of the velocity, as for the 

Lorentz contraction. Here, this is no longer the case with 

the retarded longitudinal factor (1±β)/(1∓β), as in the 
Doppler e5ect, which takes into account the direction 

and propagation delay.
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◦  Forces between two charges

Two charges move in R with velocities ⃗v1 and ⃗v2. The 

electromagnetic force ⃗f 1 exerted by P2 on M1 is expressed 

using the Lorentz force:

f⃗ 1=q1( E⃗2+ v⃗ 1∧ B⃗2)

For rectilinear and uniform translation:

f⃗ 1=q1[ E⃗2(1− v⃗ 1⋅⃗v2

c
2 )+ v⃗2

v⃗ 1⋅E⃗2

c
2 ]

t

As it should be, the classical principle of action and 

reaction is no longer veri,ed. This principle presupposed 

simultaneity and instantaneous action of interactions. 

For our two electrons in frontal collision:

f⃗
1
( x

1,
t )=q

1
E

x 1
( x

1,
t ) i⃗=− e

2

4πϵ
0

1

(x
1
−x

2r
)2

1−β
2 r

1+β
2r

i⃗

 B. Radiation damping

7    RADIATION DAMPING

An accelerated charge emits electromagnetic radiation.

◦  Radiated energy

Energy emitted by units of time in the proper frame of the 

particle:

P=
1

4 πϵ0

2e
2

3c
3 a

2

When the proper frame of reference is non-inertial, the 

particle, immobile and with proper acceleration ap, 

radiates. The radiation is here integrated on all directions 
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and frequencies. For non-relativistic particles, it is the 

Larmor formula established in 1897, valid then for any 

moving particle in the proper reference frame. This 

radiation makes the atom unstable in the Rutherford 

planetary model. Indeed, in this model, the electron 

radiates until it crashes on the nucleus45.

For any relativistic motion of a charged particle in an 

inertial reference frame 46:

P= 1

4 πϵ0

2e
2

3c
3

a
2−

( v⃗∧a⃗)2

c
2

(1−v
2

c
2 )

3

This radiated power slows down the particle. However, it is 

not simply equal to the kinetic power, because the 

particle is not an isolated system and it interacts with 

other charges. The particle is subjected to the damping 

force and the Lorentz force. On the other hand, in order 

not to have to take into account the interaction energy, 

we can calculate the energy of the system when all its 

constituents are at a large distance from each other. For 

example, for the scattering of two electrons, the 

di5erence in kinetic energy before and after the impact 

corresponds to the radiated energy.

◦  Damping force

We need to complete the equation of motion of a 

charge by adding emission damping ~g :

d~p
d τ

=F
~
j +~g

45 Hence the emergence of quantum physics, which has replaced the 
classical approach. The term classical can mean non-relativistic or non-
quantum. 
46 Landau,§ Radiation from a rapidly moving charge.
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Covariant expression of the damping 4-force47 :

g
μ=

1

4πϵ0

2e
2

3c
3 ( d w

μ

d τ
−

u
μ
u
ν

c
2

d wν

d τ )

 C. Retarded potentials

7    RETARDED POTENTIALS

The formulas for the ,elds are deduced from the 

potentials:

V=
q

4 πϵ
0
[1r 1

(1−e⃗⋅⃗β) ] ret

     and     ⃗A=
q

4 πϵ
0
[ 1

r

β⃗

(1− e⃗⋅⃗β) ] ret

⇒  ~A=
q

4 πϵ
0
[
~u
~r⋅~u ]

ret

 with  ~r=r (1, e⃗)=(r , r⃗ )  and  ~r⋅~u>0

The four-potential is expressed using covariant quantities, 

so it is a four-vector. The four-potential ~A at M is collinear 
to the retarded four-velocity ~u ret at  Pr. 

~
A is thus timelike, it 

points to the future for a particle with a positive electric 

charge, and to the past for a negative charge. 

For a distribution of charges in motion at the retarded 

positions Pi, the total four-potential at M will be the sum of 

the individual four-potentials. The four-potential created 

by a charge distribution is therefore also timelike.

47 Landau,§ Radiation damping in the relativistic case.
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◦  Geometric construction of the 4-potential

Let's consider the world lines of two charged particles. We 

are looking for the ,eld created on a particle at M by a 

second at P. We have drawn the Minkowski diagram in an 

inertial frame of reference. As the ,eld propagates at the 

,nite speed c, the event P is anterior on the past cone of 

M. We obtain H by orthogonal projection of M on the 

retarded four-velocity. The intensity of ~A at M is equal to 
the inverse of the intensity of ~HM  multiplied by lql/4πε0.
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This property can be read directly on the graph:

~r⋅~u=(~n+ ~
HP)⋅~u=k

HP
k

u
=k

MH
c

The intensities of ~HP and ~MH  are equal, because these 

two vectors point to hyperbolas with the same 

parameters (90° rotation to switch from one hyperbola to 

the other).

The projections of ~A along the axes of the study frame of 
reference provide the potential V and the vector 

potential ⃗A. The spatial and temporal variations of these 

two quantities then determine the ⃗E and ⃗B ,elds. It is 

therefore clear that by projecting along the axes of 

another inertial frame, we would have other values for the 

electric and magnetic ,elds. The intensities of the ,elds 

change, while the fourpotential remains the same.

Attractive case. 

Charges of opposite signs, 

?rst at rest, then move closer together.
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Minkowski diagram of a collision :
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 D. Exercises

Exercises

1. ▲△△     Units

Sometimes we need to switch from one unit system to 

another. We have in the books equations where c=1, or 

old systems of units with 1/4πε0 that have disappeared.
We want the expressions in the new international system 

approved in 1946 (SI MKSA : m-kg-s-A).

We ,nd in a book the expression of the radiated power P 

by a charge e of acceleration a:

P=
2e

2

3c
3 a

2

Restore if necessary the SI units.
Answers page 439

2. ▲▲△      Relativistic equation of motion

We consider motion in a one-dimensional Cartesian 

inertial frame of reference.

In classical mechanics we have:   ax=
d vx

dt
=

Fx

m
.

What relationship do we have in special relativity 

between ax and f x ?

Notations: ⃗a=
d v⃗

dt
  and   ⃗f =

d p⃗

dt
   with  ⃗p  the momentum.

Answers page 439
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3. ▲▲▲      Radiation damping 4-force

Damping four-force ~g properties:

1- Show that ~g⋅~u=0.

2- For a rectilinear motion along  x, determine the 

expression of g as a function of v, a and da/dt.

Notations:       g=gx=g1        a=ax=d vx /d t       v=vx=d x /d t

Answers page 439

4. ▲△△  Four-potential magnitude

Express the intensity of ~A in terms of r and β.

Answers page 440
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Voyager 1 and 2 probes
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 IX. Interstellar travel and antimatter

INTERSTELLAR TRAVEL 
AND ANTIMATTER

 A. INTRODUCTION

7    INTRODUCTION

Who says travel, says to leave his place of life for 

several reasons:

• by necessity, for reasons of survival

• in the spirit of adventure and discovery

• to conquer and colonize

For all these reasons, we have for centuries:

• explored our planet Earth

• we are right now exploring our solar system

• and, one day, surely, we will leave our system 

to explore other stars

Our planet is fragile, and even if we managed to live 

on it in harmony, it may seem risky to stay in only one 

place.
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A representation of a picture of our galaxy, the Milky Way. 

At night on a beautiful starry night without clouds and 

without Moon, we clearly see a milky band arching the 

celestial vault, the cross section of our galaxy. Our Sun is 

at the center of the small circle, and most of the stars we 

see at night are our neighbors and are contained in this 

zone. 

Of course, this is not a real picture, we have never placed 

a camera in a place outside our own galaxy. This is a 

computer-generated reconstruction from real photos. 
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For example, it is very likely that a meteorite, like the 

one responsible for the disappearance of the 

dinosaurs, will hit the Earth again one day, in a few 

years, or, millions of years, we don't know. Hence the 

idea of a multi-planetary humanity, with as a starting 

point the establishment of autonomous colonies and 

extraterrestrial bases.

Some, such as Elon Musk are targeting the planet 

Mars with a manned mission planned for the near 

future, and subsequently the establishment of a 

Martian base and the terraforming of the planet. This 

project is exciting, but before a group of humans 

can live on Mars without being dependent on 

freight arrivals from Earth, it may take several 

centuries.

The planet Mars is perhaps the best candidate 

among the eight planets that orbit our Sun. But 

probably not among the thousands of exoplanets 

already discovered that orbit other stars! 

The idea is to join an exoplanet that has a greater 

similarity to Earth than Mars, a twin planet of Earth, 

so, despite a longer journey, the colony could 

establish itself much faster. 

Some will tell you that the other stars are far too far 

away and that interstellar travel is unrealistic, when 

in fact we are already making interstellar travel with 

Voyager probes.
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They were built with the technologies of the 70s. They 

have already crossed the heliopause, the limit of our 

solar system, and are now traveling through the 

interstellar medium. These probes were designed to 

explore only the solar system, but, simply, with 

current technologies, they could be adapted to 

reach other stars. For example, the radioisotope 

thermoelectric generator will stop in 2025 and the 

transmission with. They can easily be replaced by 

batteries with an isotope with a much longer lifetime. 

The Voyager probes travel at about 61,000 km/h and 

would reach the closest star to our Sun, Proxima 

Centauri located 4 light-years away, in 70,000 

years48.

This is a lot compared to the life span of an 

individual, but very little compared to the age of 

mankind. As we will see, the spaceship can be large 

and reach this speed on the same principle. We can 

then design, still with currently accessible techno-

logies, a seedship.

A manned journey over such a length of time is 

diCcult to conceive, people would be born and die 

in the vessel over several generations, this type of 

vessel is called a generation ship.

On the other hand, the seedship contains only 

48 In fact, over such periods of time we can no longer consider the 
stars  motionless  from one another.  Nevertheless,  in  order  not  to 
complicate the presentation unnecessarily and to get to the point, 
we will consider the star Proxima Centauri fixed at 4 light-years.

280



frozen ovocytes and spermatozoa (no risk of them 

hitting each other!). Once close to Earth's twin 

planet, an automated process starts the incubators 

and the ,rst generation of children will be raised by 

robots with arti,cial intelligence.

At this rate, an extraterrestrial human civilization can 

establish itself and re-launch a new interstellar 

seeding ark in 100,000 years. Thus, step by step, in 

small leaps of 10 light-years, humanity can colonize 

the entire galaxy in less than a billion years. 

Reasonable duration, compared to the age of our 

Sun, 4.5 billion years, and the appearance of the ,rst 

cells 3.8 billion years ago.

We will ,rst talk about the Voyager probes and then 

detail other technologies that would allow us to 

reach the other stars much faster.

 B. VOYAGER PROBES

7    VOYAGER PROBES

The two Voyager 1 and Voyager 2 probes were built 

identically and were launched in 1977. They each 

have a mass of 820 kg including 90 kg of propellants.
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In astronautics, the term propellant, refers to the 

chemical substance that allows the propulsion of 

the rocket. For your car to work you must regularly 

take your vehicle to the pump to ,ll the fuel tank. But 

your car would not be able to run on the Moon, 

because for the combustion of the fuel it also needs 

the oxygen naturally present in the Earth's atmo-

sphere. A rocket operates in vacuum and therefore 

has to carry both the fuel (the reductant), and the 

oxidant, the combination of the two is called 

propellant. 

From the ground the probes left the terrestrial 

attraction on board Titan rockets containing tons of 

propellants. In addition to the speed thus gained, is 

added the speed of the Earth in its orbit around the 

Sun. But even so the speed of the probes was 

insuCcient to break away from the solar attraction. 

And it is not the few kg of propellants carried by the 

probe that would allow it, they are used for 

trajectory corrections. The Voyager probes cleverly 

used the gravity assist of the planets to escape from 

the Sun's gravitational well. 
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 C. Sling effect

7    SLING EFFECT

We use the speed of revolution of the planets 

around the Sun. For example, Jupiter orbits at 

13 km/s around the Sun and the  Voyager 1 

spacecraft after its deSection by the planet has 

gained more than 12 km/s.

The black line represents the speed of the probe as a 

function of the distance to the Sun (multiplicative scale). 

By Fying over Jupiter, the probe escapes its orbit around 

the Sun. The shaded line crossed corresponds to the 

speed necessary to escape from our stellar system. The 

astronomical unit corresponds to the distance Earth-Sun, 

one light-year is about 60,000 au.
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The Voyager 2 probe even took advantage of the 

slingshot e5ect of four planets: Jupiter, Saturn, Uranus 

and Neptune.

We have a small drawing, that follows, which allows 

us to understand simply the sling e5ect. A train 

moves towards you at 50 km/h and you throw a ball 

at 30 km/h to make it bounce on the front of the 

locomotive. Let's now put ourselves in the position of 

the train driver, he sees by additivity of velocities the 

ball arriving faster, at 80 km/h, the sum of the velo-

cities, with respect to the ground, of the train and 

the ball. If the collision is perfectly elastic, the ball 

starts again, with respect to the train, with the same 

speed and in the opposite direction. So the ball 

thrower sees the ball bounce back with a speed of 

130 km/h with respect to the ground. By throwing the 

284



ball frontally, the speed of the ball increases by 

twice the speed of the train. 

If now you throw the ball at a certain angle, the 

e5ect will be weaker but the principle remains the 

same. The same happens with the probe and the 

planets.

Jupiter in the center and the hyperbolic trajectory of the 

probe in the frame of reference which has for origin 

Jupiter. The velocity of the spacecraft ⃗v S /J  with respect 
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to Jupiter changes in direction but not in magnitude. The 

velocity of Jupiter with respect to the Sun must be added 

v⃗ J  to obtain the velocity of the probe ⃗v S /S  with respect 

to the Sun. We see in our ?gure that this speed increases, 

this is the slingshot e5ect. In the example of the train, 

there was a half-turn of the ball and the deviation D was 

180°. For the passage of the Voyager 1 probe in March 

1979, the deviation was 80° and the heliocentric speed of 

the probe increased by 12.5 km/s49. The object which 

bene?ts from the gravitational assistance can have an 

important mass without modifying the e5ect (its mass 

must remain small in front of the mass of Jupiter...).

 D. VOYAGER 3  PROJECT

7    VOYAGER 3  PROJECT

The Voyager probes were not designed for inter-

stellar travel, but to explore the solar system. For the 

Voyager 3 project, we are optimizing the slingshots 

to gain speed and reach nearby stars. For example, 

we could take advantage of an opportunity: in 

25,000 years, Proxima will be as close as possible to 

the Sun, 3 light-years away instead of 4. 

This is a great project for mankind that also allows 

humanity to project itself into the future.

Next page, a numerical simulation of the trajectory of the 

spacecraft with the successive deviations at the Fyby of 

Jupiter, Saturn, Uranus and Neptune.

49 Document: La fronde gravitationnelle, Pierre MAGNIEN, 2019.
Real time position of the Voyager probes: voyager.jpl.nasa.gov.
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Voyager 3: the probe is propelled at the level of the 

Earth's orbit and it then chains four slings around the gas 

giants. The ?nal speed is 140,000 km/h. Two di5erences 

compared to the historical Voyager probes: additional 

propellant is used and the e5ect of the slings is optimized. 

The mass of the whole, the probe and the propellant, is 

very reasonable: only about ten tons, which can be sent 

into space with the current rockets.

Below is the speed pro?le of the probe. We see an initial 

velocity surplus of 5 km/s given by the propellants. Each 

slingshot borders the upper atmospheres of the gaseous 

planets for maximum speed gain.
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 E. ROCKET EQUATION

7    ROCKET EQUATION

We would like to go even faster towards the stars by 

thrusting the probe with propellants. The propellants 

burn and the resulting gases are ejected backwards 

and allow the rocket to gain speed by reaction. The 

law of astronautics gives the speed increase ∆v of 

the rocket as a function of the initial mass mi of the 

rocket, of its ,nal mass mf and of the speed of 

ejection ve of the gases.

We can begin by illustrating this law with the 

example of a small boat on which a person throws 

stones backwards as far as possible with all his 

strength:

The boat is at ?rst immobile with all its reserve of stones. 

The person on the boat throws a ?rst stone backwards. 

The boat then starts to move slightly. This is the 

conservation of momentum. The friction with the water is 
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neglected: the acquired speed is preserved. The person 

throws the stones until the stock is consumed and the 

speed of the boat increases with each throw. The last 

stone increases the speed much more than the ?rst one 

because at the end the boat is much lighter. The ?rst 

stones are not very e5ective because the boat is initially 

very heavy and they are used above all to move the 

stock of stones in waiting.

The initial mass of the rocket is that of the probe and the 

propellants, the ?nal mass corresponds to the probe 

alone. The speed variation ∆v is the di5erence between 

the ?nal speed and the initial speed. The mass of 

propellant required increases very quickly, much faster 

than the speed reached.

Rocket equation:

The crocodile illustrates that in spite of a mass ratio made 

important by the increase in the quantity of propellants, 

this ratio is massively crushed by the need to also increase 

the speed of these same propellants before their 

combustion.

290



For a conventional chemical propellant we have an 

ejection speed of approximately 4 km/s. Let's ima-

gine that we want to go twice as fast to reach 

Proxima with a Voyager-type probe. How much 

propellant would we have to take on board?

We then have ∆v=60,000 km/h, or 16 km/s. The mass 

of fuel to be embarked increases exponentially and 

it would take 40 tons of propellants to get to Proxima 

in 35,000 years... To get there in 50 years, we would 

far exceed the mass of the Universe!

Duration of a trip to 4 light-years (current Sun-Proxima 

distance) with a Voyager type probe using traditional 

propellants (chemical energy / probe with a mass of 

800 kg):

Duration of 
the trip

Mass of propellants 
required

m
i

mf

ln( mi

mf
)

70 000 yrs 0 ton 1 0

35 000 yrs 40 tons 50 4

1 000 yrs Mass greater than that of 
the observable Universe

∞ 140

50 yrs ∞ 2800

Once the star system is reached we can slow down the 

probe by sling e5ect. For the journey twice as fast, if we 

don't want to simply Fy over the distant star system, the 

gravity assistance will not be suCcient to put ourselves in 

orbit around the star and we must also bring fuel to slow 

down the probe. As we have a factor of 50, we need 

2000 tons of propellants at the departure from Earth to be 

able to be in orbit at the level of the exoplanet at the 

arrival!
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To get around this monstrous increase in mass, the 

ejection speed would have to be increased instead. 

We would then have to use other technologies. We 

can use nuclear energy or mass energy. 

For one kilogram of propellant, which substance 

allows the maximum release of energy?

Let's compare energy eCciencies. It is the energy 

released compared to mass energy. For example, one 

gram of antimatter releases more  energy than a 

thousand tons of chemical propellants:

Propellant EfÏciency Details

Chemical 1 / 6 billions 0.00000002 % Oxygen-Hydrogen

Fission 1 / 1000 0.1 % Uranium 235

Fusion 1 / 250 0.4 % Deuterium-Tritium

Antimatter 1 100 % E=mc2

In the current state of scienti,c knowledge, 

antimatter appears to be the ideal fuel. The entire 

mass is then converted into energy and motion of 

the rocket.

Duration of a one-way trip for Proxima Centauri for a 

Voyager-type probe using an antimatter reactor (10% 

eCciency):
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Travel time to Proxima Antimatter mass required

70 000 yrs 0

35 000 yrs 230 grams50

10 000 yrs 1.4 kg

1 000 yrs 16 kg

50 yrs 333 kg

Calculations for a distance of 4 light-years. In fact, 

Proxima Centauri will be closest to the Sun at 3 ly in 25,000 

years. For an equivalent quantity of propellants, we gain 

10,000 years.

We see that the problem of the mass of propellants 

to carry has disappeared. We will therefore focus on 

antimatter: its nature, its collection and its storage.

 F. ANTIMATTER

7    ANTIMATTER

Paul Dirac in 1928 constructed a theory to unify 

special relativity and quantum physics. It was then 

that antimatter imposed itself in the equations, it was 

later discovered experimentally as early as 1932 with 

the positron. Theoretical prediction appears as 

symmetry in the Dirac equation. In nature, to each 

elementary particle corresponds a "twin" particle, a 

particle with exactly the same mass but with an 

opposite electric charge. 

50 One gram of antimatter releases as much energy as an atomic 
bomb.
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For example, to the electron corresponds the anti-

electron commonly called positron, or positon. In 

1955, the antiproton was discovered by creating it 

with a particle accelerator. In 1995, the ,rst atom of 

antimatter was created, the atom of anti-hydrogen. 

When a matter particle meets its antimatter 

counterpart, the two disappear and annihilate each 

other in pure energy. Hence perhaps the name 

antimatter, but, to avoid any confusion related to 

this name, let us specify that antimatter is matter. 

We can produce antimatter arti,cially with a 

particle accelerator, but it also exists - although in 

much smaller quantities than matter - in nature. 

The production of antimatter in the laboratory 

requires a lot of time and energy. For example, to 

create antiprotons, protons are accelerated and 

when they collide at high energy, they create 

proton/antiproton pairs:

p+ p → p+ p + p+ p̄

You create a proton for nothing and the productivity 

is low. It is very interesting and precious to 

understand the secrets of matter on a small scale, 

but, to produce the propellant for a rocket, it is 

perhaps not the most judicious51.

51 In  2020,  world  energy  production  corresponds  to  the  energy 
released by the annihilation of 3.5 tons of antimatter, however, with 
the  existing  current  means,  even  to  produce  just  one  gram  of 
antimatter would be prohibitively expensive.
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It would be simpler to collect it in the nature. 

Positrons are released by beta-positive radioactivity, 

by cosmic rays or even storms. Antiprotons are a fuel 

of choice because they have a mass energy much 

higher than positrons.  However, unlike positrons, anti-

protons are not directly produced in our solar system. 

The Sun, the most powerful source of energy in our 

star system, only rises in energy to the level of fusion 

and the solar wind does not contain antiprotons. 

We must, therefore, look for a source of antimatter 

outside our system. This source exists, it was disco-

vered in 1912, it is the cosmic rays. It is made up of 

particles of very high energy capable of creating 

antiprotons. The precise sources of this radiation are 

not yet known, but it is now believed that they are 

mainly located in our galaxy. This galactic radiation 

is constantly passing through the solar system, and it 

is estimated that 200,000 tons of antimatter crosses 

the heliosphere every year52.

The density of antiprotons is higher in the planetary 

magnetospheres. For example, around the Earth, 

there is an antimatter belt with a zone a thousand 

times denser than the surrounding cosmic rays53. 

Cosmic antiprotons are trapped, and moreover, 

52 A lot of data is taken from a very comprehensive article from the 
Draper Laboratory: Extraction of antiparticles concentrated in 

planetary magnetic fields, 77 pages, 2006.
53 Analysis of results from the PAMELA detector installed on a 

satellite in Earth orbit: The discovery of geomagnetically trapped 

cosmic ray antiprotons, 2011.
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others are directly created by the interaction of 

cosmic rays with the upper layer of the Earth's 

atmosphere. The Earth's antiproton belt is located 

several hundred kilometers above sea level in the 

Van Allen radiation belt.

 G. JUPITER: THE SOLAR SYSTEM GAS PUMP

7    JUPITER: THE SOLAR SYSTEM GAS PUMP

The Earth generates a magnetic ,eld that traps 

charged particles at altitude, such as electrons 

contained in the solar wind. Sometimes during a 

destabilization of the magnetosphere, for example 

following a solar Sare, electric particles are released 

at the poles and create beautiful polar auroras. The 

magnetosphere acts as a giant magnetic bottle 

that stores all kinds of charged particles. The Earth's 

magnetosphere is subjected to a Sux of about 4 

grams of antiprotons per year. But it is mainly the 

large gas giant planets, and, without a doubt, the 

gigantic magnetosphere of Jupiter that could 

contain the largest amount of antimatter with a Sux 

estimated at 9 kg per year. 
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A picture of the antiproton belt around the Earth. Here, 

an antiproton moving at 70% of the speed of light. The 

Earth's magnetic ?eld curves its trajectory and traps it 

using three types of combined motions: the fastest, a 

cyclotron rotation that makes it make small circles, then, 

an oscillation between the poles, and ?nally, a slower drift 

that makes it go around the Earth.

Satellites could collect and store this antimatter. The 

ships would then refuel at Jupiter before leaving for 

the stars.

 H. ANTIMATTER STORAGE
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7    ANTIMATTER STORAGE

We currently know how to store antiprotons for more 

than a year. The temperature is maintained below 

one Kelvin and the measurements of the charac-

teristics of the antiproton are extremely accurate54. 

Nevertheless, the quantities are very small and the 

mass of the trap is very large compared to the mass 

of antimatter stored.

Penning trap. By combining a magnetic ?eld and an 

electric ?eld, charged particles can be trapped in the 

laboratory.

The ideal would be to store antimatter on a 

microscopic scale. The antimatter thus trapped and 

54 BASE experiment: A parts-per-billion measurement of the 

antiproton magnetic moment, review Nature, 2017.
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con,ned at the atomic or molecular scale could 

then be stored like matter. We would have a Sexible 

and versatile use of this new fuel, both for space 

travel and in our daily lives. For example, a car could 

travel around the Earth on a single tank of a few 

milligrams of antimatter.

Let's call Proximium this hypothetical fuel of the 

future. A luminal fuel that would allow us to reach 

the stars and bring us into a new energy era. Could 

this dream come true? Only experimentation will 

allow us to make progress on this question. Let's start 

by letting our imagination consider di5erent options.

1 - Exotic atoms where an electron would be 

replaced by an antiproton:

Examples of helium and carbon atoms where one or 

more e- have been substituted by a p. Antimatter density 

of the structures: 20% and 14%. The ?rst compound, 

sometimes called antiprotonic helium and noted pHe+, 

was discovered by serendipity at the Japanese CEC 

laboratory in 1991, and then studied at the CERN 

antiproton decelerator. Normally an antiproton is stopped 
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by matter and annihilates on a nucleus in a time of the 

order of a picosecond. In this experiment, where a beam 

of slow antiprotons encounters a liquid helium target, we 

naturally obtain the metastable pHe+ state in which the 

trapped antiproton can be stored for several 

microseconds55.

2 - An antihydrogen atom ionized with an additional 

positron , could replace the nucleus of a 

hydrogen atom. Two such exotic atoms would 

constitute a Proximium molecule:

The storage density in this case would be almost 100%. 

Experimental research can ?rst focus on the synthesis of 

an anti-proximium  molecule. Experiment easier to 

implement for a molecule that has the same stability.

55 Article of HAYANO Spectroscopy of antiprotonic helium atoms and its  

contribution to the fundamental physical constants, Japon, 2010.
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3 - A  cage molecule. There are many cage 

molecules in chemistry that allow the encapsulation 

of molecules. We can imagine such a molecule that 

contains an antiproton as in a microscopic Penning 

trap. We have, for example, fullerene-type 

molecules and nanotubes:

Di5erent carbon-based structures. In the top left corner, 

we represented the C60 fullerene. Di5erent types of atoms 

have already been trapped in these structures. Fullerene 

can easily be negatively ionized and could thus be a 

good antiproton trap. Bottom right, the same structure 

using a model showing the electrostatic spheres of 

inFuence of electronic clouds. Diagonal, a nanotube with 

4 con?ned antiprotons.
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And so on... We can start by measuring the life span 

of such structures, and maybe one day we will have 

the pleasant surprise of ,nding a stable one. 

Scienti,c research makes it possible to test multiple 

combinations. It's worth the e5ort because even if 

we don't ,nd what we're looking for, we'll have 

learned a lot about matter. 

Scientists have already studied di5erent exotic 

atoms. We have created and studied anti-hydrogen 

atoms that have proven to be stable. Another 

hydrogen derivative, positronium, which consists of 

an electron and a positron that revolve around 

each other, has a stability of 100 nanoseconds. The 

muonium, on the other hand, replaces the nucleus 

of a hydrogen atom by a muon, the stability is 2 

microseconds.

Stability can also depend on the context. For 

example, a neutron in the nucleus of an atom is 

stable, whereas in its free, isolated state, the neutron 

has a lifetime of only 10 minutes.
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 I. CONCLUSION

7    CONCLUSION

By learning to master antimatter we could reach the 

,rst stars in 50 years and explore the entire galaxy in 

a few million years. This type of vessel could be 

manned and would quickly overtake the previously 

sent seed ships. Both scenarios deserve to be 

developed in parallel over the next decades. 

Elon Musk projects a colony on Mars of one million 

humans by 2050 and a progressive empowerment. 

Also planned are microprobes for Proxima propelled 

by giant lasers placed on Earth. 

Often for interstellar travel, nuclear ,ssion or fusion 

are proposed as a source of energy and antimatter 

is little considered. The aim of this conference is to 

show the important potential of antimatter as a key 

element for the future.
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 J. Exercises
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Exercises

1. ▲△△ Figures

Find the numerical values of the conference:

• A probe goes at 61,000 km/h to a 4 ly star.

Do you ,nd 70,000 years of travel?

• World energy consumption is estimated at 

15,000 Mtoe in 2020. The toe (ton of oil 

equivalent) is worth 42 GJ. Show that this 

energy is equivalent to the energy released 

by the annihilation of 3.5 tons of antimatter. 

• Using the data in the table on page 34 of the 

article Extraction of antiparticles concen-

trated in planetary magnetic ?elds, ,nd the 

200,000 tonnes of antimatter that crosses the 

heliosphere each year. For example, for 

Jupiter the Sux is 9.1 kg of antiprotons for a 

cross section of 45 RJ radius (zone of inSuence 

of the Jovian magnetosphere with RJ the 

radius of Jupiter). The e5ective radius of the 

Sun is taken at heliopause, limit of the 

inSuence zone of the solar magnetic ,eld. If 

we now take the interstellar Sux of cosmic 

radiation, external to the heliosphere, eva-

luate how much the antimatter Sux is by using 

the following curve.          

    Answers on page 441.
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Over signi?cant periods of time, several thousand years, 

the stars can no longer be considered ?xed to one 

another. The three stars of the Alpha Centauri system will 

be closest to the Sun in 25,000 years at three light years.
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2. ▲△△   The distances of stars over time

In the conference the distance Sun-Proxima is set to 

4 light-years. For fast journeys the stars can be 

considered ,xed, but for slow journeys of more than 

10,000 years the variations in distance are no longer 

negligible. We have placed the curve in the 

previous pages. Show that the Voyager 1 and 2 

probes could not reach Proxima Centauri. What 

should be the minimum speed of the probes? How 

fast does a probe have to go to reach the Alpha 

Centauri system when it is closest? 

Answers p442.

3. ▲▲▲   Sling e@ect

We consider the Syby of Voyager 1 at the level of 

Jupiter.

a - With an initial probe speed of 12.6 km/s and a 

Jovian speed of 12.8 km/s, ,nd the speed variation 

of Voyager 1 (heliocentric velocities). The motions 

are assumed to be coplanar and the trajectory of 

Jupiter in the heliocentric reference frame circular. 

You will estimate the required angles using the curve 

on the previous page.

Help: it is not easy to visualize the asymptotes, trajectories 

at a great distance from the probe, the view is too close. 

Two indications: the inner angle between the two 
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asymptotes of the hyperbola is 82° and the impact 

parameter b is 13 RJ (b: distance between the barycenter 

of Jupiter and the asymptotes  RJ: radius of Jupiter).

De?nition of angles :  α i=(̂ v⃗J ,−v⃗ i)  and  α f=(̂ v⃗ f , v⃗ J).

b - Evaluate on the NASA graph the maximum 

speed of the probe at the periastron. Does the result 

correspond to the peak on the graph page 283 ?

Estimate the speed of the probe 38 hours after its 

passage at the periastron. Deduce, by calculation, 

the speed of the probe to in,nity. Evaluate the 

minimum approach distance of Voyager, and 

deduce by calculation the impact parameter b of 

the probe.

Help: For an isolated system, in a Galilean frame of 

reference, there is conservation of mechanical energy 

and angular momentum.

c - Conic parameters.

Find the semi-latus rectum p, the eccentricity e and 

the deviation D.

Aids: The general solution of the Kepler problem provides 

the polar equation of a conic (hyperbola, parabola and 

ellipse):

Origin of the reference system: center of mass of Jupiter. 

Angles origin: main axis of the hyperbola. 

p : semi-latus rectum of the conic. 

e : eccentricity. L : angular momentum of the probe. 

M=MJ=1.90×10
27 kg. m : mass of the probe. 

Distance Sun-Jupiter: 800×106 km. MS=2×10
30 kg.
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d - We want to increase the sling e5ect.

• All else being equal, for what value of αf do we 

get a maximum vf? Determine the corresponding ∆v. 

If the probe then left the solar system directly, what 

would be its interstellar speed?

• The trajectory of the probe from the Earth is 

considered to correspond to an orbit of the 

Hohmann transfer elliptic orbit type. 

What is the semi-major axis a of this ellipse?

We can also ,nd again the angle of approach. How 

could we increase the interstellar speed of the 

probe? We must not get too close to Jupiter. The 

equatorial radius of Jupiter is 71,492 km and an 

altitude of 1,000 km places the probe as close as 

possible, in an atmosphere suCciently tight that its 

inSuence can be neglected.
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Aids: Mechanical energy for a conic:

Em=
α

2 p
(e2−1).      Ellipse:   Em=−

α
2a
   and   p=

b
2

a

• Explain why Mars does not allow to have a 

consequent slingshot e5ect despite its high orbital 

speed.

• Retrieve the characteristics of the speed pro,le of 

Voyager 1 by considering the two slings one after 

the other (Jupiter then Saturn). A spreadsheet can 

be used for a systematic calculation for n slings. 

Conservation of the angular momentum  and 

mechanical energy between the slings, properties of 

the hyperbola during a sling.

• Model the succession of the four fronds from 

Jupiter to Neptune. Show that it is possible to obtain, 

by optimizing the successive e5ects, an interstellar 

speed of 100,000 km/h (on the principle of Voyager 

probes and using only gravitational assistance). 

Show that by giving, at the level of the Earth's orbit, 

a speed surplus of 4.8 km/s using propellants, the 

probe reaches an interstellar speed of more than 

137,000 km/h. 

• Globally, all the planets revolve around the Sun in 

the same plane, called the ecliptic. In our model for 

the succession of the fronds, the probe leaves the 

solar system in this plane. However, most of the stars 

are out of the ecliptic. For example, at the closest, in 

25,000 years, the star Proxima will be located 39° 
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below the ecliptic plane56. The velocity given by the 

gravity assist has a value but also a speci,c 

direction. The direction of the velocity is just as 

important as its magnitude: what's the point of 

going fast if it's not to the right place? Do you have 

a proposal to have a correctly directed velocity 

without using huge quantities of propellants?

• The probe at the end of its 25,000-year journey Sies 

over the Alpha Centauri star system. How should we 

proceed to slow down the probe in order to trap it in 

the star system? Should additional propellant 

reserves be provided for this purpose? 

Answers p442.

  ▲▲▲▲  Numerical simulations of the slings

The simulations make it possible to recover the results 

established in the previous exercise, which used 

Kepler's formulas. Also, simulations give a great deal 

of freedom and help to envisage a number of 

situations. The counterpart is the necessary compu-

ting power. We will use that of a personal computer. 

This will be suCcient for a ,rst approach and to 

explain the basic principles.

56 Calculations in the exercise Motion of the stars on page 322. 
Current ecliptic coordinates of the stars: heasarc.gsfc.nasa.gov/cgi-
bin/Tools/convcoord/convcoord.pl. Often only equatorial 
coordinates are given, all conversions on this site.
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We will study the problem of N bodies in gravita-

tional interaction. The modeling is very ambitious 

and the computation time can be very long: the 

number of interactions evolves in N factorial and 

from N=3 we can have chaotic regimes. Each body 

has 6 degrees of freedom, three for the position and 

three for the velocity components. We will, therefore, 

simplify with a set of reasonable hypotheses.

For the Voyager probes the motions will be consi-

dered in the same plane: indeed, it is a reality, 

basically all the planets orbit in the plane of the 

ecliptic, moreover, it is shown that the two-body 

motion is done in one plane.

We will assume that the Sun is motionless. This way 

we have one less body to consider. The heliocentric 

reference frame is then Galilean. No need to 

consider the center of mass of the solar system and 

the Copernican frame of reference, because the 

mass of the Sun is very large in front of those of the 

other bodies.

We will not consider the forces between the planets. 

Always to simplify the equations, reduce the number 

of relations, and the computation time. Only the Sun 

exerts its force on a planet. Only the probe remains 

connected to all the bodies.

Newton's equations of motion give a system of 

coupled di5erential equations:
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d O⃗ M i

dt
= v⃗i      and     

d v⃗i

dt
=∑

j≠i

Gm j

M⃗ i M j

rij

3

For each body, we have two vectorial di5erential 

equations of order one. For a 2D motion, we have 

four variables per body: xi, yi, vxi and vyi. Finally, for 

the probe and the four gas giants we have 20 

equations. It is already a lot.

The principle of digital resolution is simple, it is a step-

by-step method. We have the initial conditions at 

t=0, positions and velocities of all bodies. After a 

small interval of time ∆t, we evaluate the new 

velocities and positions using di5erential equations. 

We thus pass, step by step, from tn to tn+1:

xi ,n+1=x i , n+vx , i , nΔ t , ... ,

 v x ,i ,n+1=vx ,i ,n+F x ,i (x j ,n , y j , n)Δ t , ... .

This is the Euler method. We will then study the much 

more precise Runge-Kutta method.

Mechanically, as in a line of dominoes that fall one 

after the other, we move causally from one stage to 

the next. At each step, we make a small local error 

that accumulates to the one of the previous step. 

We will take a step small enough to be able to 

properly linearize each segment and minimize the 

global error. Since we are not mathematicians, in this 

initiation exercise we will be content to control, as 

good physicists, the conservation of mechanical 

energy and angular momentum. 
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We will use a spreadsheet program. No need to 

download any special programming software, a 

worksheet will be enough.

Let's start by practicing on simple models for which 

the analytical solutions are known.

1 - Revolution of the Earth around the Sun:

Let us take as initial conditions the Earth at its 

perihelion:  rmin=147,098,074 km and vmax=30,287 m/s.

Sun mass:  MS=1.9891×10
30 kg.

Gravitational constant:  G=6.6743×10-11 N.m2/kg2.

a- Kepler law's: The previous data comes from 

Wikipedia. Determine, from them, the semi-latus 

rectum p of the conic, the eccentricity e, rmax, vmin, 

the semi-major axis a and the period T.

b- First simulation with a step h=1 day. 

Do you get a satisfactory simulation on a revolution? 

What is the percentage of error on the radius after 

one revolution? How does this percentage change 

for h/2, h/4 and h/8? 

Do you ,nd the right values for the period of 

revolution and the values at aphelion ? 

Even already on the ,rst step from t=0 to t=h, do you 

notice an anomaly ? 

How to explain it?

We have calculated the values at tn+1 from those at 

tn. For example, the velocity vx, n+1 is calculated with 

vx, n, x n, and y n . On the same principle, the position 

xn+1 is calculated with vx, n and x n. But it would also be 

quite possible to determine the positions xn+1 and y n+1 
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with the velocities at rank n+1. Indeed, it is no more 

false to take the velocity at the end of the interval 

than at the beginning. Run the simulation again for 

h=1 day with this modi,cation for the calculation of 

the positions. Do you now ,nd better estimates for 

the period and the aphelion? What is then the 

global error for the radius after one revolution? What 

is the value of the variation of mechanical energy 

over 365 days? Conclusion. 

2 - Runge-Kutta method of order 4 (RK4):

The global error with the Euler method was of the 

order of h, with the midpoint method (for example, 

the modi,ed Euler method seen previously) accor-

ding to h2, and with RK4 in h4. Although the calcu-

lation for one step will be a little longer, the total 

calculation time for the same global error will be 

immensely shorter. Rather than using only one slope, 

the one at the beginning of the interval, as for the 

Euler method, we will use four slopes judiciously 

distributed and weighted over the interval.

We give the general Runge-Kutta scheme for two 

degrees of freedom, and let you generalize. The 

degrees of freedom are named X and Y. For 

example, in physics, for a one-body motion in one 

direction, we would have X=x and Y=vx.

X(t) and Y(t) obey the following di5erential  equa-

tions:

d X

dt
=A (X ,Y )     and     

d Y

dt
=B(X ,Y )

With the initial conditions  X(0) and Y(0) known.
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We determine the values Xn+1 and Yn+1 from those of 

the previous rank Xn and Yn over the interval 

[nh, (n+1)h] with the following iterative method. For 

each degree of freedom we have four slopes to 

calculate. For example, for X, A1 corresponds to the 

slope at the beginning of the interval, A2 and A3 are 

estimates of the slope in the middle of the interval, 

and A4 is an estimate at the end of the interval:

A1=A(Xn , Y n)         B1=B(Xn ,Y n)

A2=A(Xn+
h

2
A1,Y n+

h

2
B1)

B2=B(Xn+
h

2
A1,Y n+

h

2
B1)

A3=A(Xn+
h

2
A2,Y n+

h

2
B2)

B3=B(Xn+
h

2
A2,Y n+

h

2
B2)

A4=A (Xn+h A3,Y n+h B3)

B4=B(Xn+h A3,Y n+h B3)

Xn+1=Xn+
h

6
(A1+2 A2+2 A3+A4)

Y n+1=Y n+
h

6
(B1+2 B2+2 B3+B4)

We take again the case of the revolution of the 

Earth around the Sun with this method.
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a- Establish the RK4 scheme to solve this 

problem: de,ne the variables, write the di5erential 

equations of order 1 while naming the functions and 

the slopes.

b- Start the numerical calculation for a step 

of one day and compare the precision of the 

method with the previous simulations. 

The RK4 method will now be the preferred method. 

3 - Voyager 1: Establish the Runge-Kutta scheme 

(here we have 48 slopes to calculate for each 

iteration). Find the characteristics of the speed 

pro,le, the approach distances and check the 

values and the conservation of mechanical energy 

and angular momentum between two slings. 

It will be necessary to adapt the step at the moment 

of the slings because the curvature is then 

important. The motion is plane and on each step 

you can calculate the angular variation on the 

osculating circle to check a good tracking of the 

trajectory.

4 - Voyager 3 Project: retrieve the speed pro,le. 

Adjusting the initial conditions to perfectly chain the 

four slings can be tedious. It can be judicious to 

proceed as in reality, with, for example, the use of a 

bit of propellant for a trajectory correction at the 

Uranus periastron (minimum energy consumption: 

powered Syby and Oberth e5ect).

                               Answers p458.
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5. ▲▲△   Calculation of propellant masses

The aim is to retrieve all the values given during the 

conference.

1 - You are out for some repairs outside your space 

station. But a small loss of attention and you are 

detached from your rope drifting freely in space with 

your adjustable wrench in your hand. You slowly 

move away from the station. How could you get 

back?

By throwing the one kilo wrench with all your 

strength, it can reach a speed of 36 km/h. Your 

mass, including your suit, is 100 kg. What will be your 

speed after the throw? What quantity is conserved 

before and after? Is energy a quantity that is 

conserved? Is the kinetic energy acquired by the 

key the same as yours?

2 - Resume the calculation for a rocket. In this case 

the mass varies over time and must be integrated. 

The gas ejection speed is considered constant. 

Show how the formula ,ts for antimatter.

3 - In the relativistic case of Voyage to Proxima, 

calculate, for an ideal photon rocket, the antimatter 

masses for a round trip.

Duration of the outward journey: 3 years of proper 

time. Constant acceleration: 1 g.

4 - Calculate the mass of propellants required for the 

Voyager 3  Project.

Answers p473.
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6. ▲△△ Planetary alignments

For the slings, the planets must have particular 

relative positions. We can use the alignments as 

markers. For example, for a slingshot around Jupiter 

after a departure from Earth, we start by looking for 

the Sun-Earth-Jupiter alignment dates. The align-

ments searched are approximate. Perfect align-

ments are very rare or do not exist. For example, the 

global alignment of the Earth with the Moon and 

the Sun happens twice a lunar month. On the other 

hand, exact alignments occur only at eclipse times.

We consider circular and coplanar trajectories. 

Periods of revolution of gas giants:

T Jupiter≃11.86 yrs           T Saturn≃29.44 yrs

  TUranus≃84.05 yrs           T Neptune≃164.86 yrs

1 -  Show that two planets A and B are aligned 

according to the period:

T AB=
T A T B

T B−T A

where B is further from the Sun than A. TAB is the 

synodic period.

2 -  Determine the Jupiter-Earth synodic period and 

the next alignment date with the help of 

ephemerides57.

57 Institut de Mécanique Céleste et de Calcul des Éphémérides de 
l'Obs. de Paris / CNRS : vo.imcce.fr/webservices/miriade/?forms

Form. : p:Earth, p:Jupiter / heliocenter / Ecliptic.
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3 - Set a date for the Earth-Jupiter-Saturn alignment.

4 - How often does the alignment of the four gas 

giants with the Earth take place? 

Answers p477.

7. ▲△△ Motion of the stars

For a quick trip to the nearby stars we can consider 

them ,xed. In the case of slow travel over 25,000 

years, we must anticipate the motion of the star to 

launch the probe in the direction it will be at the 

time of arrival. The velocity of a star is divided into its 

transverse and radial parts. The transverse compo-

nents are known with good resolution thanks to the 

Hipparcos satellite, and now with the even more 

precise Gaia satellite, which took over in 2013. The 

Gaia spectrometer allows, by Doppler method, to 

improve the accuracy on the radial part. 

1 -  Determination of the velocity of a star:

The databases give the current distance d0 of the 

star, the proper motion μ, and, the radial velocity vr. 
The proper motion indicates the angular displace-

ment per unit time. This angular change is itself split 

into two orthogonal components, along longitude 
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and latitude in equatorial coordinates: μα and μδ.

α : right ascension / δ : declination
units: milliarcseconds per year

Proxima Centauri :

d0
(ly)

vr 0
(km/s)

μα 0

(mas/yr)

μδ 0

(mas/yr)

α 0 δ 0

4.244 -22.2 -3781.3 769.8 14h29m43s -62°40'46''

Determine μ, the tangential velocities vtα, vtδ, vt, and 
the velocity v of the star Proxima Centauri.

What will be the equatorial coordinates of Proxima in 

a century?

2 - ▲▲ Linear motion approximation:

We neglect the Sun gravity and the galactic 

gravitational potential58. At ,rst order, the velocity 

vector of the star can be considered as constant. 

The motion of the star is then rectilinear and uniform:

58 The Close Approach of Stars in the Solar Neighbourhood, Matthews, 
1993. Close encounters of the stellar kind, Bailer-Jones, 2014.
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   a- Determine the distance d of the star from the 

Sun as a function of time.

   b- Determine the minimum approach distance dm 
and the corresponding date tm.

   c- What are the coordinates of the star at the 

closest approach distance?

Distance of stars over time:

Three stars that can be reached in less than 50,000 years 

by a probe that uses gravitational assistance.
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Radial and tangentials velocities

of Proxima Centauri

The motion of a star is rectilinear and its speed v is 

constant. However, its three components, normal to each 

other, vary with time. At the perihelion time, the radial 

velocity is zero and the tangential velocity is maximum: 

vt=√ vα
2
+vδ

2
. At in?nite times, the velocity becomes purely 

radial and the tangential components tend towards zero.
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Proper motions of Proxima Centauri

Proper motion of a star for a terrestrial observer. We have 

the annual angular variations on the celestial sphere in 

equatorial coordinates of the position of a star. These 

proper motions are not constant and vary over the 

millennia. The distant stars can be considered ?xed and 

the closer they are to our Sun, the more apparent their 

motion becomes. 

One second of arc = one 3600th of a degree.
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The position of the stars in ecliptic coordinates at the 

time when the spacecraft will have joined the 

distant star system. 13 stars at less than 100 000 years 

and 40 km/s.

Answers p478.
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8. ▲▲△ Can a pair of primordial black holes be 

used as a stargate?

Researchers explain in a 2019 paper59 how the 

existence of primordial black holes beyond 

Neptune's orbit would explain, both, the anomalous 

orbits observed for transneptunian objects, and, an 

excess in gravitational microlensing events observed 

by the OGLE experiment60. The primordial black 

holes (PBH) would have been created in the ,rst 

moments of the Big Bang. They could explain the 

origin of gamma-ray bursts and part of the dark 

matter. These small black holes have not yet been 

observed, they would be the size of a ,st and a few 

earth masses. 

In this exercise we assume the existence of such 

black holes beyond Neptune, and we imagine that 

they sometimes form pairs in rapid rotation around 

their barycenter.

Characteristic data for PBHs: Radius R=4.5 cm.

Mass M=5 MT. Distance from Sun D=300 au.

1 -  Show how such a pair of primordial black holes 

could help to reach dizzying speeds by gravity assist. 

Could we, from there, reach Proxima in less than 50 

years?

2 -  As we get closer to primordial black holes, the 

tidal forces increase. Would a manned mission be 

viable?                                                   Answers p485.

59 What if Planet 9 is a Primordial Black Hole?  J. Scholtz, J. Unwin.
60 Optical Gravitational Lensing Experiment is a Polish astronomy 

project based at the University of Warsaw.
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9. ▲▲△   Antiproton-proton collision

1 - In a particle accelerator, what must be the 

minimum speed of protons incident on a hydro-

genated target to create a pair p p ?
Mass of a proton: 938 MeV/c2.

2 - The same thing can happen when an antiproton 

collides with a proton. Do the antiprotons of cosmic 

rays have suCcient kinetic energies to create pairs? 

The quantity of cosmic protons is much greater than 

that of antiprotons. Could we obtain a consequent 

Sux of p using energetic p?

Data on page 7 of "The discovery of geomagne-

tically..." and on page 13 of "Extraction of particles...": 

there are about 10,000 times more protons than 

antiprotons in this energy range.

Answers p488.

10. ▲▲△   Helical motion

This kinematic and geometric study will help us to 

interpret the dynamics of the antiproton in the Earth's 

magnetic ?eld.

Parametric equations of the trajectory in Cartesian 

coordinates for uniform helical motion:

{
x (t )=r cosω t

y ( t )=r sinω t

z ( t )=v zt

          r=cst>0 ω=cst v z=cst

330



1 - Write the equations in cylindrical coordinates.

2 - Determine the components of the velocity ⃗v and 

the acceleration ⃗a.

3 - Calculation of v, a, dv /dt and the radius of 

curvature R.

4 - Relation between R, the 

radius r=HM of the helix 

and the pitch p (|Δ z| for 
one complete helix turn).

5 - Calculation of the arc 

length l traveled by the 

particle on one turn as a 

function of: r and p, then 

of, v and v┴, and even-

tually, of R and α (angle between ⃗v and the 
horizontal).

Answers p489.

11.  ▲▲▲   The magnetosphere

The ,eld lines of the Earth's magnetosphere are 

similar to that of a giant bar magnet with its south 

magnetic pole close to the geographic north pole.

1 - Show that in a magnetic ,eld the speed of a 

particle is constant.

Help: In relativistic mechanics ⃗f =
d p⃗

dt
=

d mγ v⃗

dt
 and we 

have, here, for the Lorentz force  ⃗f =q( E⃗+ v⃗∧B⃗).

For the energy aspect  ⃗f⋅⃗v=
d E

dt
  with  E=T+mc

2.
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2 - Give the trajectory of a charged particle in a 

uniform magnetic ,eld.

3 - Give the shape of the ,eld lines of a magnetic 

dipole. Characteristics and components of the 

magnetic ,eld of a dipole in spherical coordinates.

4 - Show the mirror e5ect on the example of a 

narrowing ,eld tube.

5 - Show the drift phenomenon in the simple case of 

two areas with uniform magnetic ,elds of di5erent 

intensities.

6 - Trapped antiproton: We will carry out a numerical 

simulation with the Runge-Kutta method of order 4 

(method described page 313).

a- Establish the expression of the components 

of the magnetic ,eld of a dipole in Cartesian 

coordinates.

b- Give the equations of motion of a charged 

particle in a magnetic ,eld.

c- Write the RK4 scheme.

d- Carry out the numerical simulation. On a 

spreadsheet it can be too computationally intensive. 

In this case we preferred to program in php and to 

make the calculations on server.

Answers p490.
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12. ▲▲▲   Penning trap  

This charged particle trap, designed in 1936, uses a 

quadrupole electric ,eld and a uniform magnetic 

,eld. Penning traps are commonly used at CERN to 

store antiprotons. The electric ,eld is created by a set 

of electrodes that follow the hyperboloidal equi-

potentials of the quadrupole. The globally uniform 

magnetic ,eld in the storage area is the one 

created inside a solenoid.

1 -  Expression of the electric ,eld:

E⃗=
U 0

r0

2
(−x i⃗− y j⃗+2 z k⃗ )

Show that ⃗E derives from a potential that we will 

determine.

2 -  Show that the origin O is an equilibrium position. 

Discuss the stability along the (Oz) axis and then in 

the plane (Oxy). Calculate the pulsation ωz of the 
oscillations along Oz.

3 -  To stabilize the trajectory of the antiproton we 

add a uniform magnetic ,eld:

B⃗=B0 k⃗

a -  Is the motion along (Oz) modi,ed?

b -  According to (xOy): show that the 

antiproton is trapped if B0 is greater than a critical 

value Bc to be determined (to do this, establish the 

di5erential equation veri,ed by  ρ=x+ j y, j
2=−1, 

with ωc
=e B

0
/m).
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c -  Solve and  highlight two  angular 

frequencies ωc' and ωm (magnetron frequency).
Numerical Applications: U0=9.3 V, r0=29.1 cm, B0=0.55 T, 

e=1.6×10-19C,   mp=1.67×10
-27kg.

d -  Plot the trajectory.

4 -  M  icroscopic cage: Could we create a Penning 

trap at the microscopic scale? We are going to 

propose a model to try to give elements of an 

answer. For the quadrupole electric ,eld we can use 

cations and anions. For the magnetic ,eld we have 

paramagnetic atoms which have a permanent 

magnetic moment (iron is an example among many 

others). Let's take six atoms arranged in a bipyramid 

with a square base. The two atoms at the vertices 

have a charge 2⊝ and an elementary magnetic 
moment μB. The four atoms at the base are cations 
of elemental charge ⊕. 

Data (usual order of magnitude):

Edges of the regular octahedron equal to: a=100 pm.

Elementary charge: e=1.6×10-19 C. ε0=8.85×10
 -12 C2.m-2.N-1.

Elementary magnetic moment: that created by a 

classical electron orbiting in a hydrogen atom, called 

Bohr magneton: μB=9.27×10-24A.m2. All atomic magnetic 
moments are equivalent to a few elementary magnetons 

(orbital and spin moments combined).
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Representation of a hypothetical microscopic Penning 

trap within a crystal lattice or molecular structure. The 

paramagnetic atoms placed at the top and bottom 

create a globally uniform magnetic ?eld around the 

center O. These atoms at the apexes of the bipyramid 

correspond to the upper and lower caps of a 

macroscopic Penning trap, and the cations at the square 

base, to the ring electrode. 
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a -  Show that this atomic structure is not a monopole, nor 
an electric dipole.

b -  Evaluate the magnetic ,eld B0 created at the center 

of the bipyramid. You can use the expressions on page 

491.

 

c -  Estimate the factor U0 /r0

2
.

You can consider the Oz axis to identify the expressions.

 

d -  Is the magnetic ,eld suCcient to trap an antiproton? 

Conclusions. 

 Answers p507.

 X. Corrections
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Answers

2. One-way ticket for Sirius with an old β6
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festival, you have to wait for the one of 2178. 

It's a triple triangle of 3-4-5.

1. 3. Parcel delivery  (Exercise p26)
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1. 5. Cruel dilemma?   (Exercise p27)

If Denys stays at home, in the galactic center, he will die 

in 3053, therefore impossible to attend the festival. 

Moreover, if he does not defuse the bomb, it will explode 

in 3052 and due to the propagation of gamma rays the 

center of the galaxy will be destroyed 26 years later in 

3078, so no party either... 

On the other hand, 

if Denys travels with 

a dilation of two, for 

32 years of life in the 

ship, it takes 64 

years of galactic 

time. 

Let us consider that 

Denys goes to disarm the bomb, his relative time AB is 

twice the proper time AO, and BO is 26 ly. 

Construction: we draw a vertical line, we ,x a point A, we 

draw a circle of arbitrary radius, for example 5 cm. One 

obtains a point O, one draws a perpendicular straight line 

on it. A second circle with a double radius of 10 cm is 

drawn. Measure the distance BO  8.7 cm. ≃

The proper time is therefore: 

 5 / 8.7 x 26  15 years. ≃

And 30 years for the relative time. 

Denys arrives in time to defuse the 

bomb, in 3051. Then he is back at 

the galactic center 60 years later in 3081, one year before 

the festival. And he is not dead yet because he has only 

aged 30 years, he will die in 3083 and will therefore be 

able to attend the party in 3082! 
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1. 6. Muons   (Exercise p28)

A muon at rest disintegrates in 1.5 Xs, so the half-life is a 

proper time. We can name R the proper frame related to 

the muon. 

The terrestrial reference frame named R' is in rectilinear 

and uniform translation with respect to R, at the speed 

v = 0.999 c. Over the short duration of the experiment R' is 

a very good inertial reference frame, and R, therefore, 

also. The relative decay time of the muon is: 

 Δt '=γ Δt    and    γ=1/√1−β2

then,  here,   γ=1/√1−0.999
2≃22.4

The half-life time in the terrestrial frame is 22 times longer 

than in its proper frame. 

The distance traveled by the muon in the terrestrial frame 

during its relative half-life time is:

d=v Δt '=β cγ t1/2≃10km

About half of these muons reach ground level, the other 

half will have disintegrated, before, in altitude. 

In the context of classical mechanics, or if we forget to 

take into account time dilation, the muons would have 

1.5 Xs instead of 33.5 Xs to reach the ground. Thus, after 

450 meters, half of them would have already disinte-

grated. After 900 m only a quarter would still be there, 

and on the ground, after 10 km, one out of 222 would 

have survived . Finally, such a muon would have only one 

chance out of four million to reach the ground, which is 

very di5erent from one chance out of two! 

Muons were discovered in 1936. The measurement of the 

muon Sux as a function of altitude made it possible to 

verify the validity of special relativity. 
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1. 7.  High-speed train journey   (Exercise p29)

The average speed of the train is:

 v=d /t=2300 /8=287.5 km/h≃79.86 m / s

This speed is tiny compared to the speed of light, gamma 

is very close to one, and a calculation of γ with a 
standard calculator will give you 1, as if there was no time 

dilation. However, as we will see, this dilation is very easy 

to measure with atomic clocks. 

For low speeds, compared to the maximum speed, it is 

more convenient and meaningful to use series 

expansions:

Δt '=γ Δt=(1−β2)−1/2
Δt≃(1+β2/2)Δt

The di5erence of time between the clock that stayed in 

Beijing and the one that traveled 4600 km is:

Δt '−Δt≃(1+β2 /2)Δt−Δt=β2/2 Δt=
v

2

2c
2 Δt

Hence the di5erence for the 16 hours round trip: 

Δt '−Δt≃
79.86

2

2 (3.10
8)2 16×60×60≃2.04ns

The clock that stayed in the station is two nanoseconds 

ahead of the one that traveled.

Let's check if our clocks are accurate enough: A clock 

drift of 10 -14 seconds per second, gives, for a trip of 57600 

seconds, a global drift of 0.6 ns. The uncertainty is small 

compared to the measured di5erence: the time dilation is 

con,rmed.
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1. 8. Satellite    (Exercise p29)

We add proper times on a revolution. We calculate the 

duration of a tour:

Δt=
2π R

v
=

2π×6900.10
3×3.6

27000
≃5781s≃1hour36 minutes

 

This leads to the following time di5erence between the 

two clocks (same formulas as in the previous exercise):

Δt '−Δt≃
v

2

2c
2 Δt≃

(27000/3.6)2

2×9.10
16 5781≃1.8μ s

The clock in the satellite is 1.8 Js younger than the one 

that remained stationary in the geocentric frame of 

reference. 

We can achieve a Taylor series expansion, because the 

satellite speed is very small in comparison with the speed 

limit (one forty thousandth of c).

1. 9. Hafele-Keating experiment  (Exercise p30)

Two sources of time dilatation are present here: speed 

and gravitation. In an airplane, speed increases and 

gravitation decreases. The two e5ects act in opposite 

directions. The clock hypothesis is generalized and the 

time ∆t' spent in the plane, reference frame R', compared 

to that ∆t for a stationary clock in the geocentric 

reference frame R, is written as follows:

Δt '≃(1+ gh

c
2 −

v
2

2c
2 )Δt   and   Δt '−Δt≃(gh−

v
2

2 ) Δt

c
2
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Towards the east, the speeds are added and we have 

the following time di5erence:

Δt '−Δt≃(9.81×10000−
(2674 /3.6)2

2 ) 40×3600

9.10
16 ≃−284 ns

To the west, the speeds subtract and we have the time 

di5erence:

Δt '−Δt≃(9.81×10000−
(674/3.6)2

2 ) 40×3600

9.10
16 ≃129 ns

Furthermore, the di5erence between the clock on the 

ground, terrestrial reference frame R'', and the stationary 

one in the geocentric reference frame R, is:

Δt−Δt ' '≃
(1674 /3.6)2

2

40×3600

9.10
16 ≃173 ns

We add the two equations:

To the east: Δt '−Δt ' '≃173−284≃−111ns.

The clock on the ground advances 111 ns.

To the west: Δt '−Δt ' '≃173+129≃302 ns.

The clock on the ground retards by 302 ns.

Our results obtained with our simple model are consistent 

with those of the 1971 experiment. 

It is normal that the results di5er, the actual Sights, with 

multiple stopovers, were only globally equatorial, the 

speeds and altitudes had di5erent average values than 

those chosen in the exercise.

343



.1.                                                   Exercise p45.

" The Crystals of the Pop exomoon "

344
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" A spacious and comfortable ship to go to the two suns 

festival "
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" Denys will die in 

exactly 32 years, and there is no cure... "

2.2.  Interstellar communications           Exercise p45.

Let us reason from the galactic frame of reference, at the 

moment when the traveling twin lands on the exoplanet, 

5 years have elapsed since the departure for the twin on 

Earth, the light ray then takes 4 more years to reach the 

Earth - the speed of light in vacuum is independent of the 

inertial frame of reference - and the photo is received 9 

years after the departure and only 1 year before the 

return!
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Although the landing and 

,ve years indicated on the 

Earth's clock are simulta-

neous events in  the 

galactic frame of refe-

rence, the information is 

propagating at ,nite speed 

and it is necessary to wait 

for the images to arrive. 

And here also 4 years of 

propagation, in his tele-

scope, so the twin will see 

his brother landing and 

receive the picture at the 

same time, 9 years after the 

departure. 

Now, if the twin on Earth 

looks through his telescope 

at the date t=5, he will see 

photons emitted earlier, he 

will not see his brother 

landing on Proxima b at all 

(even if that's what he 

actually does at that time), 

he will see him in his ship on 

his way to Proxima, 1 year 

and 8 months before his 

arrival in terra incognita. 

This result is given by the calculation of the point of 

intersection of the two straight lines:

 worldline of the ship:  t=
1
β

x

c

 worldline of the photon :  t=−
x

c
+t P  with   t P

=5
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Then for the intersection point I : t I=
t

P

1+β
  and  τI=

t I

γ=
5

3

In order for a message to be received from Earth at the 

time of landing, it must be sent in advance, only one year 

after departure.

2.3.  Call for help                                  Exercise p46.

Notations :

Cruise ship speed relative to 

c: β1
=0.5

Emergency shuttle speed: 
β2=0.9

Worldlines :

Vessel:  c t=−
1
β1

(x−D)

Messenger photons:

 c t=−x+
D

2β1

+
D

2

Shuttle:  c t=
1
β2

x+
D

2β1

+
D

2

Coordinates of point S :

−
1
β1

xS+
D
β1

=
1
β2

xS+
D

2β1

+
D

2
    then    xS=

β2(1−β1)
β1+β2

D

2

and   c tS−ct A=[− 1

β1

β2 (1−β1)
β1+β2

D

2
+

D

β1
]−[ D

2β1
]

so   cΔ t AS=
D

2

1+β
2

β1+β2

   and   τAS=
Δ t AS

γ1
=

D

2c

1+β2

β1+β2
√1−β1

2

Numerical application:  τAS
≃2.35 yrs

Passengers have to wait two years and four months 

before help arrives!
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2.4.   Tim, Tam, Tom                               Exercise p46.

Notations :

Speed relative to c of Tim :     β1=
v1

c
=

10

20
=0. 5

Speed of Tam :         β2=
v2

c
=

15

20
=0.75

For Tom, we apply the time dilation factor γ1≃1.1547 

and τ1=
Δ t
γ1

≃51.96 min then an arrival at 10:52 to his 

watch.

For Tam by bike 
γ2≃1.5119.

To go, 
Δ t=Δ x /β2≃13.3min and 

τ2=
Δ t
γ2

≃8.82 min

then an arrival at 10:51

to his watch.
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.1.   Composition of velocities               Exercise p71.

a -  80% of c. b -  50% of c. 

2.  Two vessels                                      Exercise p71.

a -  In practice we do not know the position of an 

object continuously but at regular intervals. We 

estimate the velocities and accelerations of a point 

by using average values with the help of neigh-

bouring points. For example, on an air-cushion table, 

with a video, or a radar, we have such measure-

ments.

Average velocity between two points Mn and Mn+1 of 

a trajectory:

 ⃗vn n+1≃
M⃗ n M n+1

t n+1−t n

≃
O⃗Mn+1−O⃗Mn

Δ t n n+1

.

Estimated velocity at the intermediate date:

 t n n+1=
t n+ 1+t n

2
.

- Between t1 and t2 : 

t12=(t 2+t 1) /2=2  and  Δ t 12=t2−t1=4

v⃗ A 12≃(x A 2−x A1 , y A 2− y A1 , z A 2−zA 1)/ Δt 12

then:  ⃗v A1 2≃(1 /2 , 0 ,0)  and  v A 12≃1/2

so  βA 12≃1/2  and  γA 12≃2/√3.

The velocities are not expressed here in the 

international system in m/s, but in their natural units 

in ly/yr, i.e. as a percentage of c.

351

3



v⃗B12≃(4−2 ,2,2)/4    then   ⃗vB 12≃(1/2,1/2 ,1/2).

v=‖v⃗‖=√v x

2+v y

2+vz

2   and   v B 12≃√3 /2

so   βB12≃√3/2≃0.866    and   γB 12≃2.

- Between t2 and t3 :

t23=6,  Δ t 23=4   and  ⃗v A23= v⃗ A12

v⃗B23≃(1/4 ,1/ 4 ,1/4)   then  v B23≃√3/4

so   βB 23≃√3/4≃43%   and   γB23≃√16 /13≃1.11.

b -  

Average acceleration

between the instants tn n+1 and tn+1 n+2 :

a⃗≃
Δ v⃗

Δ t
   and   ⃗an n+2≃

v⃗ n+1 n+2− v⃗n n+1

t n+1 n+2−t n n+1

.

Estimated acceleration at the intermediate date:

 t int=
t n+1 n+2+t n n+1

2
,  moreover  Δ t=t n+1 n+2−tn n+1.

- Between t1 and t3 for A :  ⃗a A≃ 0⃗.

- Between t1 and t3 for B : t int=4   and  Δ t=4,

a⃗B≃(1/4−1 /2 ,−1/4 ,−1/4) /4

so  ⃗a=a⃗B≃(−1/16 ,−1 /16 ,−1/16) (deceleration)

a=aB≃√3/16≃0.108 ly / yr
2

c -  Any reference frame in translation, rectilinear 

and uniform with respect to a reference frame of 

inertia is also of inertia. The reference solid of the 
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vessel has a translational, rectilinear and uniform 

motion with respect to the frame of reference R (the 

velocity vector of point A is considered constant in 

R). As R is inertial R' is also inertial. 

Given the three events at our disposal, the trajectory 

of the vessel B in R can be rectilinear (the three 

positions provided are aligned). 

Let us now determine the coordinates of the events 

of B in R' using the Lorentz transformation: 

{
x ' B/c=γ(xB/c−βt )

y 'B= y B

z 'B=zB

t '=γ(t−β x B/c)

  For t1=0 :  {
x ' B=

2

√3
(2−0)

y ' B=2

z 'B=2

t '1=
2

√3
(0−

1

2
2)

Then: ER ' ,B , 1(x ' B=
4

√3
, y 'B=2 , z ' B=2 , t ' 1=−

2

√3
)

For t2=4 :  {
x 'B=

2

√3
(4−

1

2
4)

y ' B=4

z 'B=4

t ' 2=
2

√3
(4−

1

2
4)

Then: ER ' ,B , 2(x ' B=
4

√3
, y 'B=4 , z 'B=4 , t ' 2=

4

√3
)
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For t3=8 :  {
x ' B=

2

√3
(5−

1

2
8)

y ' B=5

z 'B=5

t ' 3=
2

√3
(8−

1

2
5)

Then: ER ' ,B , 3(x 'B=
2

√3
, y ' B=5 , z ' B=5 ,t ' 3=

11

√3
)

Two remarks concerning the worldline of vessel B 

interpreted from  R': on the one hand the three 

events are no longer separated by equal time 

intervals as they are from R. and on the other hand, 

the spatial part projected in R' corresponds to non-

aligned points, contrary to R.

d -     ⃗v ' B12≃(x 'B 2−x ' B1 , y 'B 2− y ' B1, z ' B 2−z B 1)/Δ t ' 12

v⃗ 'B 1 2≃(0 , 2 , 2)√3/6  and  ⃗v ' B12≃(0 ,√3/3 ,√3 /3)

at t '12=(t ' 1+ t '2)/2=1/√3  with  β ' B12≃√2/3≃0.816

v⃗ ' B23≃(−2/√3 ,1 ,1)√3/7  so  ⃗v 'B 23≃(−
2

7
,
√3

7
,
√3

7
)

at   t ' 23=
15

2√3
   with  β ' B23≃

√10

7
≃0.452

e -   ⃗a '=a⃗ ' B≃(−2 /7 ,−4√3 /21,−4 √3 /21)2√3/13

then  ⃗a '≃(−4 √3 /91 ,−8 /91,−8/91)

and  a '=a ' B≃4√11/91≃0.1458 ly / yr
2
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at    t '123=
t ' 12+t ' 23

2
=

17

4√3

f -  We can reason in R or R'. Let us observe the 

proper frame RB of vessel B from the reference frame 

R, and let us consider the inertial reference frame R'' 

which coincide at t=4 yrs with RB. We show on page 

113 that the acceleration of B measured in R'' is 

equal to the one felt by the passengers in the 

reference frame of the vessel B. And the relation 

between the accelerations of a point measured 

from two inertial frames of reference R'' and R is 

given by the law of transformation of accelerations. 

We choose a new abscissa axis for R according to 

the rectilinear trajectory of B. The velocity of R'' with 

respect to R is approximately:

v⃗B1 2≃(4−2 ,2, 2)/4    and   u=vB2≃3√3 /8

so  β=βB2≃3√3/8,   γ=γB2≃1.32

and  aproper=a ' '=γ3
a≃2.275aB≃0.246 ly / yr

2
.

g -     1 yr = 365.25x24x3600 = 31,557,600 s

          1 ly = 3×108x 31,557,600 = 9.46728×1015 m

            Then:   1
ly

yr
2
≃ 9.51

m

s
2

            and  aproper≃2.34 m / s2 ≃ 24 % of g

Comparisons:

17% on the Moon's surface and 38% for Mars.
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3.  Low speeds limit               Exercise p72.

The law of composition gives on a standard 

calculator 180 km/h because the di5erence is 

extremely small. We will therefore perform a Taylor 

series expansion: 

vrelativist=
vclassical

1+
v 1 v2

c
2

=v clas(1+ v
2

c
2 )

−1

≃vclas(1−
v

2

c
2 )

Δ v=vclas−vrel≃2
v

3

c
2   and   

Δ v

v c

≃
v

2

c
2=β2

Numerical applications: 

Δ v≃347.10
−15

m/ s≃0.35 pm /s   and   
Δ v

v c

≃6.9×10
−15
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.1.  The suicidal physicist              Exercise p95.

λRed=√ 1+β
1−β

λGreen    then   β=
λR

2−λG

2

λR

2+λG

2

32% of c also 350 millions of km/h.

2.  Laser sail                                            Exercise p95.

a - The force is expressed as the variation of the 

momentum per time interval:

 F=Δp/Δt.

Energy of a photon: e=pc.

Variation of momentum per reSected photon: 

Δp=2e/c (e/c at incidence and e/c at reSexion).

Number of photons received during Δt : ΔN=ΦΔt/e.

Φ(J/s) : Sux / power / luminous energy received per 

second on the sail.

Force: F=2Φ/c.

Radiation pressure: P=F/S=2Φ/Sc.

b - Due to the Doppler e5ect, in the reference 

frame of the sail moving away from the laser 

sources, the photons are less energetic and less 

numerous, the apparent power is reduced by a 

Doppler factor squared: Φa=
1−β
1+β

Φ.

Same factor for force and pressure.

c -  Here β=0.2 and 
Pa

P
=

2

3
.

The force is reduced by one third.
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3. Optical molasses                        Exercise p96.

a - When the atom is stationary, the radiation 

pressures produced by the two lasers, and thus the F 

forces exerted on the cross section on the two oppo-

site sides of the atom, balance each other. 

When an atom moves towards a laser, the radiation 

pressure increases by the Doppler factor squared 

and decreases by the same factor in the opposite 

direction: 

 
Fresultant=( 1+β

1−β
−

1−β
1+β )F=

4β

1−β2
F

.

The resulting force is in the opposite direction of the 

velocity, so it is indeed a force that slows the atom.

b - For v«c so β«1 : 1−β2≃1  and  Fr=
4 v

c
F

Or in vectorial form: ⃗Fr=−
4 F

c
v⃗

c - At rest, the atom does not interact with the 

laser because its absorption line is above that of the 

laser. The atom therefore remains con,ned.

When the atom possesses kinetic energy and moves 

towards a laser, it sees in its own referential the laser 

frequency increased by Doppler. When this 

frequency corresponds to its resonance frequency, 

the atom absorbs a photon. The momentum is 

conserved and therefore the atom slows. A photon is 

re-emitted after a duration of the order of the 

lifetime of the energy level of the atom in a random 

direction. The emitted photon has a higher energy 
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than the absorbed one, hence the decrease of the 

atom's kinetic energy. 

A + γ → A
* → A + γ

d - e=
3

2
k B T≃Δ E⩾

ℏ
2 τ
  and  T min≃

ℏ
3 k B τ

N.A.: τ=27ns,  ℏ=h /2π   and  T min≃0.1mK .

We ,nd the right experimental order of magnitude.

e - e=
3

2
k B T=

1

2
m v

2
 where v is the root mean 

square velocity. Thus  v=√ 3 k BT

m
=√ ℏ

τ m
.

N.A. : MRb=87×10
-3kg/mol, m=M/NA, v≃16 cm/s.

4.  Detection of exoplanets             Exercise p98.

a - T
2=

4 π2
a

3

G(m1+m2)

with  m2=m,  m1=k m,  k=10≥1  and  a=R.

 dGP=d=RPlanet=
m1

m1+m2

a and RStar=
m2

m1+m2

a=
m2

m1

d

v Star=
2π RS

T
=

2πm2 d

2πm1 √G(m1+m2)m1
3

d
3(m1+m2)

3
=

1

1+k √G m1

d

N.A.:  v Star≃1.3 km /s≪c  

Precision already accessible by Doppler in the 50s.

b - When the star gets closer:  λ '=√ 1−β
1+β

λ
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For β small:  λ '=(1−β)1 /2(1+β)(−1/2)λ≃(1−β)λ

And when the star moves away:  λ '≃(1+β)λ

c -  λmax=(1+β)λ  and, after T/2,  λmin=(1−β)λ, then

Δ λ=λmax−λmin=2
v

c
λ   and   Δλ

λ
=2

v

c

N.A.:  Δλ
λ ≃8.7×10

−6
 

5.  Calculations for the moving ruler     Exercise p100.
 

a - 

b -  ⃗MC=(x , y−D ,c tC−c t )

To ensure collinearity we make a cross product:

M⃗C∧ u⃗= 0⃗   gives   {y−D−bc (tC−t )=0 (1)
a c (tC−t)−x=0 (2)
bx−a y+a D=0 (3)

We now introduce the constraints of the end 

worldlines.

For E1 :

360

{
E1: c t=

1
β (x+

L

2 γ )
E2: c t=

1
β (x−

L

2γ )
y=0



(3) :  bx1=−a D,   b=
±1

√1+( x1

D )
2
  and  a=

±1

√1+( D

x1
)

2

(2) :  −x1+a
1
β (x1+

L

2 γ )−a c t=0

then by substituting a : 

(1−β2) x
1

2−2β (ct−L/2 γβ ) x
1
+β2 [(c t−L/2γβ)2−D

2]=0

Quadratic equation for x1, same approach for x2, 

then :

La=γ L+γβ[√(γβc t−
L

2 )
2

+D
2−√(γβc t+

L

2 )
2

+D
2]

We retrieve the long-distance limits:

lim
t→±∞

La=γ L(1∓β)

6. Velocity transformation         Exercise p101.

and the aberration of light

a - According the Lorentz transformation:

x '=γ(x−βc t),   y '= y,   z '=z   and   c t '=γ(c t−β x)

hence for in,nitesimal variations:

 dx '=γ(dx−β c dt),   d y '=d y ,   d z '=d z

and  c dt '=γ(cdt−βdx)

with  β=
u

c
  and  γ=

1

√1−(uc )
2
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And by dividing the two equations:

dx '

c dt '
=

dx−β cdt

c dt−βdx
,    

v x '

c
=

vx

c
−β

1−β
vx

c

    and    vx '=
vx−u

1−
uv x

c
2

dy '

cdt '
=

dy

γ(c dt−βdx )
    from where    v y '=

v y

γ (1−uv x

c
2 )
 

and likewise:   v z '=
vz

γ(1−
uvx

c
2 )
 

u is the velocity of R' with respect to R.

b -  ⃗v=(−ccosθ ,−c sinθ ,0)

c - v⃗ '=(−
ccos θ+u

1+
ucos θ

c

, −
c sinθ

γ(1+
ucosθ

c
)

, 0)
 ⃗v '⋅⃗v '=

(c cosθ+u)2+c
2
sin

2θ(1−β2)

(1+
ucosθ

c
)

2
=...=c

2.

d - tanθa=
v y '

vx '
=

c sinθ
γ(ccosθ+u)

=
sinθ

γ(cosθ+β)
.

7.     Composition of velocities

      and accelerations. 3D generalization    Ex. p101.

a - v⃗=(0,v2, 0)  and   ⃗u=β⃗ c=(v1, 0,0).
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now   ⃗v '=(
v x−u

1−
u vx

c
2

,
v y

γ(1−
uvx

c
2 )

,
vz

γ(1−u v x

c
2 ) )

then   ⃗v '=(−v1,
v2

γ ,0)   and   β '=√β1

2+β2

2−β1

2β2

2

NA :  v '≃66% of c

b - v⃗=(v2 cosθ , v2 sinθ ,0)

gives   ⃗v '=( v2cosθ−v1

1−β1β2 cosθ
,
v2 sinθ√1−β1

2

1−β1β2 cosθ
,0)

and   β '=
√(β2 cosθ−β1)

2+β2

2
sin

2θ(1−β1

2)

1−β1β2 cosθ

eventually  β '=
√β1

2+β2

2−2β1β2 cosθ−β1

2β2

2
sin

2θ

1−β1β2cosθ

NA : β1=β2=√3 /2  and  θ=30°   then  v '≃70% of c.

c -1 -  

First method:

We apply the formula of the previous question. We 

are going to determine the angle θ=(̂ v⃗1, v⃗2). ⃗v1 is 

along the edge of a cube and ⃗v2 is along the 

space diagonal, so we reason in a right triangle with 

sides 1, √2 and √3, then cosθ=1/√3, sinθ=√2 /3  and 
θ≃54.7 °. Withc β1=1/2 and β2=√3/2, we ,nd the 

same result:

at t12 : β '=√1 /4+3 /4−2√3 /4×1/√3−3 /16×2/3
1−√3/4×1 /√3

=√ 2

3
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at t23 : same calculation with β2=√3/4

 β '=√1 /4+3 /16−2√3/8×1 /√3−3/64×2/3

1−√3/8×1 /√3
=√10

7

Second method:

We calculate the three components of the velocity 

with the general transformation of the velocities from 

R in R' with β=1/2 and γ=2/√3 :

For t12 :   ⃗v=(v x , v y , v z)=(1 /2,1 /2,1 /2) 

v⃗ '=( 1/2−1/2
1−1/4

,
√3×1/2
2 (3 /4 )

,
√3×1/2
2 (3 /4 ) )=(0,

1

√3
,

1

√3 )
and  v '=√ 2

3

For t23 :   ⃗v=(1/4,1/4,1 /4) 

v⃗ '=( 1/ 4−1/2
1−1 /8

,
√3×1/4
2 (7/8 )

,
√3×1/4
2 (7/8 ) )=(−2

7
,
√3

7,

√3

7 )
and  v '=√10

7

c -2 -  

Transformation of accelerations:

   a y=
d v y

d t
    and    a y ' '=

d v y' '

d t '

a y ' '=
d v y' '

d t

d t

d t '
=

a y (1−uv x

c
2 )+v y

u

c
2

ax

(1−u vx

c
2 )

2

1

γ(1−u vx

c
2 )

eventually:
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a⃗ '={
ax

γ3(1−uv x

c
2 )

3

1

γ2(1−u vx

c
2 )

2 (a y+

uv y

c
2

ax

(1−
uvx

c
2 ) )

1

γ2(1−u v x

c
2 )

2 (az+

uv z

c
2

ax

(1−uv x

c
2 ))

The transformation law is very di5erent from that of 

classical mechanics where, between two inertial 

frames of reference, ⃗a= a⃗a= a⃗r= a⃗ '. ⃗a ' depends here 

of ⃗a and ⃗v  (which only occurs for non-Galilean 

frames in classical mechanics).

We consider ⃗a  and ⃗v  at t=4 :

 ⃗a=(−1/16 ,−1/16 ,−1/16)   and   ⃗v=(3/8 , 3/8 ,3/8)

 β=1/2   and   γ=2/√3  

a⃗ '=(−3×8
2

13
3

√3

2
,−

3×8
2

13
3

,−
3×8

2

13
3 )

a '=
3×8

2

13
3

√11

2
≃0.145 ly / yr

2

Results, both for velocities and accelerations, in 

agreement with those found previously.
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8.  Starry sky at the halfway point           Exercise p102.

a - M=−2.5 log(5.10
−5×25

2

4
2×37 )≃11>6

We divide the emitted powers by the distance 

squared.

Proxima Centauri is not visible to the naked eye.

b - M=−2.5 log(5.10
−5×25

2

2
2×37 )≃9>6

Proxima would still not be visible to the naked eye.

c -  θa=0  and  I a=
1+β
1−β

I=39 I  with  β=0.95.

M=−2.5 log(39×5.10
−5×25

2

2
2×37 )≃5<6

Proxima is now visible to the naked eye!

d - M=−2,5 log(1×25
2

2
2×37 )≃−1,5<6

The Sun would be well visible to the naked eye 

(equivalent to the brightness of Sirius seen from 

Earth).  

e -  θa=π   and  I a=
1−β
1+β

I=
I

39
 

M=−2.5 log( 1×25
2

39×2
2×37 )≃2.4<6

The Sun is still visible to the naked eye with a 

brightness comparable to that of the star Polaris.

f - The Sun in the night sky of the exoplanet Proxima 

b would be visible to the naked eye with a 

magnitude of zero, a brightness comparable to 

Vega from Earth.
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9.   Numerical simulation of the sky      Exercise p104.

a - Uniform spherical probability law:

 We have a uniform distribution with respect to ϕ:

Ψ = U(0,360)=360 U    with     U=U(0,1)

Indeed, the in,nitesimal area elements between ϕ 

and ϕ+dϕ are all of the same size: 

 dS=∫
θ=0

θ=π

dθsinθd ϕ=2 d ϕ.

Corresponds to the area bounded by two meridians 

on the surface of a sphere. 

 We do not have a uniform distribution with respect 

to θ. The surface elements between and θ and θ+dθ 

are not all the same size:

 dS= ∫
ϕ=0

ϕ=2π

d θsinθd ϕ=2π sinθ dθ.

It is analogous to the area delimited by two latitudes 

on the surface of a sphere. The surface at the 

equator is larger than at the poles. 

We have a probability density function f(x) propor-

tional to sin(x):

f (x)=k sin(x )   and   ∫
0

π

f (x )dx=1   then   k=
1

2
.

Cumulative function: F (x)=∫
−∞

x

f (x)dx=
1−cos (x)

2
.

Inverse transformation method:  Θ=F
−1(U ).

Then:   Θ=arcos(1−2U ).

b -  We enter on a ,rst column of a spreadsheet the 

values of ϕ:

  =ALEA.ENTRE.BORNES(0;360)    (for LibreOCce)
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We enter on a second column of a spreadsheet the 

values of θ:    =ACOS(1-2*ALEA())/PI()*180

Before calculating the apparent angles, the energy 

and the number of photons received, we check, at 

the beginning of the spreadsheet, the consistency of 

the results with the theory:

 S=∫
θ

1

θ2

2π sinθ dθ=2π(cosθ1−cosθ2)

Surface S obtained for a unit sphere, then divide by 

4 π for the percentage. For example, at the North 

celestial pole between 0° and 20° of colatitude, we 

have 3% of the surface and therefore of the stars, 

whereas between 80° and 100°, therefore for the 

same amplitude of angle, we have 17%. This 

corresponds well to a uniform spherical distribution. 

On the graph the uniformity is not obvious; it is the 

same problem when we want to represent a sphere 

on a plane. For example, on a world map in 

Mercator projection, Greenland and Africa seem to 

have equivalent surfaces, whereas in fact Africa is 

14 times larger. 
File: www.voyagepourproxima.fr/docs/CielRelativiste.ods

10.  A bit of math...                               Exercise p105.

a - cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

  sin(a+b)=sin(a)cos(b)+cos(a)sin(b)

Mnemonics:

COCO MINUS SISI, SICO PLUS COSI

Quickly re-demonstrates itself by going to ℂ:
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e
i (a+b )=e

ia
e

ib=cos(a+b)+ isin(a+b)=...

So   tan(a+b)=
tan(a)+ tan(b)

1−tan (a) tan(b)
.

b - a=b=θ/2  gives  tan (θ)=
2 tan (θ/2)

1−tan
2(θ /2)

.

c - ∀ (θ ,θa) ∈ ]0,θ0[∪]θ0,π [ :

tan (θa)=
2 tan (θa/2)

1−tan
2(θa /2)

=
sinθ

γ(β+cosθ)
=

1

k

Then:  x
2+2k x−1=0  with  x=tan(θa /2)

x=−k±√k
2+1=γ

−(β+cos θ)±√(β+cosθ)2+(1−β2)sin
2θ

sinθ

x=γ
−β−cosθ±√β2+2βcosθ+cos

2θ+sin
2θ−β2

sin
2θ

sinθ

x=γ
−β−cosθ±|1+β cosθ|

sinθ
=γ

−β−cosθ+1+βcos θ
sinθ

x=γ(1−β)
1−cosθ

sinθ
=√ 1−β

1+β
tan(θ/2)    QED

11. Energy distribution                     Exercise p106.

a -  We have:  d tan(θa/2)=
d θa

cos
2θa

=√ 1−β
1+β

d θ

cos
2θ

so  d θ=√ 1+β
1−β

cos
2θ

cos
2θa

d θa

Besides:   sinθ=2sin θ
2

cos θ
2
=2

tan θ
2

1+ tan
2 θ

2

 

369



because   cos
2
θ=

1

1+ tan
2θ
   and   sin

2θ=
tan

2θ
1+ tan

2θ

dΩ=2π sin θd θ=4 π(1−β2)
tan

θa

2

(1−β+(1+β) tan
2 θa

2 )
2

d θa

cos
2θa

d Ω=2π (1−β2)
sinθa

(1−β cosθa )
2

d θa=
1−β2

(1−β cosθa )
2

d Ωa

nβ(θa)

nβ=0

=
1−β2

(1−βcos θa )
2

nβ(0)

nβ=0

=
1+β
1−β

   and   
nβ(π)

nβ=0

=
1−β
1+β

nβ=0,5 (0)=3nβ=0   and   nβ=0,5 (π)=nβ=0/3

b -               Nβ=0=∫
θ=0

π

nβ=0 d Ω=4 πnβ=0

Nβ=∫
θa=0

π

nβ(θa)dΩa=
Nβ=0

2
∫
θa=0

π
1−β2

(1−βcos θa )
2

sinθa dθa

The integral calculation gives 2, we have a constant 

number of stars.: Nβ=Nβ=0=N.

c -         E=∫
θ=0

π

nβ=0 I dΩ=4 πnβ=0 I

Ea= ∫
θa=0

π

nβ (θa) I a(θa)dΩa=
E

2
∫
θa=0

π (1−β2)2

(1−βcosθa )
4

sinθa d θa

Ea= ∫
θa=0

π

nβ (θa)I a(θa)dΩa=
γ2

3
(3+β2)E

We have well the expression of the course.

d - 
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Ea(0≤θa≤
π
2
)= ∫

θa=0

π
2

nβ I a dΩa=
(1+β)2

(1−β)
(β2−3β+3)

6
E

Ea(
π
2
<θa≤π)= ∫

θ
a
=π

2

π

nβ I a dΩa=
(1−β)2

(1+β)
(β2+3β+3)

6
E

For β=0.5, forward Ea(θ<π/2)≃1.3 E and backward 
Ea(θ>π/2)≃0.13 E. In total Ea≃1.44 E, and forward 

Ea(θ<π/2)/Ea≃90.8%.

12.   Number of photons                    Exercise p107.

a - In,nitesimal energy received from the in,nitesimal 

surface dS: dE=n I dΩ=n(θ) I (θ)2π sin θd θ.

The energy of a photon is given by the following 

relation: e=h f=h c/ λ. Hence the expression of the 

number of photons received from this surface 

element:   dN photons=dE/e.

In the vessel's reference frame:

I a

I
=

1−β2

(1−βcosθa)
2,  

νa

ν = √1−β2

1−βcosθa

,  
nβ(θa)

nβ=0

=
1−β2

(1−βcosθa )2

So:  dN photons ,a=dEa /ea=na I a dΩa /ea

dN p, a=
(1−β2)

3

2

(1−βcosθa)
3

sinθa d θa×
2πnβ=0 I λ

hc

In total:

  N p , a=Constant× ∫
θa=0

θa=π
(1−β2)

3

2

(1−βcosθa)
3

sinθa dθa=γ N p

371



The number of photons received does increase by a 

gamma factor.

b - By integrating from 0 to π/2:

N p , a(0<θa<
π
2
)=

1

2
(1+β)

2
(1−

β
2
)

For example, at 50% of c, there are, in total, 15% 

more photons received. But above all they are 

di5erently distributed: 84% of the photons come from 

the front hemisphere, for 91% of the total energy.

13. Power emitted by a star                 Exercise p108.

a -   P=∭ i(λ)d λdΩdS=∫ i(λ)d λ∫ dΩ∫dS

and   P=I×2π×4π R
2

with   I=∫ i (λ)d λ=∫
0

+∞
2 h c

2

λ5

1

e

h c

λ kB T−1

d λ

The integral I is numerically estimated at 

www.integral-calculator.com. h, Planck's constant is 

6.63×10-34 J.s. kB is Boltzman's constant, kB=R/NA, 

R=8.31 J/mol/K  (ideal gas constant) and 

NA=6.02×10
23 mol-1 (Avogadro constant).

One ,nds P≃4.34×1026 W, which corresponds to the 

expected value.

b -  Values proportional to the areas under the 

luminance curve:
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Pvisible= ∫
λ=400 nm

λ=800 nm

i(λ)d λd ΩdS≃1.80×10
26

W

P IR= ∫
λ=800 nm

+∞

i(λ)d λd ΩdS≃2.26×10
26

W 

PUV= ∫
λ=0

λ=400nm

i(λ)d λdΩ dS≃0.29×10
26

W

and   
Pvis

P
≃41%,    

P IR

P
≃52%  and  

PUV

P
≃7%.

c - For Proxima Centauri, we ,nd PP≃1.1×10
24 W, 

hence PP/PS≃0.25%, which corresponds basically to 

the value found on the wiki.
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.1. Half-time                                           Exercise p129

Using the results and notations of the lecture, we 

have for the galactic time at half-time t1/8=T/8≃1.397 

years. Hence the distance covered at Earth's half-

time: x(t1/8)≃0.74 ly. Seen from the Earth, the halfway 

distance is 2 ly and the value of the distance at the 

half-time of the halfway is less than one light-year, 

because the motion is not uniform but accelerated.

In the reference frame of the vessel we will be at a 

di5erent position, because the time of the vessel is 

each time more dilated and passes less quickly with 

the increase of the speed.

For the proper half-time: τ1/8=τ/8≃0.855 yrs.

But 
g t

c
=sh( g τ

c ) so we ,nd g t τ /8

c
 => x(τ1/8)≃0.41 ly

In classical mechanics the distances would be, of 

course, the same, because the times are identical:

x=
1

2
g t

2
,   

D

2
=

1

2
g(2t 1/8)

2
  and   x (t 1/ 8)=

D

8
=0.5 ly.

The classical calculations are, of course, false here, 

because the speed is not small in front of c, the 

speed of the rocket would even exceed the speed 

of light at the halfway point.
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5.2.   Reality show                     Exercise on page 129

a - We shown that γ=√1+
g

2
t

2

c
2 ,

then x=
c

2

g
(γ−1).

moreover with t=
c

g
sh ( g τ

c )
 we obtain γ=ch( g τ

c ).
b - 1- 2- We have:

t obs=t+
x (τ)

c

but x=
c

2

g [ch ( g τ
c )−1],

then

t obs=
c

g [sh ( g τ
c )+ch ( g τ

c )−1]
so  t obs=

c

g
(e

g τ
c −1)

and τ=
c

g
ln( g t obs

c
+1).

     3-    τ=6 months  gives

            t obs≃7.9months.

     4-     We can calculate τ's 
for tobs's for 12 months and 12 

months and one day.
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We subtract the two τ and we have the answer. 
Another more elegant method is to calculate the 

derivative of tobs with respect to τ. Indeed, the 
variations are small, one day, over the duration of 

the trip, one year. The curve can be linearized 

around the point studied.

Δ τ
Δ t obs

≃
d τ

d t obs

,   
d τ

d t obs

=
1

g t obs

c
+1

  and  
d t obs

d τ
=1+

g t obs

c

For tobs=1 year and Δtobs=1 day, we ,nd Δτ≃11h and 

41 minutes. The daily reality show on Earth will have 

to be satis,ed, one year after departure, with 

describing only half a day of life on the ship. 

For tobs=10 years, we ,nd Δτ≃2h and 5 minutes. The 

reality show will narrate 2 hours aboard the ship 

each day. If it's while the spacemen are sleeping, 

there won't be much to say!

c - 1- 2- we have:

t (τobs)=t+
x (τobs)

c
   then   t=

c

g
(1−e

−
g τ

obs

c )

and    τobs=
c

g
ln(

1

1−
g t

c )  with    t< tlim=
c

g

N.A.: t lim≃11.4 months, instant precisely reached on 

December 14, 2100 at 17h20m00s.

3- t=6 months   gives  τobs≃8.5months.
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4-   
d τobs

d t
=e

g τ
obs

c  

For τobs=1 year and Δτobs=1 day, we ,nd Δt≃8h and 22 

minutes. The daily reality show aboard the ship will 

be largely satis,ed with 8 hours of life on Earth. There 

is always plenty to talk about, at any given moment 

on the globe people are getting up, living and 

going to bed. 

For τobs=10 years, we ,nd Δt≃2.3 seconds! The reality 

show in the rocket will be limited by the event 

horizon located on December 14, 2100 at 17:20m00s 

(Earth calendar). In 2110, the ship's calendar, 10 

years after their departure, they will have images of 

the Earth on December 14, 2100, from 17h06m30s 

until 17h06m32s! And the day after, they will have 

two seconds more... 

d - Doppler e5ect   for an accelerated frame:

1-  From the inertial frame: 
d t obs

d τ
=

T Received

T Emitted

then:  f R=
f E

1+
g t obs

c

  and  λR=λE(1+
g t obs

c )

From the accelerated frame:   
d τobs

d t
=e

g τ
obs

c

then:    f R=f E e
−

g τ
obs

c
    and    λR=λE e

g τ
obs

c
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2-  
λR

λE

=2=e

gτ
obs

c    then   τobs=
c

g
ln 2=t lim ln 2.

The blue light emitted from the Earth will be 

perceived red on board the spacecraft after 7.9 

months lived by the astronauts in the ship.

3-   t obs=
c

g
ln 2   then   λR=(1+ ln 2)λ≃677 nm.

Orange-red light received on Earth.

4-  Contrary to the case of inertial reference 

frames, the Doppler e5ect in an accelerated 

reference frame is not symmetric. We ,nd an 

asymmetry in the twins experiment, also due to the 

presence of a non-inertial reference frame.

We have studied the case of the same proper times. 

We can also look at simultaneous times:

if τ=
c

g
ln 2 then t=

c

g
(1−e

− g τ
c )= c

2 g

and  λR=λ (1+ g t

c )=3

2
λ=600nm
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3. Head-to-head                                  Exercise p131

a -  By replacing in the formulas, we ,nd:

v (x )=c √1−
1

(1+ g x

c
2 )

2
,    then    

v (D /2)
c

≃95%

relative speed: βrel(D /2)=
β1+β2

1+β1β2

=
2β

1+β2
≃99.85 %

b -   
v (D / 4)

c
≃87%    and    βrel(D /4)≃99 %.

c -  Let us propose the Doppler e5ect. If each of the 

vessels continuously emits a monochromatic light 

beam of known frequency f with the help of a lamp, 

we can deduce the relative speed from the 

received frequency fr : 

f r=√ 1+βr

1−βr

f     then    βr
=
( f r

f )
2

−1

( f r

f )
2

+1

d -   v=

gt

c

√1+
g

2
t

2

c
2

  &  
g t

c
=sh ( g τ

c )  =>  v

c
=th( g τ

c )

e -  We can consider the two inertial reference 

frames that coincide at an instant t with the vessels. 

According to the law of composition of velocities:

vr

c
=

2 thξ

1+th
2ξ
    with    ξ=

g τ
c
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Experimentally, we note that the Doppler e5ect 

depends only on the instantaneous velocities of the 

transmitter and the receiver, and not on their 

accelerations. We would thus ,nd the same result in 

the proper reference frame of the vessel which is 

accelerated and not inertial.

f -     ar=
d vr

d τ
,   ar=g

d vr/c

d ξ
  &  ar=

2g

ch
4 ξ(1+th

2ξ)2

At the start: τ=0, ξ=0, chξ=1, thξ=0 and ar=2g.
At the quarter:  ξ=gτ /c≃0.90 and ar=0.208g.
At the halfway point:  ξ=gτ /c≃1.80 and ar=6×10-3g.
The acceleration varies with the proper time: the 

relative motion of the vessels is not uniformly 

accelerated.

In Newtonian mechanics: 

x1=
1

2
g t

2
,   a2=−g,   v2=−g t    &   x2=−

1

2
g t

2
+D.

=>   xr=x2−x1=D−gt
2
,   vr=−2g t    &   ar=−2g.

In this case the relative motion is also uniformly 

accelerated with a double acceleration. We well 

,nd this result in the classical limit ξ=0.
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        .1. Euclidean metric                         Exercise p159

•  Translation:  {x '=x+a

y '= y+b

z '=z+b

     dx '=dx+0  ...  d l '=d l.

•  Rotation: case of rotation in the plane (Oxy)

By projections:  {
i⃗=cosθ i⃗ '−sinθ j⃗ '

j⃗=sinθ i⃗ '+cos θ j⃗ '

k⃗= k⃗ '

r⃗=x i⃗ + y j⃗= r⃗ '=x ' i⃗ '+ y ' j⃗ '    

r⃗=x ' i⃗ '+ y ' j⃗ '=(xcosθ+ y sinθ) i⃗ '+(−x sinθ+ y cosθ) j⃗ '

 { x '= xcosθ+ ysinθ

y '=−x sinθ+ y cosθ

z '=z

d l '
2=dx '

2+dy '
2+dz '

2
=

(dx cosθ+dysinθ)2+(−dx sinθ+dycosθ)2+dz
2

d l '
2=(cos

2θ+sin
2θ)(dx

2+dy
2)

+(2cosθsinθ−2cosθsin θ)dx dy+dz
2

d l '=d l

•  Galilean transformation:   {
x '=x−v t

y '= y

z '=z
 

The measurement of the position of both ends of a ruler is 

done at the same time, and the term vt is therefore 

constant :

Δ x '=(x2−vt )−( x1−vt)=Δ x

then    d l '=d l
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2.   Rapidity                                            Exercise p159

1 - With   γ=chϕ⩾1   and   −βγ=shϕ,
we well have ch

2ϕ−sh
2ϕ=γ2(1−β2)=1  &  ϕ=argchγ.

We can verify the invariance of the interval:

ds '
2=c

2
dt '

2−dx '
2−dy '

2−dz '
2

=c
2
dt

2
ch

2ϕ+2cdt dx chϕ shϕ+dx
2
sh

2ϕ

-c
2
dt

2
sh

2ϕ−2c dt dx chϕ shϕ−dx
2
ch

2ϕ−dy
2−dz

2=ds
2

2 -     {ct '=ct chϕ1+x shϕ1

x '=ct shϕ1+x chϕ1

     {ct ' '=ct ' chϕ2+x ' shϕ2

x ' '=ct ' shϕ2+x ' chϕ2

ct ' '=(ct chϕ1+ x shϕ1)chϕ2+(ct shϕ1+x chϕ1)shϕ2

=ct (chϕ
1
chϕ

2
+shϕ

1
shϕ

2
)+x (chϕ

1
shϕ

2
+shϕ

1
chϕ

2
)

=ct ch(ϕ1+ϕ2)+x sh(ϕ1+ϕ2)

x ' '=ct sh(ϕ1+ϕ2)+x ch(ϕ1+ϕ2)     then    ϕ=ϕ1+ϕ2

The rapidity, like the covariant velocity, has the 

advantage of varying from -∞ to +∞. The artifact of the 
limit speed disappears. Moreover, the rapidity is additive, 

unlike the covariant and classical velocities which have 

more complex composition laws in relativity.

3.  Rindler metric                                          Exercise p159

1 - We have invariance by rotation in the (y,z) plane. 

We do not have invariance by rotation in the (r,y) and (r,z) 

planes. For example:

{r '= r cosθ+ y sinθ
y '=−r sinθ+ y cosθ

 &   d s '
2=(r cosθ+ ysinθ)2 d τ2−dr

2−dy
2−dz

2≠ds
2

Lorentz transformation: {τ '=τchϕ+r shϕ
r '=τ shϕ+r chϕ

  ...  d s '
2≠ds

2

Therefore, the reference frame is not inertial.

2 - For the uniformly accelerated reference frame:
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d s
2=(1+ g x

c
2 )

2

c
2
dt

2−dx
2−dy

2−dz
2

It is enough to set r=c
2/g+x  and τ=gt /c. This change of 

origin and units allows us to ,nd the Rindler metric. This 

metric corresponds to a uniformly accelerated frame of 

reference.

3 - ds
2=c

2
dt

2−dx
2=(dr sh τ+r ch τ d τ)2−(dr ch τ+r sh τd τ)2

  =dr
2
sh

2τ+2r shτ ch τdr d τ+r
2
ch

2 τ d τ2

−dr
2
ch

2 τ−2 r sh τ ch τ dr d τ−r
2
sh

2 τ d τ2

  =r
2
d τ2−dr

2
   This was to be demonstrated.

Then:

{ct '=( x+
c

2

g )sh (g t

c )
x '=( x+

c
2

g )ch ( gt

c )−c
2

g

We have simply replaced and changed the origin for x' in 

order to resume the chosen initial conditions (invariance 

by translation). Thus for the coordinate lines of x, we have 

a grid of hyperbolas centered on (-c2/g, 0):

(x '+c
2

g )
2

−c
2
t '

2=(x+c
2

g )
2

The coordinate lines of t are straight lines that pass 

through the center of the hyperbola:

ct '=th ( gt

c )(x '+
c

2

g )
It follows that the coordinate lines of x are orthogonal to 

those of t.
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4. Free fall in the rocket                             Exercise p160

1 - Let's imagine that we can use a superpower that 

allows us to reach a speed very close to the speed limit 

very quickly. To win, we can reach a level as high as we 

want almost instantly and return just as fast. For example, 

a level where the time runs twice as fast, and we would 

come back with 2 min displayed on our clock. Except 

that it is not possible to come back in time, indeed, from 
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the point of view of the clock at rest, even if you go at the 

speed limit, one second passes every 300,000 km traveled 

and you will not be able to rise more than 9 million km in 

one minute, and the place where the clocks turn twice as 

fast is nearly one light-year away! 

Two opposite e5ects are at work here, a static e5ect that 

makes time go faster as you get higher, and, a dynamic 

e5ect that, on the contrary, slows down the clock as you 

gain speed.

To win, you must ,nd a compromise between elevation 

and velocity in order to maximize your proper time. A free 

particle has the maximum proper time. For your clock to 

be free, it must be in weightlessness and therefore in free 

fall. The winner will not even need to accompany his 

clock, he just needs to throw it upwards with the right 

speed so that it falls back down after one minute. 

The same goes for the variant with a bell curve. In this 

case, there are two ,xed clocks at the same level and 

previously synchronized (possible here, because same x). 

2-a For the path of maximum proper time:

 ∫( ∂L

∂ x
δ x+ ∂L

∂ v
δ v)dt=0

Link between δx and δv :

v C'=
d xC '

dt
=

d x C

dt
+

d δ x

dt
=vC+δ v    and   δv=

d

dt
δ x

Follow an integration by parts:

∫( ∂L

∂ x
δ x+

∂L

∂ v

d

dt
δx)dt=∫( ∂L

∂ x
−

d

dt

∂L

∂ v )δ x dt+[ ∂L

∂ v
δx ]

E f

Ei

The ends of the path are ,xed: δ x
Ei

=0  and δ x
Ef

=0.
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=>   ∫( ∂L

∂ x
− d

dt

∂ L

∂ v )δ x dt=0

This relationship must be true for all δx tested around the 

extremal path, hence:

Lagrange's equation :       
∂L

∂ x
−

d

dt

∂L

∂ v
=0

∂ L

∂ x
=

1

2 L

∂ g

∂ x
=

g '

2 L
  with  g '=

2a

c
2 (1+ a x

c
2 )  &  ∂ L

∂ v
=−

v

c
2
L

d

dt

∂ L

∂ v
=−

dv /dt

c
2
L

+
v

c
2
L

2

d L

dt

d L=∂L

∂ x
d x+∂ L

∂ v
d v
    

d L

dt
=
∂ L

∂ x
v+

∂ L

∂ v
v̇

d

dt

∂ L

∂ v
=−

v̇

c
2
L
+

v

c
2
L

2 ( g ' v

2 L
−

v v̇

c
2
L )=−

v̇

c
2
L (1+

v
2

c
2
L

2 )+ g ' v
2

2c
2
L

3

v̇

c
2 (c

2
L

2+v
2)=

g '

2
(v2−c

2
L

2)

Di5erential equation of motion: 
v̇

c
2
=

g '

g ( v
2

c
2
−

g

2 )
For a Minkowskian metric we ,nd the rectilinear motion:

 g=1 ,    g '=0    and   ̇v= ẍ=0.

For x small in front of a light-year:

g (0)=1,    g ' (0)=
2a

c
2
,    

v

c
≪1    and   ̇v=−a

We ,nd the Newtonian equation of uniformly accelerated 

motion. After a few months the trajectory will signi,cantly 

di5er from this parabolic trajectory.
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This free fall equation corresponds to the trajectory that 

makes the proper time maximum. So to win, it's very 

simple, just throw your clock upwards (the front of the 

ship) so that it falls back 60 seconds later. The diCculty is 

to measure the initial speed for a return at the right time. 

The throw is vertical or according to a bell curve for the 

variant of the game.

Numerical resolution: The duration of the experiment is 

short compared to tH=c/a, so we can use the classical 

parabolic curve and make series expansions:

ẍ=−g,  ̇x=−g t+v
0 ,  x=−

1

2
g t

2+v0 t,  v0=g
Δ t

2
 & h=

v 0

2

2 g

τ=∫√(1+ g x

c
2 )

2

− v
2

c
2

dt≃∫√1+ 2g x

c
2
−
(v 0−gt )2

c
2

dt

τ≃∫√1+ 2gt

c
2 (v0

−1

2
g t)−(v0

2−2 v0 gt+g
2
t

2)

c
2

dt   ...

τ−Δ t≃
1

c
2 ∫

t=0

t=Δ t

(2v 0 g t−g
2
t

2−
v

0

2

2 )dt   ...

after calculation:     τ−Δ t≃
g

2Δ t
3

24 c
2

To win: v0=300 m/s, h=4500 m and your clock will be 10 

picoseconds ahead. Well done, you can't do better!

In the frame of reference of the vessel the trajectory is 

curved, while in the galactic frame of reference the 

trajectory of the object is rectilinear. 

Note that the trajectory of a photon will also be curved in 

the accelerated reference frame. But to understand what 
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happens, we must di5erentiate the coordinated velocity 

v that we have de,ned in the coordinate system of the 

spacecraft, with the velocity measured in a Minkowskian 

reference frame de,ned locally in space and time at the 

level of the particle. It is this velocity which cannot 

exceed the limit velocity c and which is equal c for a 

photon. The coordinated velocity has no such constraint. 

Here, we are in Sat space-time and this does not prevent 

the astronauts from lobbing their playing partners. By a 

similar reasoning, in the framework of the Schwarzschild 

metric in curved space-time, we would also ,nd the 

curved trajectories that we observe when we play ball on 

the beach. We could abandon our vision of a force of 

gravity and embrace that of a free particle maximizing its 

proper time in a non-Minkowskian metric. If we leave the 

local analogy, there will be notable di5erences between 

the accelerated rocket and the approach of a massive 

star. 

2-b  
d L

dt
=∂ L

∂ x
v+∂ L

∂ v
v̇=( ∂L

∂ x
− d

dt ( ∂L

∂ v ))v+ d

dt (∂L

∂ v
v)

we recognize in the ,rst term on the right the equation of 

motion from which:

d

dt (L−∂L

∂ v
v)=0

Conservation equation       L−
∂L

∂v
v=cst

The object released in free fall starts from x=0  and joins 

the event horizon at xH=−
c

2

a
. In the same time g(x ) 

varies from 1 to zero:  g∈] 0,1 ].
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Expression of the position:   x=x
H
(1−√ g)

Calculation of the speed:   L+
β2

L
=cst    with   β=

v

c

Determination of the constant for the initial conditions of 

a release: at t=0,   x=0,   ̇x=0,  L(0,0)=1   and  cst=1.

Then:    L
2+β2=L    and    L

4+2β2
L

2+β4=L
2

g
2−2gβ2+β4+2gβ2−2β4+β4=g−β2  and   β=−√ g(1−g)

Expression of the speed:    v=−c √g (1−g )

Calculation of the acceleration:

 
d v

dt
=

d v

d g

d g

d x

d x

d t
=−c

1−2g

2√g (1−g)
2a√g

c
2

v

Expression of the acceleration:   
d v

dt
=−a (2g−1)√g

The acceleration ̇v is zero for g=1/2.  As expected, since 
the speed is zero at the beginning, for t=0, and tends to 

zero when t tends to in,nity, it passes through a maximum: 

 vmax=
c

2
    at    x(vmax)=(1− 1

√2 ) x H≃0.3 x H

As we will see later, the speed of light in x (v max) is c/√2 
and vmax

=v
light

/√2≃71 %v
light. In agreement with a local 

Minkowskian observer for whom vmink(xmax)=c /√2≃71%c.
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Metric factor g(x) :

The metric of the reference frame of the uniformly 

accelerated rocket shows the temporal factor with 

g( x )=(1+x /d H )2 with d H=c
2/a. g(x) varies from zero to 

in?nity, when, x varies from -dH , the horizon, to in?nity in 

front of the rocket.
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Velocity of fall of the object v(x) :

Velocity versus position of the fall of an object released 

without initial speed from x=0. For an observer of the 

accelerated rocket, the object starts to fall according to 

a classical parabolic motion (dark gray curve), to then 

reach the maximum speed c/2 and to become zero on 

the horizon. The maximum speed is independent of the 

acceleration of the spacecraft. We have traced in 

dotted line the coordinated speed of light in this non-

inertial reference frame. Indeed, the accelerated rocket 

frame of reference is not Minkowskian, and the speed of 

light is not ?xed at ±c. For a photon dτ=0, which gives in 
the rocket vlight

( x )=±|1+x /d
H
|c. For -1<x<0 |vlight|<c, and, 

for x>0 |vlight|>c. For other initial conditions, such as 

x(t=0)=3dH, we ?nd vmax=-2c. We verify that at any point 

the speed of the falling object is much lower than the 

speed of light, except on the horizon where the two 

speeds equalize. 
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Acceleration of the object a(x) :

Object in free fall in the rocket: the acceleration is zero 

when the speed is maximum. The acceleration then 

changes of sign and the object decelerates to the 

horizon.

c- To solve the di5erential equation we have performed 

numerical simulations in Runge-Kutta 4 for the time evolu-

tion. We could also follow an analytical approach and 

perform a direct calculation using the coordinate change 

given in the exercise Rindler metric. All the equations are 

expressed in terms of dimensionless quantities:

X=x /d
H,   d H=c

2/a=−x H,   T=t / tH,   t H
=c /a=d

H
/c

β=
d X

dT
=Y,     

ẍ

a
=

dY

dT
=[1−2 (1+X )2 ](1+X )

The maximum velocity is reached for T≃0.88 (t≃10 

months). The horizon is reached only asymptotically when 
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t tends to in,nity. The classical mechanics curves are 

plotted as gray lines.

         Velocity of fall in the rocket
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 Acceleration

d- Proper time:  τ=∫√g−β
2
dt=∫g dt

τ=t H∫ (1+X )2
dX

β =−tH∫
(1+X )

√1−(1+X )2
dX

with  sinθ=1+X   we ,nd  τ(X)=t H √1−(1+X)
2

So τ (x H
)=t

H, for the observer in free fall the horizon is 

reached in a time tH and nothing special happens. The 

person crosses the horizon without realizing it and his time 

continues, of course, to Sow. On the other hand, the 

observers of the rocket will see the time of the falling 

person freeze at tH and as long as they wait they will never 

know what happens next. A di5erence, however, for the 

person in free fall, before and after the horizon: before he 

can still stop his fall to join the mother ship with a very fast 

rocket, after it is impossible, even if his rocket went at the 

speed of light.
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Let us represent the situation on the Minkowski diagram of 

the inertial reference frame of the object in free fall. The 

object is dropped, without initial speed, by the astronauts 

of the accelerated rocket at t=0 and x=0 (event O). The 

 

 

will come from H. Thus the age of the falling object will 

seem to them to freeze, as if its time stopped after having 

aged of tH. But, from the point of view of the object, the 

time continues to pass and no horizon wall exists. Simply, 

the horizon de?nes the place where the causal link 

between the object and the rocket is broken. Even a 

 

 

second object. This one has a constant velocity in the 

reference frame of inertia of the ?rst object and 

τOH=τO2 H2

=t H. The ?rst object that the travelers see falling 

in free fall is the Earth itself that they "dropped" at their 

departure.
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curve page 391 (arc of circle).
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3 - Analogy with the fall into a black hole:

     a- L(r ,v)=√g−1

g

v
2

c
2
   L−

∂L

∂ v
v=cst    

∂L

∂ v
=−

v

g L c
2

Velocity:   L+
β2

g L
=cst    with    β=

v

c
   and   g (r)=1−

rS

r

Determination of the constant for the initial conditions of 

a release:  at t=0,  r→+∞,  ̇r=0,  L(+∞ ,0)=1  &  cst=1.

Then:    g L
2+β2=g L     and    g2

L
4+2 gβ2

L
2+β4=g

2
L

2

g
4−2 g

2β2+β4+2g
2β2−2β4+β4=g

3−gβ2   and  β=−g√1−g

Expression of the velocity:   v=−c √g
2(1−g)

Calculation of the acceleration:

 
d v

dt
=

d v

d g

d g

dr

d r

d t
=−c

2g−3 g
2

2√g
2 (1−g)

(1−g)2

r S

v

Acceleration:   
d v

dt
=

c
4

4 G M
g (2−3 g)(1−g )

2

The acceleration ̇v is null when g=2/3. As expected, since 
the velocity is zero at the start, at t=0, and tends to zero 

when t tends to in,nity, it passes through a maximum:

vmax=
2

3√3
c≃38 % c     at     r(vmax)=3 rS

The speed af light in r (vmax) is 2/3 c and vmax=vlight /√3. 

Speed of the falling object for a local Minkowskian 

observer: vmink(rmax)=c /√3≃58 %c.
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Metric factor g(r) :

The metric of the Schwarzschild reference system is 

expressed with the factor g (r)=1−rS /r .

Velocity of fall of the object v(r) :

Curve of the falling velocity of an object released at rest 

from in?nity of a massive star. For an outside observer, the 

object starts to fall according to a classical motion 

(grayed curve) to then reach its maximum speed and 

have a zero speed on the horizon in the case of a black 

hole (star of radius less than rS). The maximum speed is 

reached if the star has a radius less than 3 rS. This speed is 

the same for any star and does not depend on its mass. 

We have traced in dotted line the coordinated velocity 

of light in this non-inertial reference frame.  We have in 

the Schwarzschild coordinate system vlight(r)=±(1−rS /r)c. 

Here |vlight|<c and the speed of light cancels on the 

horizon. The speed of the object is less than the speed of 

light and equals it at rS .
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Acceleration of the object a(r) :

The acceleration is zero at 3 rS. In gray the acceleration in 

Newtonian gravitation.
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We introduce dimensionless quantities:

R=
r

rS

,   T=
t

tS

,   A=
dβ
d T

=
r̈

aS

   with   t S=
rS

c
   and   aS=

c
2

rS

.

β=−(1− 1

R ) 1

√R
    and   A= 1

2R
2 (1− 1

R )( 3

R
−1)

In Newton's gravitation:

1

2
m v

2−
G M m

r
=0,   v=−√ 2G M

r
   and  β=−

1

√R
,

mr̈ u⃗r= F⃗=−
G M m

r
2 u⃗r,   ̈r=−

G M

r
2    and   ̈

r

aS

=−
1

2 R
2.

b- Equations for numerical resolution:

β=
d R

d T
=Y,      

r̈

aS

=
d Y

dT
=F(R)

From the external Schwarzschild point of view the falling 

object takes an in?nite time to reach the horizon in r=rS. In 

gray the classical curve.
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Velocity of fall v(t):

The body gains speed during its fall up to 3 rS. From a 

distance of 10 rS, it has then elapsed approximately 21 tS 
before reaching this maximum. This maximum of 38% of c 

reached, the speed then decreases until it cancels on 

the horizon. The maximum velocity is independent of the 

size of the black hole, it is not the case of distances and 

times. For a super-massive black hole of 40 million solar 

masses, tS is about 6 minutes and 35 seconds. In dark gray 

the velocity curve according to Newton's laws. In dotted 

line the speed of light in the Schwarzschild coordinate 

system. 
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Acceleration a(t):

The Schwarzschild coordinate acceleration becomes 

zero, then changes sign, forms a peak and tends towards 

zero at the horizon. In gray the classical curve.

For Newton:   
dr

dt
=−√2G M

r
,    √r dr=−√2G M dt

∫
r0

r

√r dr=−√2G M t    and   R=(R0

3

2−3

2
T )

2

3

c- Proper time:   τ=∫√g−
β2

g
dt=∫g dt

τ=tS∫ (1− 1

R ) dR
β =−tS∫

R0

1

√R dR=
2

3
(R0

3/2
−1)tS

For example, from the maximum speed, at r=3 rS, to the 

horizon in r=rS, a proper time of τ≃2.8 t
S elapses. It is inte-

resting to note that the singularity on the horizon has 

disappeared. We can calculate the proper time needed 

to reach the black hole center: τ=−tS∫
1

0

√R dR=
2

3
tS ,
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about 4 min 20 s for the super-massive black hole of 40 

million solar masses. The person in free fall does not realize 

that she crosses the horizon, but beyond that point she 

cannot exit the black hole and her causal link to the 

outside world is broken. The outside observers will see the 

free falling person slowly stop on the horizon and his time 

freeze at the proper time of passage.

d- Local observer:  d t Mink=√gd t,   d rMink=d r /√g

βMink=
d rMink

dt Mink

=
β
g
=

β
|βlight|

=−
1

√R
     and     v Mink

(r
S
)=−c

In the local and instantaneous inertial frame the speed of 

the object reaches c on the horizon. The curve has been 

drawn in light gray on the velocity curve page 401.

e- Comparison to experimental data: 

Theory: for a static black hole and a free fall from in,nity 

without initial velocity  β=(1− 1

R ) 1

√R
.

Experiment:

For R=20 : β≃0.21  to compare with 0.3 measured.

For R=200 : β≃0.07  to compare with 0.1 measured.

The black hole concerned is rotating and the matter in 

free fall can have an initial velocity. The results are 

consistent for the order of magnitude and even in value. 

There is an uncertainty on the radius and in theory vmax 
can reach 38 %c which is consistent with the experimental 

30 %. If we consider the speed of light variations between 

the non-inertial Schwarzschild frame, and the local 

Minkowskian one, the di5erences are not signi,cant, 

because the r's are large compared to rS.
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 5.  Fall of a blue ball                                 Exercise p167

The ,rst blue ball released in free fall is the planet Earth at 

the departure of the rocket. The behavior will be the 

same for later releases. Our planet, observed from the 

spacecraft, will reach the half of the speed c after 10 

months at 0.3 l.y., when the time tends towards in,nity it 

will stop and freeze at one light-year.

Its color is given by the formula of the Doppler e5ect 

established in the exercise Reality show on page 129:

λR=λ E e

a t

c

Our beautiful blue planet will be perceived as red after 8 

months of travel. If, instead of releasing the blue ball in 

free fall, we hang it from a rope, it will also redden with 

the length of rope unwound, but in a di5erent manner.

6. Trajectory of a ray of light

    in the Einstein's Elevator                       Exercise p167

1 - Position x of the box in the Galilean reference system:

ẍ=a    ̇x=at    x=
1

2
at

2    t F=L/c    Δ x=−
a L

2

2c
2

y=ct   x ( y)=−
a

2c
2 y

2   y(x)=√−2c
2
x

a
   v (x )=√c

2−2a x

2 - Special Relativity. Change of coordinates between an 

inertial reference frame (ct', x', y') and a uniformly 

accelerating reference frame (ct, x, y) (exercise on the 

Rindler metric):
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{ y '=ct '= y=(x+
c

2

a )sh(at

c )
x '=0=( x+

c
2

a )ch(a t

c )−c
2

a

ch(a t /c)=
c

2/a

x+c
2 /a
      sh(a t /c)=

y

x+c
2 /a

 c4 /a2− y
2=(x+c

2 /a )2       y (x )=√c
4/a2−(x+c

2/a)2

x (y)=√c
4/a2− y

2−c
2 /a       Δ x=√c

4
/a

2
−L

2
−c

2
/a

Δ x= c
2

a (√1− a
2
L

2

c
4
−1)      lim

L≪dH

(Δ x)SR=(Δ x)Newton

For the coordinate velocity of light in R non-Minkowskian, 

we can also directly use the metric:

d τ=0     and    v(x)=
dl

dt
=c(1+ a x

c
2 )

Direct calc.:   {
y( t )=

c
2

a
th ( at

c )
x ( t )=c

2

a

1

ch(a t

c )
−c

2

a

     { ẏ=c
1

ch
2

ẋ=−c
sh

ch
2

v
2= ẋ

2+ ẏ
2=

c
2

ch
4 (1+sh

2)=c
2(1+ a x

c
2 )

2

3 -  Dimensionless quantities:   d H=
c

2

a
   X=

x

d H

   Y=
y

d H

Newton :   X=−
Y

2

2
    β=

v

c
=√1−2 X

Special Relativity:   (X+1)2+Y
2=1    β=1+X
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Trajectory of a ray of light

The ray follows a quarter circle of radius dH, horizon 

distance, and center (-dH, 0). The velocity of the photon 

decreases until zero, and, in an in?nite time, the photon 

reaches the position (-dH, dH). In the Newtonian approxi-

mation the trajectory is parabolic, the deviation is twice 

as small at dH, and the speed tends to in?nity.
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Velocity of the photons in the box

The velocity of the photons initially equal to c decreases 

linearly until it becomes zero on the horizon. On the 

contrary, in Newton's case in gray, the velocity increases 

by addition of the velocities and tends towards in?nity like 

that of the box with respect to the Galilean reference 

frame.

7. Spherical coordinate system         Exercise p 169

In addition to giving useful tools for physics and astro-

nomy, we introduce the notion of solid angle  a very 

physical approach that is rarely explained. We often limit 

ourselves to plane angles whereas the world is in 3D.

1 -  ⃗r={
x=r sinθcosϕ
y=r sinθsinϕ
z=r cosθ

     ⃗ur=

∂ r⃗

∂ r

‖∂ r⃗

∂ r‖
    ⃗uθ=

∂ r⃗
∂θ

‖∂ r⃗
∂θ‖
    ⃗uϕ=

∂ r⃗
∂ϕ

‖∂ r⃗
∂ϕ‖
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{u⃗r=sinθcosϕ i⃗ +sinθsinϕ j⃗+cos θ k⃗

u⃗θ=cosθcos ϕ i⃗ +cosθsinϕ j⃗−sinθ k⃗

u⃗ϕ=−sin ϕ i⃗ +cosϕ j⃗

{
i⃗ =sinθcosϕ u⃗r+cosθcosϕ u⃗θ−sinϕ u⃗ϕ

j⃗=sinθsinϕ u⃗r+cosθsinϕ u⃗θ+cosϕ u⃗ϕ

k⃗=cosθ u⃗r−sinθ u⃗θ

A⃗=Ax i⃗ +A y j⃗+A z k⃗=A r u⃗r+Aθ u⃗θ+Aϕ u⃗ϕ

{
A x=A r sinθ cosϕ+Aθcosθcosϕ−Aϕ sin ϕ
A y=Ar sinθsin ϕ+Aθcosθ sinϕ+Aϕcosϕ
A z=A r cosθ−Aθsinθ

{
Ar=Ax sinθ cosϕ+A y sinθsinϕ+A z cosθ
Aθ=A x cosθcosϕ+Ay cos θsinϕ−Az sinθ
Aϕ=−A x sinϕ+Ay cosϕ

2 -  ⃗r=O⃗M=r u⃗r
,   ⃗ur

(θ ,ϕ),   ⃗dr=dr u⃗r+r d u⃗r.

d u⃗r=
∂ u⃗r

∂θ d θ+
∂ u⃗r

∂ϕ d ϕ=u⃗ϕ∧u⃗r d θ+u⃗ z∧u⃗r d ϕ

then    ⃗dr=dr u⃗r+r dθ u⃗θ+r sinθd ϕ u⃗ϕ.

3 - S=∫ dS=∬ R dθR sinθ d ϕ=R
2 ∫
θ=0

π

dθ sinθ∫
ϕ=0

2 π

dϕ=4 π R
2

V=∫dV=∭dr r dθ r sinθd ϕ=∫
r=0

R

r
2
dr×4 π=

4

3
πR

3

4-a-b All of space is viewed under an angle of 4π ste-
radians (surface of a unit sphere). One hemisphere under 

2π steradians. From one corner, one eighth is perceived 
hence π/2 steradians. Under an angle 2α: 

SR=1=∫
θ=0

α

sinθd θ ∫
ϕ=0

2π

d ϕ=2π(1−cosα)
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c- Probability for an isotropic distribution of stars:

p=1−
2×2π(1−cosα)

4 π
=cosα     p(α=80°)≃1/6

.1.  Change of basis                            Exercise p243

~eμ=Λν
μ
~e ' ν    and    Λ

μ
ν=

∂ x '
μ

∂ x
ν

1 - Rocket: {ct '=( x+
c

2

g ) sh(g t

c )
x '=( x+c

2

g )ch(gt

c )−c
2

g

 & {T '=(1+X ) sh T

X '=(1+X )ch T−1

with   X=
g x

c
2    and   T=

g t

c

Λ0

0=
∂ ct '

∂ ct
=(1+X )ch T,     Λ

1

1=
∂ x '

∂ x
=ch T  ...

and  Λμ
ν=((1+X )ch T sh T

(1+X) shT chT )
~e

0
=Λ0

0
~e '

0
+Λ1

0
~e '

1    ...    {
~e 0=(1+X )(chT ~e '0+shT~e '1)
~e 1=shT~e '0+chT~e '1

The basis is orthogonal and we ,nd the components of 

the metric tensor:

~e 0⋅
~e 0=(1+X )2 (chT

2
g '00+shT

2
g '11+0+0)=(1+X)2=g (x)=g00

~e 0⋅~e 1=(1+X )(shT chT−shT chT )=0=g01=g10

~e 1⋅
~e 1=shT

2
g '00+chT

2
g'11+2shT chT g '01=−1=g11
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For T=-0.4 and X=0.5 :  {
~e

0
≃ 1.62~e '

0
−0.62~e '

1

~e 1≃−0.41~e '0+1.08~e '1

Lengths and angles on the euclidean sheet:

{‖
~e 0‖Euclide≃1.73

‖~e 1‖Euclide≃1.16
  and  {(̂~e 0 ,~e '0)≃+20.8°

(̂~e 1 ,~e ' 1)≃−20.8°

The basis vectors associated with the time coordinate of 

each reference frame are tangent to the worldlines of the 

particles at rest. They are time-like and point to the future. 

The reference system is synchronous: g0i=0 with i=1, 2 or 3.

2 - Disk:  {
ct '=ct

ρ '=ρ
θ '=θ+ω t

,   Λ0

1=
∂ ct '
∂ρ =0,  Λ2

0=
∂θ '

∂ ct
=ω

c
 ...
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  then  Λμ
ν=(

1 0 0

0 1 0

ω/c 0 1
)  and   {

~e 0=
~e ' 0+

ω
c
~e '2

~e 1=~e '1

~e 2=
~e '2

The basis is not orthogonal and the reference system is not 

synchronous because:

 ~e 0⋅
~e 2=g02=

ω
c

g '22=−
ρ2ω

c
≠0

We ,nd the components of the metric tensor:

~e 0⋅
~e 0=g ' 00+2ω

c
g '02+

ω2

c
2

g '22=1−
ρ2ω2

c
2
=g00

 ...

In the Minkowski reference frame (ct, ρ, θ) of the inertial 
observer, the worldlines of the particles at rest in the 

rotating disk reference frame form ascending helices, with 

constant pitch and radius ρ. ~e 0 is tangent to the world-

lines and oriented according to increasing proper time. 

Here, the vectors of the spatial basis (~e 1,
~e

2,
~e

3
) are not all 

orthogonal to the worldlines of the particles at rest that 

de,ne the disk.
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2. Riemann curvature tensor                 Exercise p243

1 -a- Rocket: gμ ν is here diagonal, thus g
μν

gν α=δ α
μ
 

becomes g
μμ

gμμ=δ μ
μ =1  and  g

μμ=1/gμμ.

g
00
=g,   g11

=g
22
=g

33
=−1,   g

00=1/g,   g11=g
22=g

33=−1.

 b- The only non-zero derivative term that can appear in 

the connections is ∂1 g00=g '. Moreover, since the metric is 

diagonal, we have for the ,rst factor gαβ=g
αα. The only 

non-zero connections have two 0's and one 1 as indices. 

As there is symmetry on the last two indices there are only 

2 possible cases :

Γ 00

1 =
1

2
g

11(∂0 g10+∂0 g10−∂1 g00)=−
1

2
g

11∂1 g00=
g '

2

Γ 01

0 =Γ 10

0 =
1

2
g

00(∂1 g00+∂0 g01−∂0 g01)=
1

2
g

00∂1 g00=
g '

2g

 c- Antisymmetry:  R βγγ
α =0   and  R βγδ

α =−R βδ γ
α .

No indices 2 or 3, otherwise the tensor component is zero: 

Zero connection coeCcient or zero derivative (no 

dependence in θ or z). Only indices 0 or 1.

It remains:   R 001

0
,   R 101

1
,   R 001

1
   and   R 101

0
.

R β01

α =Γ β1,0

α −Γ β0 ,1

α +Γ σ 0

α Γ β1

σ −Γ σ1

α Γ β0

σ
 

the ,rst term is zero Γ β1,0

α
=

∂
∂ ct

Γ β1

α
=0

R 001

0 =0−Γ 00 ,1

0 +Γ σ 0

0 Γ 01

σ −Γ σ 1

0 Γ 00

σ

the second term is zero,

  3rd: Γ σ0

0 Γ 01

σ =Γ 00

0 Γ 01

0 +Γ 10

0 Γ 01

1 +Γ 2 0

0 Γ 01

2 +Γ 30

0 Γ 01

3

=0+0+0+0,

  last:  Γ σ1

0 Γ 00

σ =Γ 0 1

0 Γ 00

0 +Γ 11

0 Γ 00

1 =0,
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=>     R 001

0 =0.

R 101

1 =0−Γ 10 ,1

1 +Γ σ 0

1 Γ 11

σ −Γ σ1

1 Γ 10

σ =0−0+*×0−0×*

=>     R 101

1 =0.

R 001

1 =0−Γ 00 ,1

1 +Γ σ 0

1 Γ 01

σ −Γ σ 1

1 Γ 00

σ =−
g ' '

2
+

g '

2
×

g '

2g

R 001

1 =1

2 (−g ' '+ g '
2

2g )= 1

2 (−2a
2

c
4
+ 4a

2

c
4

(1+ a x

c
2 )

2

2(1+ ax

c
2 )

2 )
=>     R 001

1 =0.

R 101

0 =0−Γ 10 ,1

0 +Γ σ 0

0 Γ 11

σ −Γ σ1

0 Γ 10

σ =−
1

2 ( g ' ' g−g '
2

g
2 )+0−

g '
2

4 g
2

=>     R 101

0 =0.

Conclusion: in the reference frame of the uniformly 

accelerated rocket, the curvature tensor is identically zero 

because all its components are zero. This is logical, 

because if a tensor is identically zero in one reference 

frame, it is zero in all reference frames (whatever the 

changes of coordinates made). Indeed, we pass from the 

galactic inertial reference frame to the rocket reference 

frame by a change of coordinates (given in the exercise 

on the Rindler coordinate system), and, in an inertial 

reference frame the curvature is zero (all the components 

of the metric tensor are independent of the coordinates). 

Finally, the spacetime of the rocket is Sat, which does not 

prevent the clocks from being out of sync with each 

other, and the photons from having curved trajectories. 

Let's say it ! 
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2 -a Disk: 

g00=1−
ρ2ω2

c
2
,  g02=−

ρ2ω
c
,  g22=−ρ2

  and  g11=g33=−1.

The metric is diagonal for 1 and 3:  g
11=g

33=−1.

g
μ ν

gν α=δμ
α    {g

00
g00+g

02
g20=δ0

0=1

g
00

g02+g
02

g22=δ0
2=0

   g
20

g02+ g
22

g22=1

{g
00(1−ρ2ω2

c
2 )−g

02ρ
2ω
c

=1

−g
00 ρ

2ω
c

−g
02ρ2=0

     {g
00=1

g
02=−ω

c

    
g

22
=ω2

c
2
−

1

ρ2

 

g
μ ν=(

1 0 −ω
c

0

0 −1 0 0

−ω
c

0
ω2

c
2 −

1

ρ2 0

0 0 0 −1

)
 b-   ∂1 g00=−2

ρω2

c
2
,   ∂1 g02=−2

ρω
c
   and   ∂1 g22=−2ρ.

18 connections with 0, 1 and 2:

Γ μ ν
0 =

1

2
g

00(∂ν g0 μ+∂μg0 ν−∂0 gμ ν)+
1

2
g

02(∂ν g2μ+∂μg2 ν−∂2 gμν)

Γ 00

0 =0    Γ 01

0 = 1

2
g

00∂1 g00+
1

2
g

02∂1 g20=−
ρω2

c
2
+ω

c

ρω
c

=0 

Γ 02

0 =0      Γ 11

0 =0       Γ 22

0 =0

 Γ 12

0 =
1

2
g

00∂1 g02+
1

2
g

02∂1 g22=−
ρω
c

+ω
c
ρ=0
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Γ μ ν
1 =

1

2
g

11(∂ν g1μ+∂μ g1 ν−∂1 gμ ν)    Γ 11

1 =0     Γ 12

1 =0

Γ 00

1 =−1

2
g

11∂1 g00=−
ρω2

c
2     Γ 01

1 =0

Γ 02

1 =−
1

2
g

11∂1 g02=−
ρω
c     Γ 22

1 =−
1

2
g

11∂1 g22=−ρ

Γ μ ν
2 =

1

2
g

20(∂ν g0 μ+∂μg0 ν−∂0 gμ ν)+
1

2
g

22(∂ν g2μ+∂μg2ν−∂2 gμν)

Γ 00

2 =0     Γ 22

2 =0     Γ 11

2 =0  

Γ 10

2 =1

2
g

20∂1 g00+
1

2
g

22∂1 g20=
ρω3

c
3
−(ω

2

c
2
− 1

ρ2 ) ρωc = ω
ρc

Γ 12

2 = 1

2
g

20∂1 g02+
1

2
g

22∂1 g22=
ρω2

c
2
−(ω

2

c
2
− 1

ρ2 )ρ= 1
ρ

Results:

Γ 00

1 =−
ρω2

c
2
   Γ 02

1 =−
ρω
c
  Γ 22

1 =−ρ  Γ 10

2 = ω
ρc
   Γ 12

2 =
1
ρ

 c-  The tensor components with an index 3 are zero.

No connection with the ,rst index zero: R βγδ
0 =0.

2x3x3=18 components to test.

R 001

1 =0−Γ 00 ,1

1 +Γ σ 0

1 Γ 01

σ −0=ω2

c
2
−ρ ω

c
ω
ρc

=0

R 101

1 =0−Γ 10 ,1

1 +Γ σ 0

1 Γ 11

σ −Γ σ1

1 Γ 10

σ =0

R 002

1 =0−0+Γ σ0

1 Γ 02

σ −Γ σ2

1 Γ 00

σ =0

R 202

1 =0−0+Γ σ0

1 Γ 22

σ −Γ σ2

1 Γ 20

σ =0

R 112

1 =Γ 12,1

1 −0+Γ σ1

1 Γ 12

σ −Γ σ 2

1 Γ 11

σ =0

R 212

1 =Γ 22 ,1

1 −0+0−Γ σ 2

1 Γ 21

σ =−1+ρ
1
ρ=0
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R 120

1 =0−0+Γ σ 2

1 Γ 10

σ −Γ σ0

1 Γ 12

σ =−ω
c
+ω

c
=0

R
012

1 =Γ
02 ,1

1 −0+Γ σ 1

1 Γ
02

σ −Γ σ2

1 Γ
01

σ =−ω
c
+ω

c
=0

R 210

1 =Γ 20 ,1

1 −0+Γ σ 1

1 Γ 20

σ −Γ σ 0

1 Γ 21

σ =−ω
c
+ω

c
=0

R 001

2 =0−Γ 00 ,1

2 +Γ σ 0

2 Γ 01

σ −Γ σ 1

2 Γ 00

σ =0

R 101

2 =0−Γ 10 ,1

2 +0−Γ σ 1

2 Γ 10

σ = ω
ρ2

c
−

1
ρ

ω
ρc

=0

R 002

2 =0−0+Γ σ0

2 Γ 02

σ −Γ σ2

2 Γ 00

σ =− ω
ρc

ρω
c

+ 1
ρ
ρω2

c
2
=0

R 202

2 =0−0+Γ σ0

2 Γ 22

σ −Γ σ2

2 Γ 20

σ =...=0

R 112

2 =Γ 12,1

2 −0+Γ σ1

2 Γ 12

σ −Γ σ 2

2 Γ 11

σ =...=0

R 212

2 =Γ 22 ,1

2 −0+Γ σ 1

2 Γ 22

σ −Γ σ2

2 Γ 21

σ =0

R 120

2 =0−0+Γ σ 2

2 Γ 10

σ −Γ σ0

2 Γ 12

σ =0

R 012

2 =Γ 02 ,1

2 −0+Γ σ 1

2 Γ 02

σ −Γ σ2

2 Γ 01

σ =0

R 210

2 =Γ 20 ,1

2 −0+Γ σ 1

2 Γ 20

σ −Γ σ 0

2 Γ 21

σ =0

Conclusion: in the proper frame of reference of the 

uniformly rotating disk the space-time curvature is zero (as 

expected). In a next exercise, we will see that this is not 

the case for the spatial curvature.

2 -a Spherical body: metric diagonal

g00=g=e
f
,   g11=−1/g=−e

−f
   g22=−r

2
,   g33=−r

2
sin

2θ,

g
00=1/g=e

− f
,   g

11=−e
f
,   g

22=−1/ r2
,   g

33=−1 /(r2
sin

2θ).

 b- g '=f ' g and g ' '=(f ' '+ f '
2)g=−2r

S
/r 3
. ... .

Connections:         Γ 10

0 = f ' /2      Γ 11

1 =−f ' /2  

Γ 00

1 =e
2f

f ' /2
    

Γ 21

2 =Γ 31

3 =1/ r
    

Γ 22

1 =−rg

Γ 33

1 =−rg sin
2θ
    

Γ 33

2 =−sinθ cosθ
    

Γ 32

3 =1 / tanθ
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 c-   R 101

0 =Γ 11,0

0 −Γ 10 ,1

0 +Γ σ 0

0 Γ 11

σ −Γ σ 1

0 Γ 10

σ

R 101

0 =0− f ' ' /2−(f ' /2)2−(f ' /2)2=−(f ' '+ f '
2)/2=−g' ' /2 g

R 101

0 =
rS

gr
3      and      R0101=g0μR 101

μ =g00 R 101

0 =
r S

r
3

Conclusion: there is a non-zero component of the curva-

ture tensor, so spacetime is curved for a spherical body. 

Curvature is an intrinsic property of every spacetime. The 

space-time described by the Schwarzschild metric will be 

curved whatever the reference frame of observation. 

Nevertheless, in case of non-nullity of the set of compo-

nents, the expression of the components of a tensor 

depends on the coordinate system. We can obtain an 

invariant quantity by forming a scalar. We show that:

 Rαβμ ν R
αβμ ν=12r S

2 / r6
   (Kretschmann scalar).

We see that the singularity in rS does not appear, on the 

other hand, the singularity in r=0 is visible. The central 

singularity is essential because it is present in all 

observation frames of reference.

3.1-  A non-uniformly rotating Disk         Exercise p245

gμ ν=(
1−ρ2 λ̇2

c
2 0 −ρ2 λ̇

c

0 −1 0

−ρ2 λ̇
c

0 −ρ2 )         gμ ν=(
1 0 −λ̇

c

0 −1 0

−λ̇
c

0 λ̇2

c
2
− 1

ρ2
)

 Always  ∂1 g00=−2
ρ λ̇2

c
2
,   ∂1 g02=−2

ρ λ̇
c
   and   ∂1 g22=−2ρ.
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To which we add:  ∂0 g00=−2ρ
2 λ̇ λ̈

c
2   and  ∂0 g02=−ρ2 λ̈

c
.

We check, one by one, the previously calculated 

connections and we notice that they are not modi,ed:

Γ 00

1 =−
ρ λ̇2

c
2   Γ 02

1 =−
ρ λ̇
c   Γ 22

1 =−ρ  Γ 10
2 = λ̇

ρc
   Γ 12

2 =
1
ρ

Γ 00

0 =
1

2
g

00(∂0 g00+∂0 g00−∂0 g00)+
1

2
g

02(∂0 g20+∂0 g20−∂2 g00)

Γ 00

0 =
1

2
g

00∂0 g00+g
02∂0 g20=−ρ2 λ̇ λ̈

c
2 + λ̇

c
ρ2 λ̈

c
=0   ... ...

Γ 00

2
=

1

2
g

20
∂0 g00+g

22
∂0 g20=

λ̇
c
ρ

2 λ̇ λ̈
c

2 −( λ̇
2

c
2 −

1

ρ2 )ρ2 λ̈
c
= λ̈

c

... ... only one new non-zero connection:  Γ 00

2 =λ̈
c
.

2 - Similarly, we do not transcribe here all the calculations, 

but all the components of the curvature tensor are 

indeed zero.

3 - Whatever the change of coordinates, if all the 

components of a tensor are zero in a reference frame R, 

they are zero in all reference frames R':

R' βγ δ
α =Λα

μΛβ
νΛγ

ρΛδ
λ
R ν ρλ

μ
     Γ ' βγ

α ≠Λα
μΛβ

νΛγ
ρΓ ν ρ

μ

So as expected the tensor is null, since we start from a 

Minkowskian frame of reference. We take this opportunity 

to point out that not every object with indices is a tensor. 

For example, the connection is not a tensor. It is null for all 

its components in Cartesian coordinates in R, and non-

null in R' in polar coordinates.
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4. Spatial cuvatures                          Exercise p246

1 - Rocket: The reference system is synchronous − no cross 

terms in the metric between t and the space coordinates 

x, y and z. Space is disjoint from time, and we directly 

recognize the Euclidean metric:

dl
2=dx

2+dy
2+dz

2

Flat space.

2 - Spherical body: Here again, the system is synchronous.

Spatial metric:   d l
2=

1

g
dr

2+r
2
d θ2+r

2
sin

2θd ϕ2
.

 γij=(
1/g 0 0

0 r
2

0

0 0 r
2
sin

2θ
)       γij=(

g 0 0

0 1/ r2
0

0 0 1 /(r 2
sin

2θ)
)

Calculation:  R 212

1 =Γ 22 ,1

1 −Γ 21 ,2

1 +Γ σ 1

1 Γ 22

σ −Γ σ 2

1 Γ 21

σ

Γ ij

1 =
1

2
γ11 (∂ j γ1i+∂i γ1 j−∂1 γij)   Γ 22

1 =−
1

2
g∂1 γ22=−rg

Γ 11

1 =
1

2
g∂1 γ11=−

g '

2 g
   Γ 22

2 =0    Γ 22

3 =0    Γ 12

1 =0

Γ 21

2 =
1

2
γ22∂1γ22=

1

2r
2×2 r=

1

r
   Γ 21

3 =0

=>  R 212

1 =−g−r g '−0+r g ' /2+g=−r g ' /2=−
r S

2r
≠0.

Curved space.

3 -a- Disk: The reference system is not synchronous: g02≠0

b- γ11=−g11=1   γ12=
g01 g02

g00

=0   γ13
=0  γ23=0  γ33

=1
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 γ22=−g22+
g02

2

g00

=ρ2+

ρ4 ω2

c
2

1−
ρ2ω2

c
2

=γ2ρ2

with the Lorentz factor:  γ=
1

√1−
ρ2ω2

c
2

=
1

√1−β2

Spatial metric:   γij=(1 0 0

0 γ2ρ2
0

0 0 1
)

c- The reference system is stationary.

P

D
=
∫
θ=0

θ=2π

√γ22 dθ

2 ∫
ρ=0

ρ

√γ11 d ρ

=

γρ ∫
θ=0

θ=2π

d θ

2 ∫
ρ=0

ρ

dρ

=γπ   (at t ,xed dθ=dθ')

P

D
>π : the space is non-Euclidean, it is curved.

We ,nd again the intuition of Albert Einstein. Because of 

the contraction of the lengths due to the speed on the 

edge of the disk, the experimenter on the disk must 

transfer his unit ruler more times than the inertial 

experimenter to measure the perimeter. On the other 

hand, there is no contraction along the radius and the 

two measurements are in this case equal. Ehrenfest's 

"paradox" is solved.

Curved space.

d-  R 212

1 =Γ 22 ,1

1 −Γ 21 ,2

1 +Γ σ 1

1 Γ 22

σ −Γ σ 2

1 Γ 21

σ

γ '=
1
ρ β2 γ3

        ∂1 γ22=2 γ2ρ+2γ γ ' ρ2=2ργ4  
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Γ ij

1 =
1

2
γ11 (∂ j γ1i+∂i γ1 j−∂1 γij)  Γ 11

1 =0  Γ 22

2 =0   Γ 22

3 =0

 Γ 22

1 =−
1

2
γ11∂1γ22=−ργ4

   Γ 12

1 =0

 Γ 21

2 =1

2
γ22∂1γ22=

γ2

ρ    Γ 12

3 =0

R 212

1 =−γ4−4ρ γ3 1
ρβ

2 γ3+γ6=−γ4 (1+4β2 γ2−γ2)=−3β2 γ6

It is the only non-zero component taking into account the 

symmetries. The curvature tensor is zero at the rotation 

axis.

e- R1212=γ11 R 212

1 =−3β2 γ6

 K=
1

R1 R2

=
R1212

γ11 γ22
=−3

β2γ4

ρ2
=−3 ω2

c
2
γ4<0

The radii of curvature are therefore of opposite signs (as 

on a mountain col, a horse's saddle or the inside of a 

torus). The curvature increases away from the axis of 

rotation as γ4 (in absolute value).
On the surface of a sphere, the curvatures on two 

perpendicular directions, meanwhile, have the same 

signs:

d l
2=g ( x, y)dx

2+g (x , y )dy
2

     g ( x, y)=
1

(1+ x
2+ y

2

4 R
2 )

2
=

1

h
2

γ
ij
=(g 0

0 g)  ∂1 γ11=∂1 γ22=−
x

R
2
h

3
  ∂2 γ11=∂2 γ22=−

y

R
2
h

3

Γ 11

1 =−
x

2R
2
h
   Γ 22

2 =−
y

2 R
2
h
   Γ 22

1 =
x

2 R
2
h
   Γ 11

2 =
y

2 R
2
h

Γ 12

1 =−
y

2 R
2
h
    Γ 12

2 =−
x

2 R
2
h
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R 212

1 =Γ 22 ,1

1 −Γ 21 ,2

1 +Γ σ 1

1 Γ 22

σ −Γ σ 2

1 Γ 21

σ =
1

R
2
h

2

 R1212=γ11 R 212

1 =
1

R
2
h

4
     K=

1

R1 R2

=
1

R
2>0

5.  Pair production                              Exercise p248.

6.  Wave equation                          Exercise p249.

1 - 

d ϕ '=
∂ϕ '

∂ x '
d x '+

∂ϕ '

∂ t '
d t '=

∂ϕ '

∂ x '
(d x−v dt)+

∂ϕ '

∂ t '
d t

d ϕ '=[ ∂∂ x '
d x+( ∂∂ t '

−v
∂
∂ x ' )dt ]ϕ '
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d ϕ=[ ∂∂ x
d x+

∂
∂ t

dt ]ϕ
then   

∂
∂ x

=
∂
∂ x '

,   
∂
∂ t

=
∂
∂ t '

−v
∂
∂ x '

  and  ϕ=ϕ '.

∂2ϕ

∂ x2
−

1

c2

∂2ϕ

∂ t 2
=
∂2ϕ '

∂ x '2
−

1

c2 ( ∂∂ t '
−v

∂
∂ x ' )

2

ϕ '=0

(1− v
2

c
2 )∂

2ϕ '

∂ x '
2
+

2v

c
2

∂2ϕ '

∂ t ' ∂ x '
−

1

c
2

∂2ϕ '

∂ t '
2
=0

This equation di5ers completely from the d'Alembert 

equation. The propagation equation is established in the 

reference frame where the propagation medium is at 

rest. For example, the d'Alembert equation of the sound 

wave is valid in the reference frame where the relative 

wind is zero.

2 - d =
∂
∂ x

dx+
∂
∂ ct

dct=
∂
∂ x '

dx '+
∂
∂ct '

dct '

d =
∂
∂ x '

γ(dx−βdct)+
∂
∂ t '

γ(dct−βdx )

d =γ ( ∂
∂ x '

−β
∂
∂ t ' )dx+γ ( ∂

∂ct '
−β

∂
∂ x ' )dct

∂
∂ct

=γ ( ∂
∂ct '

−β
∂
∂ x ' )

       ∂
∂ x

=γ( ∂
∂ x '

−β
∂
∂ ct ' )

∂
∂ y

=
∂
∂ y '

       
∂
∂ z

=
∂
∂ z '

□ Ex=0
  

[γ2( ∂
∂ x '

−β
∂
∂ct ' )

2

+
∂2

∂ y '
2
+
∂2

∂ z '
2
−γ2( ∂

∂ ct '
−β

∂
∂ x ' )

2

]E x '=0

γ2(1−β2)=1 and double products are eliminated:

 □ ' Ex '=0.
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For the components along y and z:

□ E y=0  and  □ B z=0

[γ2( ∂
∂ x '

−β
∂
∂ct ' )

2

−γ2( ∂
∂ct '

−β
∂
∂ x ' )

2

]γ(E y '+β c Bz ' )=0

[γ2( ∂∂ x '
−β

∂
∂ct ' )

2

−γ2( ∂
∂ct '

−β
∂
∂ x ' )

2

]γ(B z '+βE y ' /c)=0

(1)-βc(2) gives □ ' Ey '=0 and so on for the six equations. 

In this case we have invariance of the wave equation, 

the speed of light in vacuum is the same in all reference 

frames of inertia. The aether, the supposed medium for 

the propagation of light, does not exist. 

7. Schrödinger equation                        Exercise p250.

1 -  Let us start with the Schrödinger equation in R' and 

show that it is always veri,ed in R:

i ℏ
∂Ψ '

∂ t '
=−

ℏ2

2 m

∂2Ψ '

∂ x '
2   with  

∂
∂ t '

=
∂
∂ t

+v
∂
∂ x
  &  

∂
∂ x '

= ∂
∂ x

∂Ψ '

∂ t
=( i E

ℏ
Ψ+∂Ψ

∂ t )e
i

ℏ
(E t−p x)

∂Ψ '

∂ x
=(−i p

ℏ
Ψ+ ∂Ψ

∂ x )e
i

ℏ
(Et− px)

then   i ℏ[( i E

ℏ
Ψ+∂Ψ

∂ t )+v (−i p

ℏ
Ψ+∂Ψ

∂ x )]
=−

ℏ2

2 m [(−i p

ℏ
∂Ψ
∂ x

+∂2Ψ
∂ x

2 )− i p

ℏ (−i p

ℏ
Ψ+∂Ψ

∂ x )]
and  −EΨ+i ℏ ∂Ψ

∂ t
+v p Ψ+i ℏ v ∂Ψ

∂ x

=
1

2
iℏ v ∂Ψ

∂ x
−

ℏ2

2 m
∂2Ψ
∂ x

2
+

p
2

2 m
Ψ+

1

2
i ℏ v ∂Ψ

∂ x
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Eventually we well have:   i ℏ ∂Ψ
∂ t

=−
ℏ2

2m
∂2Ψ
∂ x

2
.

2 -    Lorentz transformation of the coordinates:

i ℏ γ(∂∂ t
+cβ

∂
∂ x )Ψ '=−

ℏ2

2m
γ2( ∂∂ x

+β
∂
∂ ct )

2

Ψ '

In the left member we have only ,rst derivatives, and in 

the right member we will have only one term with a 

second time derivative, which cannot cancel, whatever 

the choice for Ψ '. The Schrödinger equation does not 

work for relativistic particles.

8. The electromagnetic Ield               Exercise p252.

1 - Temporal component:

d p
0

d τ
=F

0ν
jν=F

00
j0+F

01
j1+F

02
j2+F

03
j3

~
j = j

μ
=(q γ c , q u⃗ )    j0= j

0    j i=− j
i

d E /c
d τ

=0+(−E x

c )(−qu
x)+

Ey

c
qu

y+q E
z
u

z /c

d E

d τ
=q E⃗⋅⃗u   or   

d E

d t
=q E⃗⋅⃗v

We ,nd the power of the electric force. The magnetic 

force does not work.

    Spatial components:   
d p

i

d τ
=F

i ν
jν 

d p
1

d τ
=F

10
j0+F

11
j1+F

12
j2+F

13
j3=q γEx−Bz (−qu

y)−B y qu
z
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g⃗=d p⃗

d τ
=γq E⃗+q u⃗∧ B⃗=γ q( E⃗+ v⃗∧B⃗)

2 - F '
μ ν=Λμ

αΛ
ν
β F

αβ

•   
E ' x

c
=F '

10=Λ1

1 Λ
0

0 F
10+Λ1

0 Λ
0

1 F
01

(only non-zero components)

E ' x

c
=γ2 Ex

c
+β2 γ2(−

Ex

c
)   then    E 'x=Ex

•   
E ' y

c
=F '

20=Λ2

2Λ
0

0 F
20+Λ2

2Λ
0

1 F
21

E ' y

c
=γ

Ey

c
−βγB

z   then   E ' y=γ(Ey−v Bz )

•   
E ' z

c
=F '

3 0=Λ3

3Λ
0

0 F
30+Λ3

3 Λ
0

1 F
31

E ' z

c
=γ

E z

c
−βγ(−B y)   then   E 'z=γ(E z+v B y)

•   B' x=F '
32=Λ3

3Λ
2

2 F
32
   then   B' x=Bx

•   B' y=F '
1 3=Λ1

0Λ
3

3 F
0 3+Λ1

1Λ
3

3 F
13

B' y=−βγ(−
E z

c
)+γ B y   then   B' y=γ(By+β

E z

c
)

•   B' z=F '
21=Λ2

2 Λ
1

0 F
20+Λ2

2Λ
1

1 F
21

B' z=−β γ
E y

c
+γB z   then   B' z=γ(B z−β

E y

c
)

The transformations of ⃗E and ⃗B are very di5erent from the 

Lorentz transformation.
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Transformation 

of the

electromagnetic -eld

3 -  Fμν=gμαgνβ F
αβ
. Only the diagonal terms of the 

metric are nonzero, hence: Fμν=gμμ gν ν F
μν
. They will 

therefore di5er, at most, by one sign. The tensor remains 

antisymmetric and the diagonal elements zero. The 

magnetic block (3x3 submatrix) remains the same:

 F i j=gi i g j j F
i j=(−1)(−1)F

i j=F
i j

The electric blocks change sign:

F0 j=g00 g j j F
0 j=(+1)(−1)F

0 j=−F
0 j

F=Fμν=(
0

Ex

c

Ey

c

E z

c

−
E x

c
0 −B z B y

−
E y

c
B z 0 −Bx

−
E z

c
−By Bx 0

)
427

{
E'

x
=E

x

E' y=γ(E y−βc B z)

E'
z
=γ(E

z
+ β c B

y
)

B 'x=Bx

B ' y=γ(B y+β Ez /c)

B ' z=γ(Bz−βE y/c)



4 - • Invariant F
μν

Fμν : 16 components including 4 

nulls, remaining 12 and 2 groups of 6 alike.
F

μν
Fμν=

F
01

F01+F
10

F10+F
02

F02+F
20

F20+F
03

F03+F
20

F30

+ F
12

F12+F
21

F21+F
13

F13+F
31

F31+F
23

F23+F
32

F32

F
μν

Fμν=−
Ex

2

c
2
×2−2

Ey

2

c
2
−2

E z

2

c
2
+2 (Bx

2+B y

2+Bz

2)

Invariant: ⃗B
2−

E⃗
2

c
2.

• Invariant ϵμ ναβ
Fμν Fαβ : the tensor ϵ

μ ναβ
 has 44 

components of witch 4!=24 non-zero.

ϵμ ναβ
Fμν Fαβ=

ϵ0 12 3
F01 F23+ϵ

0 13 2
F01 F32+ϵ

0 2 13
F02 F13

+ϵ0231
F02 F31+ϵ

0312
F03 F12+ϵ

0321
F03 F21

+ϵ1 0 23
F10 F23+ϵ

1 0 32
F10 F32+ϵ

1 2 03
F12 F03

+ϵ1 23 0
F12 F30+ϵ

1 3 02
F13 F02+ϵ

1 3 20
F13 F20

+ϵ2 1 0 3
F21 F03+ϵ

21 30
F21 F30+ϵ

20 1 3
F20 F13

+ϵ2031
F20 F31+ϵ

2310
F23 F10+ϵ

2301
F23 F01

+ϵ3 1 2 0
F31 F20+ϵ

3 1 02
F31 F02+ϵ

32 1 0
F32 F10

+ϵ3201
F32 F01+ϵ

3 012
F30 F12+ϵ

3021
F30 F21

Each component appears eight times: the antisymmetries 

on each Fμν compensated in sign by the ϵ
μ ναβ
, and the 

interversion of the two Fμν which corresponds to two 

permutations in the ϵμ ναβ
. There are thus only three types 

of components:

ϵμναβ
Fμν Fαβ=8(−Ex Bx−E y By−E z B z)/c

Invariant: ⃗E⋅B⃗.
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Lorentz invariants       B⃗
2−

E⃗
2

c
2

E⃗⋅⃗B

5 -a- The correction is succinct because the solution is the 

one given in an electrostatics course. 

For an in,nite plate of surface density σ we have the 
electric ,eld at the intersection of two planes of symmetry 

of the charge distribution and hence along z. We choose 

the usual Gaussian surface to ,nd the ,eld. We apply the 

principle of superposition with a second plane of opposite 

charge distant from e. Conclusion: the electric ,eld is zero 

outside the plates and is equal inside: 

E⃗=−σ
ϵ0

u⃗z

F
μν=(

0 0 0 σ/ϵ0 c

0 0 0 0

0 0 0 0

−σ /ϵ0 c 0 0 0
)

(zero tensor outside the plates)

 b- Appears in R' the surface current density ⃗jS=−σ v⃗ on 

the upper plane. The magnetic ,eld is along y because it 

is perpendicular to the plane of symmetry of the current 

distribution. We ,rst apply Ampere's theorem to the upper 

plane only. With the usual rectangular contour we ,nd the 

,eld. Using the principle of superposition we ,nd a zero 

magnetic ,eld outside the plates, and inside we have:

B⃗ '=−μ0σ v u⃗ y
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F '
μν=(

0 0 0 σ/ ϵ0 c

0 0 0 −μ0σ v

0 0 0 0

−σ/ϵ0 c μ0σ v 0 0
)

         (zero tensor outside the plates)

 c- We use the ,eld transformation formulas that we have 

previously established:

E 'z=γE z     and     B' y=γβ
E z

c
=γ v σ

ϵ0 c
2
=−γμ0 σ v

F '
μν=(

0 0 0 γσ /ϵ0 c

0 0 0 −γμ0σ v

0 0 0 0

−γσ/ϵ0 c γμ0σ v 0 0
)

The result di5ers by a factor γ. For a relativistic observer of 
R' the lengths of R are contracted by a factor γ along x. 
Thus the surface elements, which contain charges at rest, 

are contracted and the surface density is multiplied by γ. 
Similarly for the current density. This explains the expression 

of the tensor: σ '=γσ.

Lorentz invariants:

B⃗
2− E⃗

2

c
2
=0−(

σ
ϵ0 c )

2

=− σ2

ϵ
0

2
c

2

B⃗'
2− E⃗ '

2

c
2
=(γβ

σ
ϵ0 c )

2

−(γ
σ
ϵ0 c )

2

=− σ2

ϵ0

2
c

2
γ2(1−β2)=− σ2

ϵ0

2
c

2

For the second invariant, it is zero in R because the 

magnetic ,eld is zero, and it is zero in R' because the ,elds 

are orthogonal.

6- In the reference frame R' where the charges are at rest, 
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the charge volume density is lower by a factor γ 
compared to that shown in the lab reference frame 

where the charges are moving. We apply Gauss' 

theorem. The electric ,eld in R' has the expression outside 

the charge distribution:

E⃗ '=−
n er

2

2 γρϵ0

u⃗ρ       (q=−e)     and     ⃗B'=0⃗.

In the laboratory reference frame R :   ⃗E=−n er
2

2ρϵ0

u⃗ρ.

In this frame the charges are in motion and an orthoradial 

magnetic ,eld appears. ⃗v=v u⃗z and the current is along 
−u⃗z. The magnetic ,eld therefore rotates in the retrograde 

direction. For the norm of the ,eld we use a Lorentz 

invariant:

B⃗
2−

E⃗
2

c
2
=B⃗ '

2−
E⃗ '

2

c
2

B⃗
2= E⃗

2

c
2
− E⃗ '

2

c
2
=( ner

2

2ρϵ0 c )
2

(1− 1

γ2 )=( ne v r
2

2 γρϵ0 c
2 )

2

Finally:   ⃗B=−
μ0 nev r

2

2 γρ
u⃗θ 

9. Maxwell's equation                                Exercise p255.

1 -a- Newton's second law: m a⃗=F⃗. In classical mecha-

nics, mass and force are invariant: m=m' and ⃗F=F⃗ '. The 

acceleration also does not change, because, for a 

Galilean transformation, R' is in uniform rectilinear trans-

lation with respect to R: ⃗vR' /R= c⃗st and ⃗a= a⃗ '. Thus, in the 

new reference frame of inertia R', Newton's law is also 

veri,ed: the force exerted on an object gives it an 

acceleration equal to the force vector divided by the 
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object's mass. Note that this is not the case in a non-

galilean frame of reference, where, for example, an 

object can set itself in motion without any forces being 

exerted on it (through what are sometimes called ,ctitious 

forces of inertia). 

 b- The magnetic force is not invariant under the Galilean 

transformation: ⃗v≠ v⃗ '. We then consider the sum of the 

electric and magnetic forces, called the Lorentz force, 

which we believe to be Galilean invariant. In return, the 

,elds depend on the reference frame: 

R :  ⃗F=q E⃗+q v⃗∧B⃗          R' :  ⃗F '=q E⃗ '+q v⃗ '∧B⃗ '

but  ⃗v=v⃗
e
+ v⃗ '  and  ⃗F=F⃗ ',  then: 

E⃗ '+ v⃗ '∧B⃗ '=E⃗+( v⃗
e
+ v⃗ ')∧ B⃗=(E⃗+ v⃗

e
∧ B⃗)+ v⃗ '∧( B⃗)

{ E⃗ '=E⃗+ v⃗e∧B⃗

B⃗ '=B⃗
     and   {

E ' x=Ex

E ' y=E y−v B z

E ' z=E z + v By

B ' x=Bx

B ' y=B y

B ' z=B z

On the left are the transformation laws in vector form 

which are general and apply to all Galilean transfor-

mations. Those on the right correspond to a standardl 

transformation to which we can always return by a 

suitable choice of axes. From the relativistic ,eld transfor-

mation laws given on page 427 we ,nd the right expres-

sions by making c tend to in,nity. 
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 c- Second equation: the divergence of the magnetic 

,eld is zero, which means that there are no magnetic 

monopoles. 

The magnetic Sux is conserved on a ,eld tube. 

It is clearly Galilean invariant because the nabla operator 

and the magnetic ,eld are invariant: 

Conclusion:   ⃗∇ '⋅B⃗ '=∇⃗⋅B⃗=0.

First equation:   ⃗∇ '∧E⃗ '=−
∂ B⃗ '

∂ t '

∇⃗∧(E⃗+ v⃗ e∧B⃗)=−(∂∂t
+ v⃗e⋅⃗∇) B⃗

∇⃗∧E⃗+∇⃗∧( v⃗ e∧ B⃗)=−∂ B⃗

∂t
−( v⃗ e⋅⃗∇)B⃗

∇⃗∧ E⃗+ v⃗
e
(∇⃗⋅B⃗)− B⃗(∇⃗⋅v⃗

e
)+(B⃗⋅⃗∇ ) v⃗

e
−( v⃗

e
⋅⃗∇) B⃗=−∂ B⃗

∂ t
−( v⃗

e
⋅⃗∇ ) B⃗

The curl of the cross product gives 4 terms: the ,rst is zero 

(⃗∇⋅B⃗=0) and so are the next two because ⃗ve is a 

constant vector (all derivatives are zero).

Conclusion:   ⃗∇∧ E⃗=−
∂ B⃗

∂ t
.

 d- Third equation: local expression of the Gauss' theorem. 

The divergence of the electric ,eld is zero in the absence 

of charge, the electric Sux is then conserved.

∇⃗ '⋅⃗E '=∇⃗⋅( E⃗+ v⃗e∧B⃗)=0

∇⃗⋅E⃗+∇⃗⋅( v⃗ e∧ B⃗)=∇⃗⋅E⃗+ B⃗⋅(∇⃗∧ v⃗e)−v⃗ e⋅(∇⃗∧B⃗)=0

∇⃗∧ v⃗e= 0⃗      and      ⃗∇∧B⃗=∇⃗ '∧B⃗ '=μ0ϵ0

∂ E⃗ '

∂ t

Conclusion:   ⃗∇⋅E⃗=μ0ϵ0 v⃗ e⋅
∂ E⃗ '

∂t
≠0
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Fourth equation: local expression of Ampere's theorem.

∇⃗ '∧B⃗ '=μ0ϵ0

∂ E⃗ '

∂ t '

∇⃗∧B⃗=μ0ϵ0( ∂∂t
+ v⃗e⋅⃗∇ )( E⃗+ v⃗e∧B⃗)

∇⃗∧B⃗=μ0ϵ0

∂ E⃗

∂ t
+μ0 ϵ0( v⃗e∧

∂ B⃗

∂t
+( v⃗e⋅⃗∇ ) E⃗+(v⃗e⋅⃗∇)( v⃗e∧B⃗))

We have three extra terms. To prove that their sum is not 

identically zero, we just need to ,nd a special situation 

where this is the case. Let us consider a standard 

transformation, in this case ( v⃗ e∧ )x=0 and:

(∇⃗∧B⃗ )x=(μ0ϵ0

∂ E⃗

∂ t )x

+μ0 ϵ0 v
∂Ex

∂ x
.

The last term has no reason to be identically zero.

Conclusion:   ⃗∇∧B⃗≠μ0ϵ0

∂ E⃗

∂ t
.

2 -a- We can consider the standard Lorentz transform 

without losing generality.

• ⃗∇⋅B⃗=
∂Bx

∂ x
+
∂By

∂ y
+
∂B z

∂ z

so     
∂
∂ct

=γ ( ∂
∂ ct '

−β ∂
∂ x ' ),       

∂
∂ x

=γ( ∂∂ x '
−β ∂

∂ ct ' ),

        
∂
∂ y

=
∂
∂ y '
     and     

∂
∂ z

=
∂
∂ z'
.

∇⃗⋅B⃗=γ( ∂B' x

∂ x '
−β

∂B 'x

∂ ct ' )+γ
∂(B ' y−βE ' z /c)

∂ y '
+γ

∂(B' z+βE ' y /c)

∂ z '

∇⃗⋅B⃗=γ∇⃗ '⋅B⃗ '−v γ (∂B ' x

∂ t '
+[ ∂E ' z

∂ y '
−
∂E ' y

∂ z ' ])
The ,rst term on the right is zero and the second term also 
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because it is the x component of the ,rst Maxwell 

equation.

Conclusion:  ⃗∇⋅B⃗=0.

•  (∇⃗∧E⃗+ ∂ B⃗

∂ t )x

=
∂ E z

∂ y
−
∂E y

∂ z
+
∂Bx

∂ t

= γ
∂(E 'z−β c B ' y)

∂ y '
−γ

∂(E ' y+βc B ' z)
∂ z '

+γ( ∂B' x

∂ t '
−v

∂B 'x

∂ x ' )
=−γ v ∇⃗ '⋅B⃗ '+γ (∇⃗ '∧ E⃗ '+∂ B⃗'

∂ t ' )x '

=0

(∇⃗∧ E⃗+ ∂ B⃗

∂t )y

=
∂Ex

∂ z
−
∂ E z

∂ x
+
∂By

∂ t

=
∂ E 'x

∂ z '
−γ2( ∂

∂ x '
−β ∂

∂ ct ' )(E ' z−βc B ' y)

+ γ2 ( ∂∂t '
−v

∂
∂ x ' )(B ' y−βE ' z /c )

=
∂ E 'x

∂ z '
−(1−β2) γ2 ∂E ' z

∂ x '
+(1−β2) γ2 ∂B ' y

∂ t '
+0+0

=( ∇⃗ '∧E⃗ '+∂ B⃗ '

∂ t ' )y '

=0

(∇⃗∧ E⃗+ ∂ B⃗

∂t )z

=
∂Ey

∂ x
−
∂Ex

∂ y
+
∂Bz

∂ t

= γ2 ( ∂
∂ x '

−β ∂
∂ ct ' )(E ' y+β c B 'z )−

∂E ' x

∂ y '

+ γ2 ( ∂∂ t '
−v

∂
∂ x ' )(B 'z+βE ' y /c)

=(1−β2) γ2 ∂E ' y

∂ x '
−
∂E ' x

∂ y '
+(1−β2)γ2 ∂B' z

∂ t '
+0+0

=( ∇⃗ '∧E⃗ '+ ∂ B⃗ '

∂ t ' )z'

=0
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Conclusion:  ⃗∇∧ E⃗=−
∂ B⃗

∂ t
.

• ⃗∇⋅E⃗=
∂Ex

∂ x
+
∂ Ey

∂ y
+
∂Ez

∂ z

∇⃗⋅E⃗=γ (∂E ' x

∂ x '
−β

∂ E' x

∂ ct ' )+γ
∂(E ' y+βc B 'z )

∂ y '
+γ

∂(E' z−βc B' y)

∂ z '

∇⃗⋅E⃗=γ ∇⃗ '⋅E⃗ '−v γ ( 1

c
2

∂E ' x

∂ t '
−[∂B ' z

∂ y '
−
∂B' y

∂ z ' ])
The ,rst term on the right-hand side is zero and the 

second term is also zero because it is the x component of 

the fourth Maxwell equation.

Conclusion:    ⃗∇⋅E⃗=0.

• The veri,cation of the Lorentz invariance of the fourth 

Maxwell equation is left to the insight of the reader.

 b- Conservation of charge equation:    ∂μ j
μ=0.

with    
~
j=ρ

p
~u=(ρc ,ρ v⃗ )    and    ρ=γρp.

Demonstration:     ∂μ j
μ=

∂ρ c

∂ct
+ ∇⃗⋅(ρ v⃗)=

∂ρ
∂t

+∇⃗⋅⃗ j=0.

 c- Lorentz condition:     ∂μ A
μ=0.

Demonstration:     ∂μ A
μ=

∂V /c
∂ ct

+∇⃗⋅A⃗=
1

c
2

∂V

∂ t
+∇⃗⋅A⃗=0.

Let us propose the following antisymmetric tensor:

 F
μ ν=∂μ

A
ν−∂ν

A
μ

Demonstration: 

•  F
0 1=∂0

A
1−∂1

A
0=

∂ A
x

∂ct
+
∂V /c
∂ x
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moreover     ⃗E=−∇⃗ V−
∂ A⃗

∂ t
     then     F

01=−
Ex

c
.

•  F
12=∂1

A
2−∂2

A
1=−

∂ A
y

∂ x
+
∂ A

x

∂ y
=−(∇⃗∧ A⃗)z=−B z.

and so on

 d- • ∂μ F
μ 0=μ0 j

0=μ0ρ c=∂1 F
10+∂2 F

20+∂3 F
30 

∂x Ex/c+∂ y Ey /c+∂z E z/c=ρ/ϵ0 c    and    ⃗∇⋅E⃗=ρ/ϵ0.

• ∂μ F
μ i=μ0 j

i

∂μ F
μ 1=μ0 j

x=∂0 F
0 1+∂2 F

21+∂3 F
31

−∂ct E x /c+∂ y B z−∂z B y=μ0 j
x

−
1

c
2

∂E x

∂ t
+(∇⃗∧B⃗)x=μ0 j

x

,,,

∇⃗∧B⃗=μ0 j⃗+
1

c
2

∂ E⃗

∂ t

 e- • ∂i
F

j 0+∂ j
F

0 i+∂0
F

i j=0  &  i≠ j

∂1
F

20+∂2
F

01+∂0
F

12=0=∂x
Ey /c−∂ y

E x /c−∂ct Bz

0=−(∇⃗∧E⃗)z−
∂B z

∂ t
  ...  ⃗∇∧ E⃗=−

∂ B⃗

∂ t

• ∂1
F

23+∂2
F

31+∂3
F

12=0

−∂x
B x−∂ y

B y−∂z
B z=∇⃗⋅B⃗=0

 f- ∂μ F
μ ν=∂μ(∂

μ
A

ν−∂ν
A

μ)=∂μ∂
μ

A
ν−∂ν∂μ A

μ=μ0 j
ν

∂μ∂
μ

A
0−∂0∂μ A

μ=μ0 j
0
    and    ∂μ∂

μ
A

i−∂i∂μ A
μ=μ0 j

i

Then:   □V − ∂
∂ t ( 1

c
2

∂V

∂t
+∇⃗⋅A⃗)= ρ

ϵ0
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And:   □ A⃗+∇⃗ ( 1

c
2

∂V

∂ t
+∇⃗⋅A⃗)=μ0 j⃗

With the Lorentz condition:    □ V=
ρ
ϵ0
,    □ A⃗=μ0 j⃗.

Covariant form:  □~
A=μ0

~
j  and   ∂μ∂

μ
A

ν=μ
0

j
ν
.

3 -  Gauge:    ∀ f A ' μ=Aμ+∂μ f  

Then:

 F '
μ ν=∂μ

A '
ν−∂ν

A '
μ=∂μ (A

ν+∂ν
f )−∂ν(A

μ+∂μ
f )

F '
μ ν=∂μ

A
ν−∂ν

A
μ+∂μ∂ν

f−∂ν∂μ
f=F

μν

The ,eld tensor is not modi,ed.

The Lorentz condition ∂μ A
μ=0 gives:

∂μ A '
μ=∂μ(A

μ+∂μ
f )=∂μ A

μ+∂μ∂
μ

f      and      □ f=0.
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1. Units                                               Exercise page 273

Units of P :   [P]=W=
J

s

[ 2e
2

3c
3 a

2 ]=C
2
s

3
N

2

m
3
kg

2 =
C

2
s

4
N

m
4
kg

2

J

s
=

C
2

m
2
N

J

s

with   N . m=J   and   
kg . m

s
2 =N.   Moreover  [ 1

4 πϵ0
]=N m

2

C
2  

then we obtain the good expression:

 P=
1

4 πϵ0

2e
2

3c
3 a

2=
e

2
a

2

6πϵ0 c
3

2.  Relativistic equation of motion          Exercise p273

f x=
d px

dt
= d

dt (m
v x

√1−
vx

2

c
2 )     and     ax=

f x

m (1− v x

2

c
2 )

3

2

3. Radiation damping 4-force          Exercise page 274

1- (d w
μ

d τ
−

u
μ
u
ν

c
2

d wν

d τ )uμ=
d w

μ

d τ
uμ−

u
μ
uμu

ν

c
2

d wν

d τ
=0

because   uμ
uμ=~u⋅~u=c

2   and   a
μ
bμ=gμν a

μ
b
ν=b

ν
aν .

2- g
1=

1

4 πϵ0

2e
2

3 c
3 (d w

1

d τ
−

u
1
u

0

c
2

d w
0

d τ
−

u
1
u

1

c
2

d w
1

d τ )   ~u=γ(c , v)

d w
1

d τ
−γ2 v

c

d w0

d τ
−γ2 v

2

c
2

d w1

d τ
=

d w
1

d τ
(1+γ2β2)−γ2β

d w
0

d τ

w1=g11 w
1=−w

1
      w0=g00 w

0=w
0
      1+γ2β2=γ2

~w=
d~u
d τ      

~u=
d~x
d τ

=γ
d~x
d t       

u
1=γ v      

d γ
d t

=v a

c
2
γ3
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w
1=γ

d ( γv)
d t

=γ (v
2
a

c
2 γ3+γa )=γ2

a (β2 γ2+1)=γ4
a

d w
1

d τ
=γ

d (γ4
a)

d t
=γ(4 γ

3 v a

c
2 γ

3
a+γ

4 d a

d t )=γ
5 (ȧ+4 γ

2 v a
2

c
2 )

u
0=γ c          w

0=γ
d ( γc)

d t
=γ( v a

c
γ3)=γ4βa

d w
0

d τ
=γ

d (γ4βa)

d t
=γ (4 γ

3 v
2
a

2

c
3 γ

3
+γ

4 a
2

c
+γ

4
β ȧ)

= γ5 ((1+4 γ2β2)
a

2

c
+βȧ )

d w
1

d τ
−

u
1
u
ν

c
2

d wν

d τ
 =

= γ5 [(ȧ+4 γ2 v a
2

c
2 )(1+γ2β2)−γ2β((1+4 γ2β2)

a
2

c
+β ȧ)]

= γ
5 (ȧ+3 γ

2 v a
2

c
2 )

g=
1

4πϵ0

2e
2

3c
3
γ5(ȧ+3γ2 v a

2

c
2 )=γ f

4.  Four-potential magnitude                         E. p274

In the Minkowski plan with the signs that correspond to the 

example of the course:

~r=r (1,−1)   ~u=γc(1,−β)   ~r⋅~u=r γc(1−β)   ~u⋅~u=c
2

 
~
A⋅~A=( q

4π ϵ0
)
2 (1+β)

r2(1−β)
            k

A
=

|q|

4 πϵ
0

1

r √ 1+β

1−β
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.1.  Figures                      Exercise page 305

• v=61,000 km/h, d=4 ly. t=d/v

t a=
d ly

β =4×3.10
8 3.6

61000
≃70820 yrs

• E=15.10
9×42.10

9=63.10
19

J / yr

m=
1

2

E

c
2
=

1

2

63.10
19

9.10
16
=3500kg / yr

 

• The interplanetary antiprotonic Sux is the 

same in the whole solar system. R is the radius 

of inSuence of the magnetosphere of the star:

For a heliopause at 100 astronomical units:

Outside the heliosphere the cosmic radiation 

is more important, because it is not repelled 

by the Sun. If we evaluate towards the 

maximum of the curves to 2 Gev:

ϕinside (max)≃0.015 (m2
. s . sr .GeV )−1

ϕinside (min)≃0.022(m
2
. s . sr .GeV )−1

ϕinside (moy)≃0.019 (m2
. s . sr .GeV )−1

ϕoutside≃0.034(m2
. s . sr .GeV )−1

ϕoutside

ϕinside
≃1.8    and    Φout≃ 370 000 t / yr .
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Φh≃207.10
6
kg / yr

9

Φheliosphere

4π Rheliosphere

2
=

Φplanet

4 πR planet

2

Φh=ΦJ ( Rh

45 R J
)

2

≃9.1(100×150.10
6

45×69911 )
2



2. The distances of stars over time       Exercise p309

v≃34 km /s        vmin≃23km / s       vV 1≃17km /s

3. Sling e@ect                                   Exercise page 309.

a - Composition of velocities: ⃗va=v⃗e+v⃗r

v⃗a= v⃗R(M ) : "absolute" velocity.

v⃗e= v⃗R (0 ' )+Ω⃗∧O⃗ ' M= v⃗R(0 ' ) : coinciding velocity 

(the planetocentric reference frame is in circular 

translation with respect to the heliocentric reference 

frame).

v⃗r= v⃗R' (M ) : relative velocity.

Hence the expression of the heliocentric velocity of 

the spacecraft:  ⃗v= v⃗J+ v⃗S / J. 
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On the graph provided by NASA, the trajectory of 

the probe is represented in the reference frame 

which has for origin Jupiter and directions of distant 

stars supposed ,xed. This trajectory is hyperbolic, 

symmetrical and the planetocentric velocity of the 

probe ⃗vS /J  is tangent to this trajectory. The time of 

the deviation, the heliocentric velocity of Jupiter 

can be considered as a constant vector:

We estimate αi and αf on the graph. The straight line 

D2 is placed along the asymptote estimated in +∞. 

The straight line D1 is the central axis and the second 

asymptote D3 is obtained by symmetry. The angle 

between D2 and D1 is estimated at 41°. The 

deSection D is therefore about 98°.

The heliocentric motion of Jupiter is supposed to be 

circular, so the velocity of Jupiter is orthoradial along 

D5 and perpendicular to the line D4 aligned with the 

shadow of the Sun at large distance.

Angle between D5 and D3 :  αi
≃61°.

Angle between D2 and D5 :  α f
≃21°.
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Geometric resolution:

We will carry out a graphical construction with a 

graduated ruler, compass and protractor. The results 
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are shown on the drawing.
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Analytical resolution:

Let's apply the trigonometric properties of triangles: 

A⃗B⋅⃗AB=A⃗C⋅⃗AC+2 A⃗C⋅⃗CB+C⃗B⋅⃗CB

then: v i

2=vJ

2−2 vJ vSJ cosα i+vSJ

2
   (1)

and: v f

2=vJ

2+2 vJ vSJ cosαf +vSJ

2
   (2)

cf(1)+ci(2) : vSJ

2=
c f v i

2+ci v f

2

ci+cf

−v
J

2

After some calculations, we obtain a quadratic 

equation with respect to v f

2
 and ,nally:

v f=√vi

2+2(ci+cf )v J [c i vJ±√v i

2−si

2
vJ

2 ]

Limit case: α
i
=α

f
=0

Case of maximum deviation / half turn:D=π.
We obtain: Δ v=v

f
−v

i
=±2 v

J  OK.

The sign changes depending on whether ⃗v
i
 is in the 

opposite direction of ⃗v
J
 or in the same direction. 

When I shoot with a ball on the back of the train 

when it moves away, the ball is slowed down (the 

ball reaches the train if v
i
>v

J
).

Limit case: αi+α f=π (no deviation)
 ci+cf=cosαi+cos (π−αi)=0  and  v f

=v
i  OK.

Numerical application: 
v

i
=12.6km / s,    vJ

=12.8 km /s
then    v f

≃24.4km / s   and   Δ v≃11.8 km/ s

Values consistent with those observed on the curve 

on page 283.
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b -  We estimate the velocity at the periastron with 

the average between M-1 and M1 : vPJ
≃28 km/ s.

In the heliocentric frame of reference:

v P

2=vJ

2−2 vJ vPJ cos ( π2 +δ)+v PJ

2

and   v
P
≃37km / s  (as on the speed pro,le)

Theorem of angular momentum:

d σ⃗
dt

= r⃗∧F⃗=0⃗ (central force)   and   ⃗σ=m r⃗∧ v⃗=c⃗st

then:    b v
SJ
=r

min
v

PJ    with  vSJ
=v∞

We estimate v19 on the NASA graph and with  the 

conservation of mechanical energy we ,nd v∞ and 

then b:

1

2
v19

2−
G M J

r19

=
1

2
v∞

2    and    b=
v

PJ

vSJ

rmin≃12 R J

c -  p=
rmin

2
vPJ

2

G M J

≃11.5 R
J

At periastron θ=0,  rmin
=

p

1+e
  &  e=

p

rmin

−1≃1.3>1.

Moreover:  θmax=arcos(−1

e )≃139°,

also   α f
+α

i
=2π−2θ

max
=π−D    and   D≃98°.

d - • From the formula, we see that vf is maximal for 

cf =1, so  αf =0. The calculation then gives: 

v
f
≃24.8km / s and Δ v≃12.2km / s.

Interstellar speed calculation:
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1

2
m v f

2−G
m M S

DJS

=
1

2
m v∞

2

v∞=√v f

2−
2G M S

D JS

≃16.8km / s≃60400km /h .

Instead of 50,000 km/h for Voyager 1 (if it had not 

then taken advantage of Saturn).

• Ellipse:    
1

2
m v i

2−G
m M S

DJS

=−G
m M S

2a

1

2 a
=

1

DJS

−
v i

2

2 G M S

     then     a≃763.4×10
6
km.

Speed on the ellipse at the level of the Earth:

v=√2 G M S( 1

DTS

−
1

2a )≃40.049km / s

For the semi-minor axis:   b=√ p a

p=
DST

2
v

2

G M s

      then      b≃454×10
6
km.

For  the angle:     cst=L /m=DSJ v i sinθ=DST v  

  sinθ=
DST v

D SJ vi

   and   θ≃36.5 °.

At the Earth level: vT≃30km / s then Δ v≃10km /s, 

increase of speed necessary to leave the Earth 

circular orbit. Kinetic energy provided by the Titan 

rocket. 

To increase the slingshot e5ect, we can think of 

decreasing the angle θ. Hence a greater speed 
given by the rocket to join a wider ellipse (case in 

gray). 
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On the other hand, as the speed at the  approach 

to Jupiter is higher, the angle αi will increase. For 

example, if, with a larger amount of propellant, we 

increase the initial ∆v by 1 km/s, we gain 4.2 km/s of 

interstellar speed. The approach seems to be valida-

ted, it is much more interesting to use the propellant 

at the Earth level than after (Oberth e5ect). We 

summarize all the results on the next page. We 

consider the optimal case where α f=0 °.

By further increasing the initial velocity at the 

departure of the Earth orbit, the trajectory is no 

longer elliptical and becomes hyperbolic. At the 

same time, the impact parameter decreases and 

care must be taken not to collide with Jupiter: rmin>RJ. 

The ∆v is thus limited to 4.8km/s: the probe already 

goes much faster than the Voyager probes.
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+
km
/s

a
(106

km)

b
(106

km)

rmin

(RJ)
θ

(°)
v SJ

(km
/s)

αi

(°)
v f

(km
/s)

Δ v

(km
/s)

v inter

(103

m/s)

(103

km
/h)

0 763 454 2.3 36.5 11.4 62.4 23.5 10.9 15.9 57

1 1424 636 1.8 29.8 14.4 69.2 27.2 11.7 20.1 72

2 16647 1942 1.5 26.0 16.9 73.1 29.7 11.7 23.4 84

3 hyp. hyp. 1.3 23.6 19.1 75.7 31.9 11.7 26.2 94

4 hyp. hyp. 1.12 21.8 21.2 77.6 34.0 11.7 28.6 103

4.8 hyp. hyp. 1.01 20.7 22.7 78.8 35.5 11.7 30.4 110

5 hyp. hyp. 0.99 <col. x x x x x x

• Mars: The planet has an orbital velocity of 24 km/s 

and the slingshot ∆v could seemingly reach a 

whopping 48 km/s. On the other hand, the mass of 

Mars is small compared to the giant planets, and 

since the mass of the planet is not concentrated in 

one point, we are limited by the minimum approach 

distance RM. The ∆vsling is under the best conditions a 

small 0.6 km/s. 

• Modeling Voyager 1 : The spreadsheet gives us a 

good correspondence with the historical values. Our 

simplifying assumptions are thus validated: helio-

centric motions of the planets, coplanar orbits, 

Hohmann orbit (minimal energy to be provided).
File: www.voyagepourproxima.fr/docs/FrondesVoyager1.ods

• Project Voyager 3 : We have chained the 4 

successive slingshot of Jupiter, Saturn, Uranus and 

Neptune. By optimizing the approach distances, 

with a surplus of 4.8 km/s at the level of the Earth, we 
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reach 140 000km/h. More than twice the speed of 

the historical Voyager probes.
File: .../docs/FrondesVoyager3.ods

• A simple solution that does not require additional 

fuel: the last sling is used to deviate the trajectory. By 

a tiny correction, just after the penultimate slingshot, 

we can freely choose the future impact parameter, 

as much in value as in direction. We could thus 

target a star outside the ecliptic plane:

There is one limitation, however: the minimum 

approach distance. For the same approach 
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distance, the faster the probe goes, the smaller the 

deviation. On the contrary, the deviation increases 

with the mass of the planet and its density. 

To reach Proxima the deviation must be between 

40° and 140° depending on the position on the 

ecliptic at the time of the exit:

At the level of Neptune the speed of the probe is just 

high, nevertheless Neptune is more massive and 

dense than Uranus. Let's have a look on our spread-

sheet to see what the numerical value is: we obtain 

a deviation of about 20°. This is not enough to go to 

Proxima. We give a non-exhaustive list of options:

- Could we get more slings to increase this 

deFection?

- The satellites of Neptune? For example, 

Triton, the most massive and dense, would give only 

one tenth of a degree of additional deviation. The 

same for Pluto, or the asteroids of the Kuiper belt 

(located after Neptune between 30 and 55 au). The 

masses of all these bodies are too small. Unless we 

string together dozens of small slingshots?
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- A 2019 study hypothesizes the existence of 

Trans-Neptunian primordial black holes at 300 au 

(see exercise p329). These small black holes of 5 

Earth masses would give a more than suCcient 

deSection, up to 145°.

- The hypothetical planet 9? To explain 

certain anomalies in the trajectories of planets, there 

is the hypothesis of a planet of ,ve Jovian masses at 

8000 au. The deviation could reach 115°.

- Do we need to change the global pattern of slings 

and propellant use?

- To obtain, at the level of Neptune, a higher 

deviation, we can remove the impulse of 4.8 km/s at 

the Earth level. The probe arrives more slowly and we 

obtain then a deviation of 30°. This is better but still 

insuCcient.

- We can limit the slingshot to the Jupiter-

Saturn pair. Jupiter for the speed increase and 

Saturn for the deviation. For Proxima, we must then 

use propellants to reach 137 000 km/h. The mass of 

the whole becomes more important.

On page 328, thirteen nearby stars are represented 

with their characteristics.
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• We will investigate the possibility of a gravitational 

slowdown of the Voyager 3 probe using the four 

currently known components: 

The star Alpha Centauri A: MA=1.1MS,  RA=1.23 RS.

The star Alpha Centauri B: MB=0.91MS,  RB=0.87 RS.

Distance between the two stars:  DAB=23 au.

The star Proxima Centauri:  MC=0.123MS,  RC=0.141 RS.

Distance between Proxima and AB:  DP-AB≃13,000 au.

The planet Proxima Cent. b:  MPb≃1.27MT,  RPb≃1.08 RT.

Distance:  DP-Pb≃0.0485 au.

Finally, we have two rather distant subsystems: the A-

B pair and the star-planet pair. Let's imagine that the 

probe goes back and forth between these two pairs 

to slow down and ,nally orbit around one of them. 

→ A-B: Let us consider, ,rst of all, the two stellar 
components Alpha Centauri A and B. These have 

masses similar to our Sun. To simplify, we can model 

by a system consisting of two stars in circular motion. 

The two components rotate around their barycenter 

G middle of the segment [AB]. 

Kepler's law for the ,ctitious particle M (formulas 

page 98):

 
a

3

T
2
= α

4 π2μ
      with      α=G M A M B

Moreover    μ=
M A M B

M A+M B

   then   
R

3

T
2
=

G(M A+M B)

4π2

Also    ⃗A B=G⃗M    and    R=GM=DAB ,
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 T=√ 4 π2
DAB

3

G(M A+M B)
    &    v=

2π R

T
=√G(M A+MB)

DAB

v is the speed of the ,ctitious particle.

Let's determine vA and vB :

G⃗ A=−
M B

M A+M B

G⃗M      and      vA=
M B

M A+M B

v

NA:     T≃78 yrs,     v≃8.82km/s,

vA≃3.99km / s    and    vB≃4.82 m /s.

For a U-turn, one must slow down with one 

component and accelerate with the other, 

however, it can be arranged so that deceleration 

prevails:

Slingshot U-turn using a binary system. With a single star, 

we can not make a perfect half-turn, it will always lack a 

few degrees. To form a couple, we can also use a gas 

giant. Here, the Alpha Centauri A / Alpha Centauri B 

system  for Voyager 3 with an initial speed of 

140 000 km/h.
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→ P-Pb:  Let's determine the velocity of Proxima in 
the frame of reference of AB. The star Proxima is far 

from the system AB and has a small mass compared 

to this system. We can thus consider the stellar 

system AB punctual and ,xed in G=A=B. The formu-

las are the same as before, replacing DAB by DP-AB:

NA:    T P≃1 million years,    vP /AB≃0.37km /s.

Period and velocity of the planet Proxima b in the 

Proxima reference frame ( in this case G=P) :

T=√ 4π2
DP−b

3

G M P

     and     v=√G M P

DP−b

NA:    T b≃11days,    vb/P≃47.5km / s.

We can consider the star as ,xed. Here, the turn 

around is not possible, because the planet is not 

massive enough and the deviation that it gives to 

the probe is too weak to complete the turn around 

started with the star.

→ Conclusion: With the known components, the 
slingshot e5ect cannot slow down the probe 

suCciently. But, there are most probably many 

Jovian components that will be discovered later and 

that will allow the probe to be put into orbit using 

little propellant. 
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We can broaden our view of the slingshot e5ect by 

reversing the direction of time. For example, for the 

train, by reversing the arrow of time, the ball arrives 

at 130 km/h on a train that is going away in reverse 

at 50 km/h and the ball returns to the child's hand at 

30 km/h. This is a feasible experiment. This is why the 

slingshot e5ect can speed up as well as slow down. 

If we rewind the movie of Voyager 3's four successive 

slingshots, it arrives from the interstellar medium to 

slow down with Neptune, Uranus, Saturn, Jupiter, 

and ,nally decelerate by 4.8 km/s using propellants 

to orbit the Earth. There is a good chance that the 

probe, when it arrives at a distant star system, will 

proceed in a similar way. 
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4. Numerical simulations of the slings  
Exercise p313.

1 -a- Kepler's laws: 

p=
rmin

2
vmax

2

G M S

≃149 507 901 890 m

e=
p

rmin

−1≃0.016382

rmax=
p

1−e
−1≃151998002652m

vmin=
rmin

rmax

vmax≃29310.644m / s

a=
r max+rmin

2
≃149548 038326 m

T=
2π

√G M S

a
3 /2
≃365.011days

Note: these values are not fully consistent with other 

known values (T=365.256 days, rmax=152 097 701 km 

and vmin=29 291 m/s) but we will take them as 

references to test our numerical methods.

1 -b-  Earth-Sun : We take, as an indicator of the 

global error, the distance to the Sun after one 

revolution. The laws of physics impose to come back 

to the same point. When the Earth has made a 

rotation of 360° we obtain the percentage of global 

error % er=
r sim−rtheo

r theo

 (rtheo≃1.47×10
11m):
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Step r=√x
2+ y

2 %er  / turn ΔE / kg  / yr

h=1day 1.768×1011m 20.2 % +68 MJ

h/2 1.624×1011m 10.4 % +39 MJ

h/4 1.549×1011m 5.3 % +22 MJ

h/8 1.510×1011m 2.7 % +11 MJ

The trajectories for h, h/2, h/4 and h/8:

To answer the ,rst question, it is clear that, for h=1 

day, the simulation is absolutely unsatisfactory. We 

should obtain a closed trajectory which returns 

exactly on its steps. Everything happens as if the 

mechanical energy of the system increases instead 

of remaining constant. Nevertheless the error 

decreases linearly with the step size.
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 vx ,i , n+1=vx ,i , n+F x, i(x j ,n , y j , n)Δ t    x i ,n+1=x i ,n+v x ,i ,n+1Δ t

Already for h=1 day, the error becomes much 

smaller:

rmax=152.4×10
6km, vmin=29,240 m/s and the year is 

about 366 days (anomalies: rmax and vmin do not 

occur after a half turn, nor at the same time).

For h=1/8 day:  rmax=152.004×10
6km, vmin=29,309 m/s 

and the year is about 365.0 days.

Improved Euler Method

Step r=√x
2+ y

2 %er   / turn ΔE /kg /yr

h=1day 1.47097506026×1011m -0.00039 % -149 J

h/2 1.47098004533×1011m -0.000047 % -28 J

h/4 1.47098066041×1011m -0.0000054 % -8.3 J

h/8 1.47098073350×1011m -0.00000044 % -3.4 J

The improved method is impressive, for a tiny 

modi,cation of the calculation method, we have 

results, certainly still insuCcient, but much better for a 

numerical work eight times lower! The error does not 

evolve linearly anymore, we are getting closer to 

what is called the midpoint method where the error 

decreases with the square of the numerical work. 

In conclusion, the calculation method used at each 

step appears to be a key element, more important 

than the raw computing power. We will therefore 

introduce a higher order numerical method. 

File: www.voyagepourproxima.fr/docs/Terre-Soleil-Euler.ods
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2 -a-  RK4 :

d x

dt
=A(x , y , v

x
, v

y
)=v

x,     
d y

dt
=B(x , y , v

x
, v

y
)=v

y

d vx

dt
=C (x , y ,v x ,v y)=−G M

x

(x
2+ y

2)3/2

d v y

dt
=D(x , y , vx , v y)=−G M

y

(x
2+ y

2)3/2

A1=A(xn , yn ,v xn , v y n)      B1=B(xn , yn ,v x n , v y n)

C1=C (xn , yn , vx n ,v y n)      D1=D(xn , yn ,vx n , vy n)

A2=A(xn+
h

2
A1 , yn+

h

2
B1 , vx n+

h

2
C1 , v y n+

h

2
D1)

...  ...  ...

A3=A(xn+
h

2
A2 , yn+

h

2
B2 , vx n+

h

2
C2 ,v y n+

h

2
D2)

...  ...  ...

...  ...  ...

D4=D (xn+h A3 , yn+h B3 , vx n+h C3 , vy n+h D3)

xn+1=xn+
h

6
(A1+2 A2+2 A3+A4)

...  ...

v y n+1=v y n+
h

6
(D1+2 D 2+2 D3+D4)

b- For h=1 day, h/2 and h/8:  rmax=151.998×10
6km, 

vmin=29,310.6 m/s and the year is 365.01 days. In 

accordance with the data entered.  
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Runge-Kutta 4  Method

Step r=√x
2+ y

2 %er   / turn ΔE /kg /yr

h=1day 1.4709807807×1011m 27×10-9 -120 mJ

h/2 1.4709807603×1011m 14×10-9 -3.7 mJ

h/4 1.4709807499×1011m 6×10-9 -0.11 mJ

h/8 1.4709807447×1011m 3×10-9 -0.006 mJ

This method largely outperforms the previous ones. 

File: .../docs/Terre-Soleil-RK4.ods

We were interested in the variation of distance over 

one revolution and the variation of mechanical 

energy over one year. For a mathematical study of 

the error, we perform an experiment of ,xed 

duration T, then we increase the numerical work n 

on this interval [0,  T].  And to calculate the global 

error, we must compare the numerical value with 

the theoretical one at t=T. However, we have not 

determined the expression of r(t), but only r(θ). For 

the mechanical energy, it is much simpler to 

compare to the theoretical value, because the 

theory imposes a constant energy. So we compare 

the initial value of the energy to that at an arbitrary 

T. Here we have chosen T= 365 days on the graph 

that follows.
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We plot the decimal logarithm of the error versus the 

decimal logarithm of the numerical work. On the left, the 

values for a step h of one day and a duration of 365 days, 

i.e. approximately one year (n=365). Then the points for 

h/2, h/4 and h/8 (n=730, 1095 then 1460) still over one 

year. The more the numerical work n increases, the 

smaller the error, and the faster the method is of higher 

order. For the Euler method the error decreases linearly 

with the step, here, over a decade, the error decreases 

by a factor 10. We see that the improved Euler method is 

indeed a method of order 2, over a decade, the error is 

divided by 100. For Runge-Kutta of order 4 we have a 

factor 104.
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3 -  Voyager 1 :

The trajectory of the Voyager 1 probe seen in the 

heliocentric reference frame. On top, the departure at 
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the Earth level, followed by the slingshot at the level of 

Jupiter, then Saturn, to join then the interstellar medium. 

At the bottom, the slingshot e5ect appears clearly at the 

level of Jupiter. Unlike the trajectory in the Galilean 

reference frame centered on Jupiter, the heliocentric 

trajectory is not hyperbolic.
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We ,nd the characteristics of the motion of 

Voyager 1 in agreement with our results with Kepler's 

formulas and the historical data provided by NASA. 

For Jupiter, we have the values of velocities at the 

beginning of the slingshot, at the peak, and at the 

end of the slingshot which correspond. 

Between two slingshots, there is conservation of the 

mechanical energy and angular momentum with 

respect to the Sun, the values are in adequacy. 

Between two planets, the probe can be considered 

as isolated, hence the two conserved quantities. On 

the other hand, at the time of the deviations, there is 

a transfer of energy between the probe and the 

planet. For example, the probe receives kinetic 

energy from Jupiter, so Jupiter slows down, but, 

given the mass of the planet compared to the 

probe, it is undetectable. At the moment of the 

interaction between the probe and the planet the 

mechanical energy and the angular momentum of 

467



the two bodies are conserved in the heliocentric 

reference frame.

To perfectly chain the two slings, without trajectory 

correction, a very ,ne adjustment of the initial 

conditions is required. 

Concerning the step, it would be very expensive, in 

computing time and quantity of data to be 

memorized, if we maintained it constant. We have 

chosen a step of two days in the interplanetary 

space, of two hours at the approach, and of one 

minute at the slings level. The step is automatically 

adapted according to the distance to the planet 

and the speed of the probe. It is an adaptation 

operated "by hand", the method is not general but 

adapted to this particular problem. There are 

adaptive step by step methods. The most classical 

one consists in estimating the local error at each 

step. Also, we could adapt the step according to 

the radius of curvature and the speed of the probe. 

Indeed, any trajectory is locally, in the vicinity of a 

point, contained in a plane, called the osculating 

plane. And the particle moves locally according to 

an osculating circle of radius R, called radius of 

curvature. We could consider that, at each step, in 

order to follow the curvature, the particle should not 

cover a too large portion of the circle. An adaptive 

method could impose an angular step ∆θ rather 

than a temporal step h:

a⃗=
d v

dt
u⃗t+

v
2

R
u⃗n
  =>  R=

v
2

√a
2−( dv

dt )
2
  with  

d v

dt
=

a⃗⋅⃗v

v
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and ,nally  h=
RΔθ

v
.

We did not implement this method, however, using 

these formulas, we have calculated ∆θ at each step 

to control good tracking and we have angles at 

most 1.5 degrees. First of all, this adaptive method 

would not be suitable for a 3D motion where the 

osculating plane can change permanently (as for 

the helical motion of a charged particle in a 

magnetic ,eld), moreover, the step from n to n+1 is 

evaluated from the situation at tn. But many 

unexpected things can happen between tn and tn+1. 

For example, during a step of two days, a planet or 

an asteroid can appear from "nowhere". We did not 

do it, but as here we know the position of the 

planets, we could anticipate, at each step, the next 

step. This would make the calculation lighter.

Comparison of the constant step RK4 with the variable step RK4:

For our resistance test, we took the Earth-Sun system with a 

perigee starting velocity of only 12.5 km/s. For all three numeri-

cal experiments T=1825 days ≃ 5 yrs.  

Top: h=1 day, n=1825. Unstable.

Middle: variable h, Δθ=3°, n=1533. Stable with lower n.

Bottom: variable h, Δθ=11°, n=353. Unstable.
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The RK4 scheme for Voyager 1 with its 12 degrees of 

freedom:

d xV

dt
=A (xV , yV , v xV , v y V , xJ , y J , v xJ , v yJ , x S , y S , v xS , v y S)=v xV

...    

 ... ......... 

A
1
=A (x

V n
, ... , v

y S n
)  ...  L1=L (xV n , ... ,v y S n)

A2=A (xV n+
h

2
A1 , ...)  ...   L4=L(... , v y S n+h L3)

xV n+1=x V n+
h

6
(A1+2 A2+2 A3+A4)

...  ...

v
yS n+1

=v
y S n

+ h

6
(L

1
+2L

2
+2 L

3
+L

4
)

The functions have been placed in a macro in Basic 

language.

File: Voyager-1-RK4.ods

4 -  The Voyager 3 Project: 

The route of the probe and the speed curve have 

already been given during the conference page 

288. We also note an excellent agreement with the 

,le FrondesVoyager3.ods After 27 years, we have an 

interstellar speed of 39,300 m/s or 141,000 km/h.
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d vx V

dt
=C(DOFs)=−G M

xV

( xV

2 + yV

2 )3/2
−G M

J

xV−x J

((xV−x J)
2+( yV− y J)

2)3/2
...
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We made a trajectory correction of 331 m/s at the 

periastron of Uranus.

5. Calculation of propellant masses     Exercise p320.

1 -  The system {astronaut + wrench} is isolated. It 

follows from this that the conservation of momentum 

in a galilean frame of reference. Let's take the 

barycentric reference frame, initially the whole is 

motionless, and then each part goes in the opposite 

direction. We must throw the wrench, as hard as 

possible, in the opposite direction of the station:

0⃗=m V⃗ +M v⃗     and     v=
m

M
V ≃0.36 km /h

On the other hand, mechanical energy is not 

conserved. In this case the internal forces between 

the di5erent parts of the system also intervene. The 

work of the internal forces is null for a solid where the 

distances between the di5erent parts remain 

constant. The mechanical energy counts the 

macroscopic potential and kinetic forces. Here the 

kinetic energy is initially zero and then increases. The 

kinetic energies of the wrench and the astronaut 

have di5erent values:

Ec wren .=
1

2
mV

2
   &   Ec astro=

1

2
M v

2=
1

2

m
2

M
V

2=
m

M
E c wren.

The momentum is proportional to the velocity, while 

the kinetic energy varies as the square.

2 -  For a rocket the mass is ejected continuously 

and the mass of the rocket varies over time. 
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Nevertheless the principle is the same for each time 

interval:   0=dm ve+m dv

and    Δ v=∫dv=−∫ dm

m
ve=−ve∫

dm

m
=ve ln( mi

mf
).

We well ,nd the rocket equation.

Flow of propellants: D=dm /d t=−ma /ve.

For the photonic rocket: E=p c=mc
2
 then p=mc, 

where m is the mass of matter and antimatter which 

are annihilated. Finally we replace the ejection 

velocity ve by c. After calculation for non-relativistic 

velocities:

 mM+mAM=mU
(e

Δ v

c −1)≃mUβ=mU

dal

T a

In the ,rst sum we have the masses of matter and 

antimatter that annihilate, and if we add the 

eCciency r=0.1:

                         mAM≃
m

U

2r

d
al

T a

      (mU : payload mass)

For 35,000 years we ,nd 460 grams, but in fact we 

need twice less because the probe has already 

acquired half of the speed by slingshot e5ect. 

If the dilation of time cannot be neglected it is 

necessary to consider the proper time because we 

are in the reference frame of the rocket. But even for 

a 50 years trip, time can still be considered, in a 

good approximation, as absolute.

3 - The voyage to Proxima at constant acceleration 

gives, for an arti,cial terrestrial gravity, a halfway 

speed of 95 % of c and a γ of 3. Clearly we cannot 
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do without special relativity. We reason in the proper 

reference frame and during dτ the velocities remain 
classical. Proper acceleration and momentum 

conservation:

a=
d v

d τ
=g,     0=dmc+m g d τ   and   D=

d m

d τ
=−

m g

c
.

We integrate:   τ=∫d τ=−
c

g
∫ dm

m
=

c

g
ln( mi

mf
).

Then:    mAM
=m

U

e

g τ
c −1

2

The kinematic study gives τ≃6.84 yrs for a round trip 
(chapter: Accelerated motion). For a photonic 

reactor with 100% eCciency: 

One way:   mAM≃18 mU.

Round trip:    mAM≃666mU.

The quantities of antimatter are important here. For the 

same travel time and the same payload, a manned trip 

at constant acceleration requires more energy than a trip 

at constant speed (as for the probe). Propellant used at 

the beginning produces an increase in speed which 

bene,ts the whole trip, whereas used a little before the 

halfway point it will hardly be used, because it will start, 

just after, the deceleration phase. To respect the 

tolerance of the human body to the g, while minimizing 

the quantity of propellants used, we can vary the 

average acceleration of the vessel:
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Voyage with variable acceleration

1st period (speed up): average acceleration 2 g.

Activity: 12 hours at 1.2 g.

Sleep / Rest: 12 hours at 2.8 g.

2ème period (until turning over): av. acc. 0.3 g.

Activity: 8 hours at 0.9 g.

Sleep / Weightlessness: 16 hours at zero g.

τ=τ1+ τ2        D=D
1
+D

2        D1=
c

2

g1
(ch( g1 τ1

c )−1)
β1max=√1− 1

(1+ g1 D1

c
2 )

2
      τ2=

c

2 g2

ln( 1+βmax

1−βmax

1−β1max

1+β1max
)

D2=
c

2

g2 (
1

√1−βmax

2
−

1

√1−β1max

2 )            mi

m
1/2

=e

g
1
τ

1
+g

2
τ

2

c

If τ1=0.5 yr then D1=0.3 ly and β1 max=78%c. With βmax=88 %, 
D=2 ly and τ=1.6 yr. Signi,cant fuel economy:

One way:   mAM≃8mU,      Round trip:    mAM≃134 mU.

The outward journey to Proxima lasts 3.2 years for the 

astronauts. The maximum speed is much lower: this allows 

to decrease the size of the front shield of the rocket which 

protects from the collisions with the particles of the inter-

stellar medium. This medium is very diluted 10-21 kg/m3 but 

at relativistic speeds the energetic contribution of the 

impacts is to be considered (Exo Bouclier de protection of 

the book of Semay).

4 -  Voyager     3 Project: We will consider two cases, 

the one of the Syby, and the one of the orbiting.

Flyby: the speed of the probe must be increased by 

4.8 km/s. Let's take 5 km/s to foresee also the 

corrections of trajectory:
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Δ v=ve ln (mS+me

mS
)    and    me=mS

(e
Δ v

ve −1)
NA:   mS=800 kg,   ve=4 km/s   and   mpropel.=2000 kg.

Orbiting: if the situation is symmetrical, we can 

double with ∆v=10 km/s, half to accelerate and half 

to slow down.

We summarize the values in a table:

Δv mprobe mpropel. mtotal Rockets

5 km/s 0.8 t 2 t 3 t Ariane 6, Falcon 9, etc.

10 km/s 0.8 t 9 t 10 t Ariane 6, Falcon Heavy, etc.

20 km/s 0.8 t 119 t 120 t Saturn V, StarShip.

10 km/s 12 t 134 t 150 t StarShip.

6. Planetary alignments                 Exercise p321

1 -  {θA (t)=ω A t+θA(0)

θB(t)=ωB t+θB(0)
, origin of dates on an alignment 

θA(0)=θB(0), next alignment  t=T AB :

θA (t)−θB (t )=2π=(ωA−ωB)T AB=(2 π
T A

−2π
T B

)T AB

2 -       T TJ
=T

T
T

J
/(T

J
−T

T
)≃1.092 yrs≃1 yr 1m.

After one revolution of the Earth, Jupiter will have rotated 

one twelfth of a revolution.

Next Sun-Earth-Jupiter alignments:

20/08/2021 27/09/2022 03/11/2023 07/12/2024 10/01/2026

10/02/2027 12/03/2028 12/04/2029 13/05/2030 15/06/2031
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19/07/2032 25/08/2033 02/10/2034 08/11/2035 12/12/2036

14/01/2038 15/02/2039 16/03/2040 16/04/2041 17/05/2042

20/06/2043 24/07/2044 30/08/2045 07/10/2046 12/11/2047

3 -       T JS=T J T S /(T S−T J)≃19.86 yrs≃19 yr 10 m

The two large gaseous planets are aligned every 20 years 

or so. The rotation of the Earth being much faster we will 

have, over the same period, a correct alignment with four 

bodies. For a quick search, we start by using an 

astronomy software (Stellarium / Situation : Sun / Ecliptic 

grid), and we re,ne with Miriade:

Sun-Earth-Jupiter-Saturn alignments

Date 18/07/2020 22/03/2040 20/11/2059 05/08/2080

Separat° 6° 11° 4° 4°

4 -          T UN≃171.47 yrs   and   T UN /T JS≃8.6≃9.

We could therefore have a suitable alignment every 171 

years. In 2162, the Earth and the four giants are grouped 

on an angle of 60°. The previous alignment was in the 

years of the launch of the probes Voyager 1 and 2.

7.  Motion of the stars                       Exercise p322

1-          v tα=μαd0        v tδ=μδd0         v t

2=v tα
2 +v tδ

2

v t=μd0            μ
2=μα

2+μδ
2

Particular units:

 
vt (km/ s)= 10

−3

3600
× π

180 °
×3.10

8

10
3
×μ(mas / yr)×d 0(ly)
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vt (km/ s)=1.454×10
−3 μ(mas / yr) d0(ly)

(same formulas along α  and δ )

Speed of the star:  v=√vr

2+v t

2

α Cen C :    μ=3859mas / yr     vtα=−23.33km / s

vt δ=4.75 km/ s    vt=23.81 km/ s   and   v=32.56 km/ s.

Over a century, we can consider the apparent motion 

constant and simply multiply:

 Δμα≃μα×Δ t       and      Δμδ≃μδ×Δ t.

α   Cen C :   Δμα≃−0h6 ' 18 ' '       Δμδ≃0° 1' 17 ' '

                    α≃14 h23 ' 25 ' '   and    δ≃−62° 39 '29 ' '

2- We note that the radial velocity, tangential velocities, 
and proper motions vary with time. At approach the 

radial velocity is negative, it cancels at the minimum 

distance, and becomes positive when the star moves 

away. Conversely, the tangential velocity is maximum at 

perihelion.

a- v⃗= d S⃗M

d t
=c⃗st      then     ⃗d=S⃗M= v⃗ t+ S⃗M 0

d
2=d 0

2+2 S⃗M 0⋅⃗v t+v
2
t

2   &   d (t )=√d0

2+2 d0 vr0t+v
2
t

2

b- Perihelion:  
d d (t )

dt
=0   then   tm=−

d0 vr 0

v
2
   &   d m=d 0

vt 0

v
.

α   Cen C :     d m=3.10 ly     and     tm=26,660 yrs.

c- We will go through the Cartesian coordinates to return 

to the spherical coordinates. For more coherence in the 

book, we use the spherical coordinate system used in 

physics. Few changes, nevertheless the notations are 

di5erent from those of astronomy, and, the colatitude is 

preferred to the latitude (exercise page 169):
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θ=π
2
−δ       ϕ=α        ⃗d 0=(

d0

0

0
)=(

x0=d0 sinθ0 cosϕ0

y0=d0 sinθ0 sin ϕ0

z0=d0 cos θ0
)

 

v⃗=(
vr 0

vθ 0=−vt δ0

vϕ 0=vtα 0
)=(

v x=vr 0 sinθ0 cosϕ0+vθ0 cosθ0 cosϕ0−vϕ0 sin ϕ0

v y=v r 0 sinθ0 sinϕ0+vθ 0 cosθ0 sinϕ0+vϕ 0 cosϕ0

v z=v r0 cos θ0−vθ0 sin θ0
)

d⃗=(
d

0

0
)=(

x=d sinθcosϕ
y=d sinθsin ϕ
z=d cosθ )=(

v x

v y

v z
)t+(

x 0

y0

z 0
)

 {tanϕ(t)=
v y t+ y 0

v x t+ x0

=
y (t )
x(t)

cosθ(t )=
vz t+z0

d (t )
=

x(t)
d (t)

α   Cen C :    θ0=
π
2
−δ0=152.68 °     ϕ0=α0=217.43 ° 

d⃗ 0=(
x 0=−1.547 ly

y 0=−1.184 ly

z0=−3.771ly )     and     ⃗v=(
v x=−9.44 km/ s
v y=22.15 km/ s
v z=21.90 km/ s )

{tanϕ
m
=

v y tm+ y0

vx t m+x0

≃−0.329

cos θm=
v z tm+ z0

dm

≃−0.589

 

{
Equatorial :

αm≃161 ° 47 '

δm≃−35 ° 59 '

              {
Ecliptic :

αm≃180 °8 '

δm≃−39 ° 46 '

480



481



Graphs on the following pages

Distance of the stars: 

The graph represents the evolution over 100,000 years of 

the distance of thirteen stars accessible with a ship 

moving at a speed of less than 40 km/s. 

The stars of Barnard and Teegarden do not appear. It is 

true that Barnard is only 6 ly away, and moreover, it is 

approaching us at high speed, and will be close in 10,000 

years at only 3.8 ly. Nevertheless, the probe would have to 

go at 115 km/s to reach it at its perihelion, and then the 

star will move away at too high a speed. As for Tee-

garden, it is located at 12.6 ly and is moving away from us 

at high speed (positive radial velocity of 68 km/s). 

Position of the stars : 

Evolution from today to 100,000 years from now of the 

equatorial coordinates of nearby stars in the sky. The 

arrow indicates the position where the star is closest. The 

gray line represents the current position of the ecliptic. 

The celestial sphere is projected on the plane of the leaf 

of paper in Mercator projection, so near the poles, the 

trajectories appear stretched.
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8. Can a pair of primordial black holes

be used as a stargate?

Exercise p329.

1 -  For the planet Mars, the slingshot e5ect is weak 

because the mass is small and the minimum 

approach distance is limited by the radius of the 

planet. With a pair of PBHs, we have, at the same 

time, a high orbital speed and an approach 

distance that can approach zero. Let's express the 

characteristics of the system with two bodies of 

equal masses in circular orbits. We take the results 

from the end of the exercise Sling e5ect:

μ=
M 1 M 2

M 1+M 2

=
M

2
     and     

a
3

T
2
=

G M

2π2

Distance between the black holes:    d=a=GM

 T=√ 2π2
d

3

G M
     and     v

fi
=

2πa

T
=√ 2 G M

d

vfi is the speed of the ,ctitious particle and v=v
fi
/2.

d 380 000 km 10 000 km 1000 km 1 km 10 m

T 8.5 days 53 min 1min40s 3 ms 3 μs

v 1.6 km/s 36 000 km/h 113 000 km/h 0.3 % of c 3 % of c

d=10     000 km: We arrive on the ,rst PBH with a speed 

of 100,000 km/h (Voyager 3 without propellant 

boost). Let us take the case where the probe arrives 

at 45° with the trajectory of the ,rst PBH:
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A pair of transneptunian Primordial Black Holes to 

accelerate a probe.

The probe ,rst goes backwards, it is deviated of 120°, 

and, has a speed of 138,000 km/h. It arrives at the 

second PBH in less than 4 minutes. During this time 

this one turned of 26°. The second slingshot propels 

the probe forward with a speed of 188,000 km/h. 

Proxima is reached in 18,000 years. The minimum 

approach distance for the second PBH is 66 km. This 

is much larger than the Schwarzschild radius but 

nevertheless the tidal forces are already important. 

We will estimate in the next question a minimum 

approach distance for our PBHs of more than 60 km 

so that a human can support the tidal forces.

For a probe, we can approach black holes a little 

faster. Even if a probe can resist much more severe 

constraints than a human being, we will still be 

limited by the tidal forces that could destroy the 

probe.
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d=10 m: Here we reach speeds close to c. We could 

exceed 10% of the speed of light and reach Proxima 

in less than 50 years. But a manned mission is 

impossible because of the tidal forces, and even for 

a probe it is not possible, the distance between the 

PBHs is of the order of the size of the probe...

In conclusion: if such pairs exist they would be good 

accelerators for missions, but not stargates.

2 - 

Illustration of tidal forces: Imagine yourself hanging from 

the ceiling with your own mass suspended at your feet. 

You would only hold on for a short time before letting go! 

In a spaceship, when going around a black hole, there 

should be no forces on you, because you are in free fall. 

As in the international space station where the tidal forces 

are not perceptible by the occupants in weightlessness. 

But when you are too close to a massive star, the 

di5erence in gravitational force between your feet, 

487



directed towards the attracting star, and your head 

becomes non-negligible: the gravitational ?eld can no 

longer be considered as uniform. For example, for Saturn, 

a gas giant, too close to it, the natural satellites can no 

longer exist and are crushed into rings. We have modeled 

the astronaut by two masses one meter apart. The parts 

of his body closer to the star undergo a higher 

gravitational force.

Calculation of the di5erential tidal force:

Fb−Fh=Ftidal=mg=
G M PBH m /2

rmin

2
−

G M PBH m /2

(rmin+L)2

L is very small in front of rmin then:

Ftidal=
G M PBH m

2 rmin

2 [1−(1+ L

rmin
)
−2

]≃G M PBH m

2 rmin

2 [1−(1−2
L

rmin
)]

and    rmin=
3√G M PBH L

g
≃60 km.

9. Antiproton-proton collision                Exercise p330.

1 -  In the reference frame of the center of inertia, 

the total impulse is zero and the two protons arrive 

one in front of the other with the same opposite 

velocities. After collision, at the threshold for pair 

creation, we have four particles at rest: the two 

initial protons and the proton/antiproton pair.
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As the total energy is conserved:

2 E=4 E0,   2 mγc
2=4 m c

2
,   γ=2  &  β=√3

2
≃87 %

Back in the laboratory reference frame, we 

calculate the velocity of the proton on its target:

βlab=
β+β

1+β2
=

4 √3

7
≃99 %      and    γlab=7.

E=γ E0=Ek+E0    and   Ek min=6 E0≃5.63 GeV

2 -  To begin with, a very energetic antiproton is 

diCcult to trap, hence the interest in ,rst slowing it 

down. If it ,rst encounters a target and creates a 

pair, the antiproton thus created will be much less 

energetic. Its energy at the threshold in the 

laboratory :

E=γ E0,      γ=2     and     Ek=E0≃1 GeV <6 E0.

We obtain antiprotons of kinetic energy six times less.

So we could use the p's of kinetic energy above 6 

GeV to create p's. We could create them in large 

quantities, because protons have a Sux 10,000 times 

higher than p's.

10. Helical motion                               Exercise p330.

1 -    {
ρ( t )=r

θ( t )=ω t

z ( t )=v zt

        z=
v z

ω θ
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2 - {
ẋ=−ω rsin ωt

ẏ=ω r cosωt

ż=vz

    {
ẍ=−ω2

r cosω t

ÿ=−ω2
r sinω t

z̈=0

    ⃗a⋅⃗v=0    ⃗a∝ M⃗H

3-4 -  v=√ω2
r

2+v z

2=cst     dv

dt
=0     a=ω2

r=cst=
v

2

R

R=r+
vz

2

ω2
r

       p=
2π vz

ω        R=r+
p

2

4 π2
r

5 -   l= ∫
θ=0

θ=2π

√r
2
dθ2+dz

2=2π√r
2+

v z

2

ω2
=2 π r√1+

p
2

4 π2
r

2

v‖=v z      v⊥=ω r      v2=v⊥
2 +v‖

2      r=
v⊥

2

v
2

R=cos
2αR

l=2π
v⊥

2

v
2

R √1+
v‖

2

v⊥
2
=2π R

v⊥

v
=2π r

v

v⊥

l=2π R cosα=
2π r

cosα

These last two expressions depend only on the geometric 

quantities r and α, they depend only on the shape of the 
trajectory and not on the speed at which it is traveled. 

These formulas are therefore also true for non-uniform 

helical motion.

11.  The magnetosphere                        Exercise p331.

1 -  Magnetic force:  ⃗f =q v⃗∧B⃗.

Force power:   P= f⃗⋅⃗v  then   P=0.

Kinetic power theorem:   P=
d T

dt

(E or T because the energy of mass is constant).
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So   T=(γ−1)mc
2=cst   and   v=cst.

2 - Helical trajectory

Solving the system of di5erential equations:

mγ
d v⃗

dt
=q v⃗∧B⃗       ⃗v= v⃗⊥+v⃗‖      (γ  is here constant)

Motion, projected in a 

plane perpendicular to ⃗B,

circular of radius R=
m γv⊥

|q|B
.

A negative particle rotates in the 

trigonometric direction for a 

forward ,eld ⃗B.

Cyclotron angular frequency: 

 ω=
|q|B
m γ

.

Motion, projected along the 

direction of  ⃗B, uniform.

Constant pitch helix. 

Charged particles wrap around the 

magnetic ,eld lines.

3 -  Magnetic ,eld lines Sow from 

North to South (magnetic poles). 

The North of a compass is attracted 

to the Earth's magnetic South 

located not far from the geographic North (historical 

convention of a magnetic "North").

The magnetic Sux is conserved:  Φ=∯ B⃗⋅⃗dS=0.

Consequence: by conservation of the Sux on a ,eld tube, 

the magnetic ,eld is more intense when the ,eld lines 

tighten.

Components of ⃗B in spherical coordinates:
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Br=
μ0

4π
M

2 cosθ

r
3
,     Bθ=

μ0

4 π
M

sinθ

r
3
     and     Bϕ=0.

μ0=4π×10
−7

m. T /A     and     M=7.7×10
22

A . m
2

4 -  When the lines of a tube tighten, the ,eld is no longer 

f⃗ =q v⃗∧( B⃗⊥+ B⃗‖)= ⃗f⊥+ f⃗ ‖     and     ⃗f ‖=q v⃗∧B⃗⊥.
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The charged particles, trapped in the magnetosphere, go 

back and forth between the poles (to give some orders of 

magnitude, an electron can make a round trip in one 

second, for protons and antiprotons it is longer: a few tens 

of seconds. It depends on the energy of the particle and 

its distance from the Earth).

5 -  The ,eld lines weaken with altitude. The ,eld is 

therefore more intense downwards with a smaller radius of 

curvature. Our two-zone model, combining half circles of 

di5erent radii, gives an average eastward drift velocity for 

a negatively charged particle:

vd=
D1−D2

T 1

2
−

T 2

2

=2v
B2−B1

B1+B2

Drift of a charged particle in a non-uniform ?eld. 

Electrons, protons, and antiprotons drift around the Earth.
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6 -  Trap:

a-    ⃗B=Br u⃗r+Bθ u⃗θ+Bϕ u⃗ϕ=Bx i⃗ +By j⃗+B z k⃗

Without going into technical details:

u⃗r=sinθcosϕ i⃗ +sinθsinϕ j⃗+cosθ k⃗

u⃗θ=cosθcosϕ i⃗ +cosθ sinϕ j⃗−sinθ k⃗

u⃗ϕ=−sin ϕ i⃗ +cosϕ j⃗

Then:  ⃗B(x , y , z)=
μ0 M

4π r
5
[3x z i⃗ +3 y z j⃗+(2 z

2−x
2− y

2) k⃗ ]

with   r=√x
2+ y

2+z
2

b-       
d v⃗

dt
=

q

m √1−
v

2

c
2

v⃗∧B⃗=
q

mγ (
vx

v y

vz
)∧(

B x

B y

B z
)

{
v̇x=

q

mc
(v y B z−vz B y)√c

2−v x

2−v y

2−v z

2

v̇ y=
q

m c
(vz Bx−vx B z)√c

2−vx

2−v y

2−vz

2

v̇ z=
q

m c
(vx B y−v y B x )√c

2−vx

2−v y

2−vz

2

Bx (x , y , z )      B y (x , y , z)      Bz (x , y , z )

c-  

{
ẋ=v x=A (vx ) A1 A2 A3 A4

ẏ=v y=B(v y) B1 B2 B3 B4

ż=v z=C (vz) C 1 C 2 C 3 C4

v̇x=D(x , y , z , vx , v y , v z) D 1 D2 D3 D4

v̇ y=E(x , y , z , vx , v y , vz) E1 E2 E3 E4

v̇ z=F (x , y , z , vx , v y , vz) F1 F2 F3 F4
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d- 

• Case of an antiproton of 2 GeV trapped in the 

equatorial plane: We will practice with this particular case 

where the motion is plane. Initially the antiproton is 

placed at 20,000 km from the center of the Earth and has 

a speed of 95% of c directed towards the East.

-Curves : during T=0.8 s with n=500,000 iterations:

Perspective:

Side view:
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-Characteristics: The particle executes its cyclotron rota-

tion while drifting towards the East. The antiproton goes 

around the Earth in a little more than 0.8 seconds and 

performs, in the same time, about 7 cyclotron rotations. 

On a cyclotron rotation the angle varies of 53° and it 

takes 0.12s:

 Tcyclo≃0.12 s      and     Tdrift≃0.82 s.

Let us ,nd the order of magnitude of the cyclotron period 

with our formulas. First, the expression of the dipole 

magnetic ,eld is simpli,ed in the equatorial plane:

B⃗(x , y ,0)=−
μ0 M

4π r
3
k⃗    with    

μ0 M

4π
=7.7×10

15
T . m

3

496



The trajectory is between rmin≃11,400 km & rmax≃20,000 km 

with ravg≃15,700 km. Hence Bmax≃5.2×10
-6 T, Bmin≃0.96×10

-6 T 

and Bavg=2.0×10
-6 T:

T cyclo≃2π
mγ

e Bavg

≃0.10 s

which is correct considering the great inhomogeneity of 

the magnetic ,eld. The cyclotron frequency variations are 

greater than a factor of 5 between perigee and apogee. 

If the particle went around the Earth with a perigee of 

20 000 km, it would take 0.44 s.

-Trajectory stability: We compute trajectories for 

increasing n and observe if they tend towards a stable 

trajectory.
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The simulations converge: in black n=500,000, and, with 

each halving of the numerical work, in lighter gray each 

time, n=250,000, n=125,000, n=62,500, n=31,250, and 

n=15,625.

-Energy error: 

The energy of a particle is constant in a magnetic ,eld. 

We plot the error on the energy as a function of the 

number of iterations. 

The behavior is excellent, the energy variations decrease 

exponentially and rapidly with work. We have a very 

regular decrease (correlation coeCcient close to 1) and 

without accidents; we are reassured about the 

convergence. The hazardous variations in high work are 

normal, they are due to rounding errors. Indeed, in the 

program we have numbers with a precision of 14 

signi?cant digits, but for a precision of 10-10 MeV and an 

energy of 2000 MeV, the maximum precision is precisely 
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reached. In gray, the maximum angle variation over one 

step. We note this value reached at the end of the 

calculation on the last turn where the curvature is 

important. Here again the result is very good. 

-The antiparticle test: Our trajectory starts from an initial 

point I to reach a ,nal point F. We now consider another 

particle of the same mass and opposite charge which 

starts with the ,nal conditions of the ,rst one I'=F to reach 

its ,nal point F'. The particle of opposite charge leaves 

from the same position with a speed in the opposite 

direction. Logically the antiparticle must go back and 

perfectly resume the path in the other direction to end up 

in F'=I. The force is the same and the change of sign of 

the velocity is like going back in time. The trajectory not 

being exact we can estimate the di5erence with the 

ideal trajectory.

Evolution of the distance between I and F':

T=0.8 s step n dF'I

RK4 h= 25.6 μs 31,250 3,240 km

RK4 h= 6.4 μs 125,000 688 km

RK4 h= 1.6 μs 500,000 167 km

RK4 A Δθ= 0° 0' 5.65'' A 31,250 /  R 31,542 2,354 km
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Principle of path reversal: Just as a photon takes the same 

path if it goes back in the other direction, in the same 

way that the Voyager probe would take the slings in 

reverse order to slow down to the Earth, a proton goes 

back through the path of the antiproton to return to its 

initial position. A simulation that does not approximately 

verify this property is not valid.
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• Case of an antiproton of 500 MeV:

Initially the antiproton is placed in the equatorial plane at 

14,800 km from the center of the Earth with a velocity of 

76% of c directed towards the Northeast.

-Curves : during T=2 s with n=500,000:
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-Characteristics: The antiproton goes around the Earth in 

about 3 seconds. In the same time there are about 13 go 

and return between the poles. And on each go and 

return between the mirrors we count about twenty 

cyclotron rotations:

 Tdrift≃3.2 s  ,    Tpoles≃0.24 s   and    Tcyclo≃8.9 ms to 42 ms.

The cyclotron period is inversely proportional to the 

magnetic ,eld strength. The magnetic ,eld varies from 

2.4×10-6 T at the equator to 11×10-6 T at the poles. 

Approaching the poles the radius of curvature becomes 
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small around 300 km. It is equalized at the mirror points 

with the cyclotron radius, the pitch of the helix becomes 

zero and the motion is momentarily plane  with a velocity, 

parallel to the magnetic ,eld, equal to zero. At the 

beginning, at the equator, the radius of curvature Rcurv is 

2,167 km, the cyclotron radius Rcyclo 1,083 km and the helix 

pitch p 6,806 km.

Radius of curvature calculation:   
d v

d t
=0   =>  Rcurv=

v
2

a
.

Helix pitch calculation:   v‖=
v⃗⋅B⃗

B
    &    p=v‖T cyclo.

Cyclotron radius:   v⊥=√v
2−v‖

2
   &   Rcyclo=

v⊥
ωcyclo

.

-Stability of the trajectory: In black, we recognize the 

trajectory for n=500,000. In gray, the one for n=200,000. 

Until the fourth mirror there is a good correspondence, 

then the curves diverge and become signi,cantly 

di5erent. On the gray curve the curvatures become 

stronger and the spins are more dived.

-Energy error: Here the error curves are more uneven than 

for the 2 GeV antiproton in the equatorial plane. We 

regularly have peaks above a baseline. The peaks on the 

energy variation and the angle variation are correlated. 

As we could suspect, it is on the most bent parts of the 

trajectory, that the energy has diCculty to be conserved.
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-Antiparticle test: We perform the test on two go and 

return trips between the poles.

T=0.488 s temporal step n d F' I

RK4 h= 10 μs      48,800     463 km   

RK4 h= 4 μs      122,000     188 km   

RK4 h= 1 μs      488,000     39 km   

We succeed in simulating an antiproton belt in the Earth's 

magnetosphere. For accurate results a high computing 

power is needed.

File: www.voyagepourproxima.fr/magnetique.php

source code: .../docs/magnetique.txt
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12. Penning trap                              Exercise p333.

1 -  This vector ,eld derives from a potential if the 

cross derivatives are equal:

If V exists:    ⃗E=−∇⃗V =−
∂V

∂ x
i⃗−

∂V

∂ y
j⃗−

∂V

∂ z
k⃗

For example,

 
∂V

∂ x∂ y
=

∂V

∂ y∂ x
    if and only if    

∂E x

∂ y
=
∂E y

∂ x
.

Now all the cross derivatives are zero, so the 

condition is veri,ed.

Integration:   V=
U 0

r0

2 ( x
2+ y

2

2
−z

2)+cst,    r0=√2 z0.

2 -  ⃗F=q E⃗   then   ⃗F (O)=0⃗ : position of equilibrium.

Stability:  Ep=q V (potential energy).

∂2
E p

∂ z
2
=+

2e U 0

r
0

2
>0,    stable along (Oz).

∂2
E p

∂ x
2
=−

2e U 0

r
0

2
<0     and     

∂2
E p

∂ y
2
=−

2e U 0

r
0

2
<0,

unstable in the plane (Oxy).

3-a-  Magnetic force:

 

F⃗=−e v⃗∧B⃗=−e(
ẋ

ẏ

ż )∧(
0

0

B0
)=−e(

B0 ẏ

−B0 ẋ

0
)

The force along z is zero: the equilibrium and stability 

along this direction are not modi,ed.

3-b- Fundamental principle of dynamics:
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m(
ẍ

ÿ

z̈
)=−e(

−
U 0

r0

2
x+B0 ẏ

−
U 0

r0

2
y−B0 ẋ

2 U0

r0

2
z ) ⇒ {

(1) ẍ=
e U0

mr0

2
x−ωc ẏ

(2) ÿ=
e U0

mr0

2
y+ωc ẋ

z̈=−
2e U 0

m r0

2
z

(1)+j(2)  ⇒  ̈ρ− jωc ρ̇−
eU 0

mr0

2
ρ=0

Characteristic equation with ρ=A e
r t :

 r
2− jωc r−

eU0

mr0

2
=0     and     Δ=−ωc

2+
4eU 0

mr 0

2 .

The solutions are harmonic if the exponential has 

complex argument:

a negative discriminant gives  ωc>√ 4 eU0

m r0

2 .

Then:     B0 > √ 4 mU
0

e r0

2
=Bc.

Oscillations along z:   ̈z=−
eU0

m R
2

z   and   ̈z+ωz

2
z=0,

solutions of the form:   z (t)= zM cos(ωz t+ϕ),

=>   ωz=√ 2 e U
0

mr0

2
.
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3-c-   r= jωc

1

2 (1±√1−
4 mU 0

er 0

2
B0

2 )
solutions: ρ=A e

jω
c
' t
+B e

jω
m

t
, (A ,B)∈ℂ2

,

ωc '=ωc

1

2 (1+√1−
4 m U0

e r0

2
B0

2 )
ωm=ωc

1

2 (1−√1−
4 mU 0

er0

2
B0

2 )
N.A.:                     Bc≃2.14mT≪B0,

ωz≃145 rad / s,      f z≃58kHz,

ωm≃199 rad / s≃32 turns /s,

ωc≃ωc '≃52.7×10
6
rad / s    and    f c≃f c '≃8.4 MHz.

3-d- 

4 -  Microscopic cage: 

a -  It is not an electric monopole, because 

the total charge is zero. It is not a dipole, because 

the barycenters of the positive and negative 

charges are identical. This charge distribution can 
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therefore correspond to that of a quadrupole. 
 

b -  B0=2 Br(r= a

√2
,θ=0)=2

μ0

4 π
μB

2cosθ

r
3

and    B0=
1
π
μ0μB

d
3
≃10.5T    with    d=

a

√2
.

 

c -  The total electric ,eld 

is the sum of the electric 

,elds generated by the six 

point charges. 

We place us on the 

vertical axis (Oz) oriented 

along to the two magne-

tic moments. 

At point M(z, 0, 0):

 E=
1

4πϵ0
[− (−2 e)

(d−z)2
+
(−2e)

(d+z)2
+4×sinα×

e

d
2+z

2 ]
With z small in front of d:   sinα≃tanα=z /d

E≃
e

2πϵ0 d
2 [(1−

z

d )
−2

−(1+ z

d )
−2

+2
z

d (1+ z
2

d
2 )

−1

]
=>   E≃

3e

πϵ0 d
3

z∼2
U 0

r0

2
z
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d -    Bc=√ 4 m U
0

e r0

2
∼√ 6 m

πϵ0d
3
≃32×10

6
T ≫B0

The magnetic ,eld is totally insuCcient with a factor 

of about one million to trap antiprotons. Perhaps 

within a ferromagnetic material the B0 ,eld could 

reach such values.
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