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Foreword

Special relativity, presented in the article published 
by Albert Einstein in June 1905, has deeply changed 
our physical concepts. The well-established theories 
of the time, Newton's old mechanics and Maxwell's 
brand  new  theory  of  electromagnetism,  were 
fundamentally incompatible. In the first, there is an 
addition law for velocities, while in the second, an 
invariant  speed  is  required:  the  speed  of  light  in 
vacuum. In Newton's theory, in line with the relativity 
of  motion introduced by Galileo,  the speed of  an 
object  depends  on  the  observational  reference 
frame, so how could the speed of light in vacuum 
be  a  fixed  fundamental  constant?  For  inertial 
frames, special  relativity reconciles mechanics and 
electromagnetism,  at  the  cost  of  calling  into 
question  the  absolute  nature  of  space  and  time. 
Space and time are now relative and form a new 
absolute: the space-time. The theories of matter and 
light are thus unified in their natural spatiotemporal 
framework.  Albert  Einstein's  historical  approach  is 
based on the constancy of the speed of light in a 
vacuum.  The  modern  approach,  which  made  it 
possible to build the Standard Model,  is  based on 
another  logic:  symmetries.  This  new  approach  is 
deeper and breaks free from the historical  bias  of 
the early 20th century. The structure of space-time 
imposes  a  speed  limit.  This  maximum  speed  is 



specific to space-time and is not linked to a material 
object. This new constant is specific to the container, 
the  space-time,  and  not  to  the  content,  for 
example,  light rays.  This  new vision is  conceptually 
very different and sheds light on the true nature of 
physical laws. In this book, we focus on visual and 
graphical methods that help develop understanding 
without  the  systematic  use  of  equations.  This 
geometrical  approach will  be highlighted and will 
allow the  reader  to  make  sense  of  the  equations 
that will follow. The path followed is not academic, 
but  pragmatic and utilitarian.  From the first  pages 
you will master the tools that will allow you to apply 
special relativity independently. We are not studying 
general  relativity  here.  We  specify  this  because 
confusion is frequent between the two theories. That 
said,  for  those  who  want  to  understand  general 
relativity, you must first have understood the special. 
General relativity deals with gravitation and is based 
on its  own principles.  Small  notable  exception,  we 
will  sometimes make analogies with the black hole 
to help delimit the two theories.
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 I. Time Dilation and Length Contraction

TIME DILATION AND
LENGTH CONTRACTION

In  this  chapter,  we introduce special  relativity  and 
we present the first geometrical tool: the triangle of 
times

.
 A. Units of Time and Distance

⚭    UNITS OF TIME AND DISTANCE

These  two  physical  quantities,  time  and  distance, 
are of different natures. Impossible, for example, to 
say if a second is greater or less than a meter, that 
makes no sense. 
We can use a speed to link a distance to a time, but 
the speed depends on the observer; this link would 
therefore be perfectly  arbitrary.  It  is  always true in 
classical mechanics, but in special relativity we have 
a  novelty,  we  have  an  invariant  speed:  the 
maximum speed. This fundamental constant makes 
it  possible  to  unambiguously  associate  a  distance 
with a time. This distance is called light-time. 
For  example,  the  light-year  corresponds  to  the 
distance traveled in vacuum by light during a year.

1
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The speed of light in vacuum is about a billion km/h, 
it is named c and is precisely fixed at:

c = 299 792 458 m/s

It  is  the  speed  of  any  electromagnetic  wave  in 
vacuum,  whether  it  be  radio,  infrared,  visible, 
ultraviolet, X-rays or gamma rays. 
We  specify  well,  in  vacuum,  because  in  a 
transparent material, such as air, water or glass, the 
speed is lower and depends on the wavelength.
A light-year, denoted l.y., is worth about 10,000 billion 
km. The star closest to our Sun, Proxima Centauri, is 
located about 4 ly.  Our Sun is  8 light-minutes from 
Earth, the Moon is one light-second, and an adult 
human  measures  between  5  and  6  light-
nanoseconds:

1 l.ns. ≃ 33 cm

We can now freely compare distances and times, 
expressing the distances in units of light-time.

 B. Frames

2



⚭    FRAMES

Any measurement of a physical quantity is  carried 
out in a given frame of reference. 
The quantity can be a time, a distance, a velocity, 
an acceleration, a force, etc. 
The reference frame, as in Newtonian mechanics, is 
defined by a reference solid considered fixed. 
For example, a train can be taken as a reference. 
More  precisely,  a  wagon  of  this  train  makes  it 
possible  to  locate  any  object.  We  consider,  arbi-
trarily, a point of the wagon as the origin. Then, from 
this  point,  we count  how many times  we have to 
move, end to end, a rigid ruler of one meter in the 
direction front-back, right-left and up-down to reach 
this  object.  We  get  a  set  of  three  numbers  that 
uniquely  defines  the  position  of  the  object.  If  the 
object is fixed this will be sufficient, but if it moves, it 
will  also  be  necessary  to  define a date.  We then 
have a set of four numbers called event:

E (x, y, z, t).

For the date, we must proceed more precisely than 
in classical mechanics.  Time is  no longer absolute, 
and instead of a single clock we must have a set of 
synchronized clocks over the whole space.

Depending on the case, we can use the terrestrial 
reference frame, the heliocentric  reference frame, 
the galactic reference frame, etc.

3



These frames of reference are in motion with respect 
to each other and for the same event we will have 
different sets of coordinates.

 C. EINSTEIN'S POSTULATES

⚭    EINSTEIN'S POSTULATES

Albert Einstein postulates in his article of June 19051 
that the laws of physics are the same in all  inertial 
frames of reference (1st postulate), and that in these 
same  frames  the  speed  of  light  in  vacuum  is 
invariant (2nd postulate) .

In  Newtonian  mechanics,  for  the  statement  of 
Newton's  three  laws,  we  did  not  speak  of  inertial 
frames but of Galilean frames, which amounts to the 
same thing. For example, in classical mechanics, in 
a frame rotating with respect to a Galilean frame, 
Newton's second law is no longer verified and new 
forces, called inertial, appear. A rotating frame with 
respect to an inertial frame is therefore not inertial.

How to define an inertial frame? A frame is inertial if 
the postulates are verified. The simplest is to have a 
inertial  frame  of  reference,  then  all  the  frames  in 
uniform rectilinear translation with respect to this first 
frame of reference are also of inertia.

1 “On the Electrodynamics of Moving Bodies”, June 30 1905, English 
Translation.

4



The farther away we aim at an object, such as a 
distant star, the more its motion can be neglected. 
For  example,  extremely  massive  and  very  distant 
quasars, several billion light-years away, are taken as 
fixed  points  and  make  it  possible  to  define  the 
cosmological  reference  frame.  Fossil  radiation, 
emitted 380,000 years after the Big Bang, 13.8 billion 
years  ago,  is  homogeneous  and  isotropic  in  this 
frame of reference.

To come back to our train, if it runs in a straight line 
and at  constant velocity in the terrestrial  frame of 
reference, the reference frame of the train can be 
considered as  inertial  for  an  experiment  of  a  few 
minutes. This duration is small  compared to that of 
the  rotation  of  the  Earth  on  itself.  This  is  a  good 
approximation,  and  the  terrestrial  frame  can  be 
considered  here  as  inertial.  The  more  precise  the 
measurements,  the  shorter  the  duration  of  the 
experiment for the approximation to remain valid.

For a satellite, the terrestrial frame of reference is no 
longer  inertial.  A  low-Earth-orbiting  satellite  goes 
around in 1 hour 30 minutes, a not insignificant time 
compared to the Earth's rotation which lasts about 
24 hours. We then consider the geocentric frame of 
reference, with the origin at the center of the Earth, 
and in which the Earth is in rotation around its own 
axis relative to distant stars assumed to be fixed.

5

In an inertial frame of reference, 
an object keep moving in a 

straight line at a constant speed 
when no forces act upon it.



Unable to position and date an event without landmarks.  
If you hide a treasure you will indicate its position relative  
to a point of origin: for example, "from the hundred-year-
old  oak tree,  22  steps  west,  47 steps  south and dig  at  
three feet." If I say that I was born in 1992, it is in reference  
to  an  origin  date,  placed  arbitrarily  as  a  common  
reference point. 
A reference frame is associated with a solid to which a  
chronology  is  added.  A  minimum of  four  fixed objects  
relative  to  each  other  is  required.  For  chronology,  in  
special relativity a single clock is no longer sufficient: one  
can imagine a solid made up of rigid bars of unit length,  
all placed perpendicular to each other in order to form a  
three-dimensional  network,  and  at  each  node  of  this  
network  we  place  a  clock;  all  the  clocks  are  synchro-
nized,  and the whole forms  what  is  called a  crystal  of  
clocks.
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The largest object in the Universe is the Universe itself. Let's  
use it as a reference solid. In cosmology, the Universe can  
be seen as a fluid of galaxies which extends everywhere:  
any  point  of  the  Universe  can  be  considered  as  the  
center. But, two remarks: first of all the Universe cannot be  
observed as a whole, because the further one looks far,  
the more one goes back in time. The oldest visible object  
is  fossil radiation emitted 13.4 billion years ago when the  
Universe  became  transparent.  Secondly,  if  we  take  a  
point where this fossil radiation is uniform, everything leads  
us to think that this point is motionless in the Universe. 
Image opposite,  the  data  
collected  by  the  COBE  
satellite  on  the  cosmic  
diffuse  background. 
On  the  first  image  we 
visualize  the  anisotropy due  
to  the  displacement  of  the  
Earth  in  relation  to  the  
cosmological  frame  of  
reference, this  is  due to the  
Doppler effect and we thus  
evaluate  a  speed  of  350  
km/s. 
In  the  second  image,  we  
have stray light from our own  
galaxy. 
Finally,  at  the  very  bottom,  
we  get  an  image  of  the  
Universe at its beginnings: it is  
homogeneous in the cosmo-
logical  frame  of  reference 
and we can use quasars for  
the directions.

7



Thus the frames of reference nest one in the other: 
for  the  Voyager probe  we  consider  the  Copernic 
frame of reference, which has for origin the center of 
mass of the solar system and the directions of distant 
stars. For an interstellar journey to Proxima Centauri 
we  will  consider  the  galactic  frame  of  reference. 
Indeed, over a journey of a few years or decades, 
the Milky Way and its stars can be assumed to be 
fixed; for example, our galaxy turns on itself in some 
250 million years,  much longer than our journey to 
the stars2.

 D. The Triangle of Times

⚭    THE TRIANGLE OF TIMES

There is not an absolute, unique and universal time. 
Times  are  multiple  and relative.  Each  observer,  or 
object, lives his own time. Times are plural, each time 
follows its course, and, when we compare them, we 
see that they evolve at different rates. These rhythms 
will be all the more different the greater the relative 
velocity  between two inertial  frames  of  reference. 
For each inertial frame we can define a unique time 
for a set of objects which are motionless with respect 
to each other.

Let us name  R such an inertial frame of reference. 
Consider a fixed point M1(x1, y1, z1) in R. At this point, 

2 Continuation of the reflection on inertial frames of reference in the 
conclusion of the course on four-vectors.
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two events occur at the date t1 and t2:
E1(x1, y1, z1, t1)    and    E2(x2=x1, y2=y1, z2=z1, t2).

For example, a lamp that turns on and off. Second 
example, in the case of an interstellar journey, let us 
take  for  R the  reference  frame  of  a  rocket,  t1 

corresponds to the date of departure from the solar 
system,  and  t2 indicates  the  date  of  arrival  near 
Proxima Centauri. Dates measured on a clock fixed 
relative to the rocket.
The duration between the two events is Δt = t2 - t1.
If we now measure the four coordinates of these two 
events  from a second inertial  frame  R',  in  uniform 
rectilinear translational motion at the velocity v⃗ with 
respect to R, we measure a second duration Δt' = t'2 

- t'1 .
From the point  of  view of  R',  the events  E1 and E2 

have space-time coordinates (x'1, y'1, z'1, t'1) and (x'2, 
y'2,  z'2,  t'2),  and  now  occur  at  two  distinct  points 
M'1(x'1, y'1, z'1) and M'2(x'2, y'2, z'2). The first duration Δt 
is called proper time, because the events are at rest 
in  R; the second duration  Δt' is called  relative time, 
because the events are moving with respect to  R'. 
The  reference  frame  R' will  have  traveled,  with 
respect  to  R,  the distance  Δx'  =  x'2 -  x'1 during  Δt' 
(case where the x-axes are oriented along v⃗).

We then have the  triangle of times which allows us 
to answer many of our questions:

9



We  use  this  triangle  as  a  starting  point  to  build 
special  relativity.  Later  we  can  demonstrate  its 
validity using Einstein's postulates or symmetries.

 

We can memorize it in the following form:

The
Triangle

of
Times
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The triangle of times is easy to remember and apply. 
Take the case of an interstellar journey Sun - Proxima 
Centauri  and  use  a  card  game  to  solve  the 
problem.
The base of the right triangle is the distance in light- 
years.  We place one card per  light-year,  so,  here 
horizontally, four cards. Then we vertically place the 
number of cards that correspond to the travel time 
for the astronauts, one card per year. 
We  decide  to  complete  the  trip  in  three  years, 
measured  with  a  clock  at  rest  in  the  frame  of 
reference of the vessel. 
How  long  will  the  journey  measured  from  the 
galactic  frame  of  reference  last?  It's  simple  we 
count  the  number  of  cards  needed  for  the 
hypotenuse:

Relative time is 5 years and proper time 3 years. The 
triangle of times allows you to directly visualize the 
time dilation: γ=Δt ' /Δt .
Here,  the  gamma factor is  5/3.  The  speed of  the 
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vessel is in  R':  v=Δx ' /Δt ' .  Here, the speed is 4/5 of 
the limit speed so 80% of c. As the hypotenuse is the 
longest side, time can only expand, and the speed 
of light in vacuum cannot be exceeded.

The  first  two  exercises  on  page  25 allow  you  to 
familiarize yourself with these concepts.

 E. Length Contraction

⚭    LENGTH CONTRACTION

We  previously  envisioned  a  trip  from  the  Sun  to 
Proxima that lasts 3 years for astronauts.  We could 
ask ourselves:  «The ship takes three years while light 
takes  four  years,  so  we  go  faster  than  light!?» 
Question that comes up regularly  among students 
at the time of the introduction to special relativity.

This  is  of  course not the case. Rather, it  should be 
reformulated as follows: if a terrestrial observer sends 
a light pulse with a laser, he will have to wait for his 
clock to indicate four years elapsed before the ray 
reaches  Proxima  Centauri;  while  an  observer 
traveling at 80%  c will  have to wait for his clock to 
indicate three years elapsed before joining Proxima. 
And  the  terrestrial  observer  will  observe  well  the 
vessel  arriving  after  the  ray,  just  as  the  astronaut 
leaving  at  the  same  time  as  the  ray  will  never 
exceed  it.  To  be  logical,  all  reasoning  must  be 
carried  out  in  a  fixed  frame  of  reference.  If  we 
change  the  frame  of  reference,  we  change  our 

12



3 The discussion will be prolonged and deepened when studying four-
vectors and four-velocity.
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All the triangles are in the same proportions, and the 
light-time measured in R is the shortest. 
The Sun-Proxima distance measured from the vessel 
is 2.4 ly.

 F. SpatioTemporal Perspective Effect

⚭    SPATIOTEMPORAL PERSPECTIVE EFFECT

Suppose the astronaut's heart beats at 60 beats per 
minute. If the time dilation is two, from the point of 
view  of  observers  on  Earth,  his  heart  beats  more 
slowly, once every two seconds. And if for another 
observer the gamma is equal to three, there will be 
a beat every three seconds according to the latter. 
But it goes without saying that for the astronaut, from 
his point of view, his heart beats quite normally, once 
a second. Its frame of reference is inertial as for the 
other two observers.
Also,  by the relativity  of  the motion,  the astronaut 
who observes the inhabitants of the Earth will have 
the impression of a symmetrical slowing down. 
It  should  be  noted  that  this  slowing  down  of  the 
clocks is the same whether one moves away or that 
one  approaches.  This  phenomenon  is  different  in 
nature  from  the  Doppler  effect,  where,  when  a 
source approaches, the received signal is of higher 
frequency, and when the source moves away, it is 
lower.
A  classic  confusion  consists  in  confusing  what  we 
see with what is. When you look at a star, you see 
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the light that it emitted many years ago, possibly not 
there  anymore,  or  even  not  existing.  Yet  sponta-
neously  when  we  look  at  the  starry  sky  we  feel 
united  to  the  cosmos,  here  and  now.  This  illusion 
stems  from  our  daily  habits  in  a  world  where 
maximum  speed  is  very  high  compared  to  our 
routine motions. We can assume the instantaneous 
propagation of  light,  we see what is.  If  the speed 
limit  were  10  km/h,  we  would  be  used  to  these 
differences.  Often we imagine ourselves watching, 
with the naked eye or  with a terrestrial  telescope, 
the  astronaut  in  his  vessel  moving  away  and 
performing  his  motions  in  slow  motion,  but  this 
thought experiment is false, it is not about that.
We  do not  «see»,  we  measure  with  the  crystal  of 
clocks. The first time you apprehend it, the approach 
may seem somewhat conceptual, but with practice 
it  becomes natural,  and you stop saying that  you 
see the clocks slowing down. It is necessary to have 
in mind the two reference frames of inertia such as 
meshes, one immobile, and the other in motion, and 
imagine the two successive events  and the dates 
recorded locally by each of the synchronized clock 
crystals.

However,  we  can  make  analogies  with  spatial 
perspective effects.  When you look at someone in 
the distance, he is very small, you can look at him 
from head to toe between two fingers. He can do 
the same, it's symmetrical. There is a contraction of 
the lengths, and nobody imagines the phenomenon 
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as real, the other is not small like a smurf.

The contraction takes place in all directions. 
Another  perspective  effect  that  produces  a 
contraction of the lengths: the rotation. When I show 
you a book from the front,  then I  turn it  90° on a 
vertical axis,  you only see its edge, and the cover 
has reduced in size to zero during the rotation. The 
apparent contraction occurred horizontally only. 

In special relativity, the two observers are in motion 
with respect to each other, and it is this motion that 
simultaneously  creates  the  contraction  of  lengths 
and  the  dilation  of  time.  The  lengths  are  only 
contracted in the direction of the relative velocity. 
We  recall  that,  unlike  previous  analogies,  it  is  not 
what we see but what we measure.

Contrary  to  what  we  sometimes  hear,  it  is  not  a 
spatiotemporal  rotation.  We  will  see  the  transfor-
mation to be performed between the coordinates 
(x, y, z, t) of  R and (x', y', z', t') of  R' in the chapter 
Changing reference frame, this is not a rotation.
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 G. Twin Experiment

⚭    TWIN EXPERIMENT

This  is  a  thought  experiment  proposed  by  Paul 
Langevin  in  1911.  We  hope  that  one  day  we  will 
have  a  space-time  ship  to  make  it  happen! 
Although not performed with real twins, it has, for the 
moment,  been performed with atomic clocks.  We 
sometimes talk about the twin  paradox,  but it  is  a 
reality, not a paradox; this misleading name comes 
from  misunderstandings.  Langevin,  the  main 
defender of relativity in France at the beginning of 
the  20th  century,  did  not  speak,  at  the  Bologna 
Philosophy Congress in 1911, of paradox, or of twins... 
but of a Jules Verne-style voyage by cannonball! It is 
the  mathematician  and  physicist  Hermann  Weyl 
who  speaks  of  twins  in  1918.  It  is  the  philosopher 
Henri  Bergson  who  devotes  an  entire  book, 
published in 1922, on special relativity, which speaks 
of paradox and gives an erroneous interpretation of 
the experience.
Now let's explain this experiment. We take two twins 
as they celebrate their 20th birthday on Earth. Right 
after the birthday, they leave each other, one stays 
on Earth and the other leaves for Proxima at 80% c. 
According to the triangle of times, we have 5 years 
elapsed for the twin who remained on Earth and 3 
years for the one who travels to Proxima. Then the 
traveling  twin  returns  to  Earth,  which  doubles  the 
times. The twin on Earth is now 30 years old and the 
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one who has made the round trip 26 years. Our twins 
are no longer the same age.
The  image  is  striking  because  the  two  twins  can 
directly compare their two clocks with a difference 
of four years. It is less abstract than a measurement 
via  a  crystal  of  clocks.  The  postulates  of  special 
relativity  consider  inertial  frames  of  reference.  We 
can at some point have the clocks of two different 
frames  coinciding,  but  then  they  just  move  away 
from each other at constant speed. Thus, the twin 
experiment cannot be understood on the basis  of 
Einstein's first two postulates alone.
We see a cumulative effect of time dilation on the 
round  trip,  why  not  also  a  cumulative  effect  of 
contractions: a younger and flattened astronaut...!? 
Time and space do not have equivalent natures: a 
left-right motion can be compensated by a right-left 
motion, for time it is impossible, there is the principle 
of causality and one can only go from the past to 
the future, one can only move forward in time and 
the proper times are added.
Before concluding on the twins' experiment one last 
point. Doesn't it seem absurd to you that the traveler 
leaves  just  like  that  at  800  million  km/h,  implied 
instantaneously? It is of course impossible, a physicist 
is only interested in physically acceptable situations, 
it would require infinite energy and the force due to 
the acceleration exerted would also be infinite.  In 
short,  even if  the acceleration phase lasted a few 
seconds, it is not conceivable that such a powerful 
reactor could exist, and the occupants would simply 
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be crushed... The spaceship actually sees its speed 
increase continuously, which can be modeled by a 
succession of inertial reference frames of increasing 
velocities. 

A new postulate completes special relativity, it is the 
clock  hypothesis which  has  been  verified  experi-
mentally:
Two clocks of the same instantaneous speed v, one 
being accelerated and the other not, undergo the 
same time dilation factor  γ.
The clock measures the proper time and we add the 
times of  the traveler  over the whole of  his  space-
time round trip:

τ=∫d τ=∫
d t '
γ

The proper time is the time measured by a clock at 
rest  in  relation to the phenomenon to be studied. 
We  had  called  it  Δ t ,  but  often  to  emphasize  its 
peculiarity we use the Greek letter  τ. On the other 
hand,  measuring  a  relative  time  requires  two 
different clocks previously synchronized.

It is thus possible, without ambiguity, to calculate the 
actual time taken by the traveler for the round trip. 
Calculation made from the galactic  inertial  frame 
R'. Note that if we do the calculation from another 
inertial  frame  of  reference  R'' we  would  find  the 
same proper duration τ. 
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On the other hand, a direct calculation is impossible 
from the reference frame of the vessel because this 
one is not of inertia4.

Joseph  Hafele  and  Richard  Keating,  in  1971,  experi-
mentally verify the «clock hypothesis», the third postulate 
of  special  relativity.  With  few  resources  and  a  lot  of  
perseverance, they went around the world twice, one to  
the  east  and  the  other  to  the  west.  They  were  in  
commercial  planes  with  atomic  clocks  and  many 
passengers.  On  the  way  back,  they  compare  with  a  
clock that has remained on the ground5. 
Photo: Time Magazine, October 18, 1971.

Training: exercises 3, 4 & 5 on page 26.
 H. Use of Equations

4 The calculation can be done from the point of view of the 
accelerated reference frame using the non-Minkonskian metric 
given on page 143.

5 L'expérience cruciale de Hafele et Keating by Pierre Spagnou, pdf, 
27 pages, March 2018.
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⚭    USE OF EQUATIONS

The triangle of times, page 10, gives by application 
of the Pythagorean theorem : 

(Δt ' )2=(Δt )2
+( Δx '

c )
2

   besides   γ= Δt '
Δt

   and  v= Δx '
Δt '

 

then    (γ Δt )2=(Δt )2
+( v

c
γ Δt)

2

    and    γ=
1

√1−( v
c )

2

we also note beta : β=v
c

 which expresses the speed 

with respect to c,

 So, we have the following relation for gamma:

 γ= 1

√1−β2

Knowing  this  expression  of  the  gamma  factor  by 
heart makes it possible to do without the triangle of 
times.

Training: exercises 6 to 9 on page 28.
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◦ Transformation of volumes and angles

• Volumes : Only the lengths along the direction of 
the  relative  velocity  between  the  two  frames  of 
reference are contracted. Let us take the case of a 
rectangular parallelepiped along the axes (Oxyz) at 
rest  in  R,  then  if  v⃗=v i⃗ :  Δ x '=Δ x /γ,  Δ y '=Δ y and 
Δ z '=Δ z,

from where :   V '=V
γ  .

True relationship whatever the shape of the object. 
Indeed,  any  object  can  be  decomposed  into 
infinitesimal  parallelepipedal  volumes  each  con-
tracted by the same factor  γ,  the integral,  sum of 
infinitesimals, is therefore also. 
A cube in  R flattens in  R' while  keeping the same 
section perpendicular to  v⃗. A sphere in  R flattens in 
the direction of v⃗ in R'.

The  distance  measurement  protocol  ensures  that 
each position of the object is measured at the same 
time t' in R'.
This  is  of  course only a perspective effect, nothing 
physical here, if for example the cube is a box which 
contains a gas, this one is not compressed and no 
risk that this one liquefies!
Concerning what is seen by an observer, there is a 
new deformation  due to  the  propagation  of  light 
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rays to the point of observation. The distance from a 
point of the object to the observation point varies 
and the object photographed on a sensor consists 
of light points which correspond to different instants 
t' at the level of the object, the measurements are 
not then simultaneous in R'. This more subtle aspect is 
discussed in the chapter The Appearance of Things.

• Angles : Consider a right triangle. A side of length 
Δx along  v⃗,  and a second perpendicular  along  y 
and of length Δy. We measure the angle θ between 
the  side  of  length  Δx and  the  hypotenuse.  The 
triangle  is  at  rest  in  R and  tanθ=Δ y /Δ x.  In  R': 
tanθ '=Δ y ' /Δ x ' . Δ x '=Δ x /γ  and  Δ y '=Δ y  then:

      

tanθ '=γ tanθ

 

When  you  see  a  star  in  the  sky,  you  measure  its 
position using angles. These angles are modified by 
the motion of  the Earth in  its  orbit  in  the galactic 
frame  of  reference.  The  apparent  angle  θa under 
which  we  see  a  star  is  not  simply  the  angle  θ' 
because  we  must  also  take  into  account  the 
propagation of light rays to our telescope. The color 
of  a  star  is  also  modified,  see  the  chapter  The  
Appearance of Things for more details.
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Exercises

Methods of resolution:

           (card game) 
          (ruler, triangle, protractor and compasses)
       (equations) 

Difficulty : ▲△△ (simple) / ▲▲△ / ▲▲▲ (complex)

Data :

Speed of light (vacuum) ≃ 300 000 km/s 
Distance Sun-Proxima ≃ 4 light-years 
Distance Sun-Barnard ≃ 6  light-years
Distance Sun-Sirius ≃ 9  light-years
Radius of the Earth ≃  6 400 km

1.  ▲△△ The Crystals of the Pop exomoon

In  the galactic year 2110,  you undertake the Sun-
Barnard  voyage  to  study  the  crystals  of  the  Pop 
exomoon. After eight years in your rocket, you land 
on  Pop.  In  what  galactic  year  are  we  then,  and 
what was the speed of your rocket?

Answers page 337.
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2.  ▲△△ One-way ticket for Sirius

It is decided, in 2154, for your 30 years, you will leave 
for Sirius with the antique ship β6 of your friend Zu. 
Too eager to change air and make a new start. The 
ship is not very fast, but spacious and comfortable. 
At what age will you arrive, and will you be able to 
attend the festival of the two suns of 2168, or will you 
have to wait for the one of 2178?

Dream Series β6: model 2110-2124 / Speed 60% of c.
Answers page 337.

3.  ▲△△ Parcel delivery

Your  job?  The  delivery  of  parcels  throughout  the 
galaxy. And you are the first on the market because 
you have the fastest SpaceTruck! 
"...  to  trade between the  Sun and Proxima,  I  only  
need 4 years of travel time for the round trip. And a  
profit of 5 million Blings, imagine how much money I  
make !!" 
How long does it take to deliver, what is the speed of 
the ship and the time dilation?

                                                  Answers p338.

4.  ▲▲△ Twin on his way to Sirius

Twins  are  20  years  old  in  2132,  the  most  intrepid 
leaves for Sirius and returns in 2156. 
How old are the twins then? 
What was the speed of the rocket?

Answers page 338.
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5.  ▲▲△ Cruel dilemma?

We are in 3021. Denys lives in the galactic center. He 
has just received terrible news: during his stay in the 
spiral arm of Perseus, he caught a virus, he will die in 
exactly 32 years, and there is no cure ... 
In  addition  to  that,  he  has  just  received  a  very 
precise mission order: to defuse a gamma ray bomb 
located at 26 ly before it destroys the whole galaxy, 
explosion planned in 3052. 
And most important of all, to be there, at the center 
of  the  galaxy,  for  the  great  secular  galactic 
celebration of 3082! 
Denys has a ship with a gamma equal to two. 
What can you offer Denys? 

Answers p339.

  The use of equations is  the most complete and 
general  method.  Nevertheless,  we  believe  that  its 
systematic use, from the very beginning of learning, 
makes  it  difficult  to  understand  phenomena 
intuitively. Moreover, the mathematical language to 
be mastered unnecessarily blocks many people who 
are passionate about physics. 
The equations are very practical  in the two cases 
where the triangle of times is very stretched: for slow 
motions where the speed is very low in front of that 
of light,  or,  on the contrary, for fast motions where 
the  speed  is  very  close  to  the  maximum  speed 
(ultra-relativistic cases). 
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6.  ▲▲△ Muons

Cosmic rays are made up of high-energy particles. 
Many of  those that hit  the Earth's  atmosphere are 
protons.  They come from the Sun, our galaxy and 
beyond. Fortunately for life on Earth, many of these 
particles  are  destroyed  in  the  upper  atmosphere 
and create showers of other, less energetic particles. 
We are interested here in the case of muons created 
in this way. When you are by the sea, an average of 
170 muons reach the ground per square meter per 
second.  Every  second  that  you  take  to  read  the 
statement  of  this  exercise  dozens  of  muons  pass 
through you. 

Muons have a  half-life t 1/2 of 1.5 microseconds. This 
means that if you take a large number of muons at 
rest,  only half  of  them will  remain after 1.5 μs, and 
since they do not  age,  only  a quarter  will  remain 
after 3 μs, and so on. 
Let's  take  the  example  of  a  muon created at  an 
altitude  of  10 km  and  which  moves  vertically 
towards the ground with a speed of 99.9% c.

What do you think about the probability of this muon 
reaching the ground (sea level)?

Answers page 340.
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7.  ▲▲▲ High-speed train journey

In 2012, the longest high-speed train line is in China 
and  connects  Beijing  to  Guangzhou.  Its  length  is 
2300 km and the journey time is eight hours. 
You have two atomic clocks. You synchronize them, 
then, you leave one of them at the station in Beijing, 
and, the other one accompanies you for your round 
trip Beijing-Guangzhou. 
On the return trip, what will  be the time difference 
between the two clocks?

◦ Accuracy of on-board atomic clocks: 10 -14s/s.

◦ The trip is considered at constant speed, which will give  
a good approximation.

◦ A  necessary  mathematical  tool  here,  a  series  expan-
sions: if epsilon is very small compared to one, ϵ≪1, then 

(1+ϵ)α≃1+αϵ. Here  1/√1−β
2
=(1−β

2
)
−1/2

≃1+
1
2
β

2.

Answers page 341.

8.  ▲▲▲ Satellite  

Let's  consider  a  low altitude satellite,  such as,  the 
International Space Station. The satellite is placed at 
an altitude of 500 km and travels at 27,000 km/h in 
the  geocentric  reference  frame.  This  frame  of 
reference is considered to be inertial in this exercise. 
One  clock  is  placed  in  the  International  Space 
Station  and  a  second  is  kept  motionless  in  the 
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geocentric frame of reference. Synchronization and 
time comparison protocols are perfectly respected. 
What is the time difference after a revolution?

◦ The satellite's frame of reference is not inertial and we  
apply the clock hypothesis.

◦ Unlike  Hafele  and  Keating's  experience,  the  clocks  
remain at a constant altitude, so we don't have to take  
into account the effects of gravity.

Answers page 342.

9.  ▲▲▲▲ Hafele-Keating experiment

Here  we  will  try  to  find  the  results  of  Hafele  and 
Keating established in 1971. 
For  a  round-the-world  trip to  the east,  they found 
that the onboard clock aged less than about 60 ns 
compared to the clock on the ground, on the other 
hand,  for  a  round-the-world  trip  to  the  west,  the 
onboard clock aged more by about 300 ns. 
We simplify the problem, only one plane is enough 
to go around the world. The flight is equatorial at an 
altitude of  10 km.  The plane has  a speed of  1000 
km/h from the ground. At the equator, the ground is 
moving  at  1674 km/h  relative  to  the  geocentric 
reference  frame,  here  considered  Galilean.  The 
takeoff  and  landing  phases  are  considered  fast 
enough to be neglected. 
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Concerning  gravitation,  time  slows  down  when 
gravitation increases:

Δt '=(1+ gh

c2 )Δt ,  h : altitude,  g = 9.81 m/s2

Δt ' is the time spent in altitude,  Δt  on the ground.
(general relativity in the weak-field limit)

You can imagine three clocks, the first stationary in 
the geocentric reference frame, the second at rest 
in the plane and the third on the ground. 
Are  your  results  in  agreement  with  those  of  the 
experiment carried out in 1971?

Answers page 342.
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 II. SpaceTime Diagram

SPACETIME DIAGRAM

After the triangle of times, we present here a second 
geometrical  tool,  a  diagram,  which  broadens  our 
vision of space-time, gives a synthetic representation 
of situations and makes it possible to answer a very 
large set of questions.

 A. Worldlines

⚭    WORLDLINES

The triangle of times is enough to study the motion of 
a single moving object with constant velocity. When 
the velocity of the object varies, or we have several 
moving objects, we prefer space-time diagrams. For 
example, for the twin experiment, the traveling twin's 
direction of velocity changes between the outward 
and return journey. 

The world-line of an object contains all of its physical 
information:  all  of  its  positions  through  time,  and 
therefore the evolution of  its  velocity,  acceleration 
and force exerted on the particle. 

A worldline represents the set of events experienced 
by an object.

 B. Minkowski Diagram
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⚭    MINKOWSKI DIAGRAM

The spacetime diagram is often called a Minkowski 
diagram in  the  context  of  special  relativity.  In  the 
case of a rectilinear motion, a spatial axis is sufficient 
and the diagram will be represented in a plane. The 
horizontal  axis  represents  the  x-coordinate  of  the 
object and the vertical axis the time t. Each point in 
the  diagram  corresponds  to  an  event.  Point  O 
corresponds  to  the  origin  event  — both  temporal 
and spatial.

Let's  start  by  considering  the  motion  of  a  photon 
which "passes" by O and which goes to the right. The 
successive  events  "experienced"  by  the  photon 
create its worldline. We graduate the axes in natural 
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space-time units and we choose the year as the unit 
of time.

A year ago the photon was located one light-year 
to the left, it is now here, it will be one light-year to 
the right in a year, etc.
In  addition,  we  consider  a  second photon,  which 
also passes through the origin, but which moves in 
the other direction, from right to left. The two photon 
worldlines are shown in dotted lines and are often 
present to aid the reading of  Minkowski  diagrams.
In  the  case  of  an  immobile  particle  in  the 
observational frame of reference, the worldline is a 
vertical line oriented upwards.
On the following diagram we have the world line of 
an  object  at  rest  in  the  observational  frame  of 
reference and located one light year to the right of 
the origin of the frame.
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We  now  consider  the  general  case  of  a  particle 
which passes through O and moves to the right with 
a constant velocity v. As a particle cannot go faster 
than light, the worldline is represented by a straight 
line of inclination intermediate between the vertical 
line  (time axis)  and the  dotted line  of  the  corres-
ponding light ray.

On this example, 
the object moves at 
50%  of  c,  it  travels 
one light-year in two 
years.
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We now know that there is dilation, the time for a 
moving object is not the same as for an object at 
rest. We take the example of a trip at 80%  c. With 
the triangle  of  times  we obtain the proper  time  τ 
which  we  add  on  the  worldline  of  the  moving 
object. The dilation of time appears clearly.
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For the  twin experiment we visualize the two world- 
lines of each on the same diagram:

The worldlines are represented in the frame of refe-
rence  of  the  twin  who  remained  on  Earth,  more 
precisely the galactic frame of reference which is an 
excellent  inertial  frame  of  reference.  We  cannot 
directly  reason  from  the  reference  frame  of  the 
traveler, the latter is not inertial because his velocity 
varies.

 C. Use of Equations
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⚭    USE OF EQUATIONS

Equation of worldlines

These straight line equations are used to determine 
dates and positions, appointments and reception of 
spatial messages. 

Ship passing through O and heading to the right at 
speed v:

v=
x
t

    then    t= 1
β

x
c

    with    β= v
c

Ship passing through A and heading left at speed v':

t=−
1
β '

(x−d)
c

    with    β '=
v '
c

Photon passing through O and heading to the right:

t=
x
c

Photon which passes 
by B and goes to the 
left:

t=−
x
c
+ tB
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Angles

The more the speed increases, the more the world- 
line of the spaceship, initially vertical, inclines at an 
angle  θ which tends towards 45° when the speed 
approaches the maximum speed c.

tanθ=
x /c

t
=β

β 0 0.1 0.25 0.5 0.6 0.8 0.9 0.94 1

θ 0° 6° 14° 27° 31° 39° 42° 43.3° 45°

γ 1 1.005 1.03 1.15 1.25 1.67 2.3 3 +∞
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Scale factor

On the worldline of  the ship,  the proper time axis, 
time  passes  more  slowly  and  the  graduations  are 
more spaced.

OJ=1

OL=√1+β2 OJ

OJ '=γOL

OJ '=γ √1+β2OJ

OJ '
OJ

=√ 1+β2

1−β
2=√2 γ2

−1

v % of c 50 60 75 80 87 95 99 99.5

γ 1.15 1.25 1.51 5/3 2 3.2 7 10

OJ (t=1) 1 1 1 1 1 1 1 1

OJ' (τ=1) 1.29 1.46 1.89 2.13 2.6 4.4 10 14
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 D. Exercises

Exercises
 ╋ : resolution by Minkowski diagrams.

1.╋ ▲△△ Draw  the  Minkowski  diagrams  of 
chapter 1 exercises 1 to 5.

Answers p344.

2.╋ ▲△△ Interstellar communications

In the Twins Experiment page 17, when the traveling 
twin lands on the planet Proxima b, it takes a photo 
and sends it to Earth as an electromagnetic wave.
When will the twin on Earth receive the photo? 
Throughout the journey, the twin on Earth follows his 
brother's  journey  using  a  very  powerful  telescope. 
When will he see his brother land on the planet in his 
telescope?
If the twin on Earth looks through his telescope the 
moment his brother lands on Proxima b, 5 years after 
his departure, what does he see?
To send a birthday message to his brother when he 
lands on the exoplanet, when should he send it?
Make  a  Minkowski  diagram  that  represents  the 
worldlines of the twins and those of the photons that 
transmit  the photo, the telescope images and the 
message.

Answers p347.
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3. ▲▲△  Call for help

A cruise ship with more than 10,000 people on board 
undertakes the Proxima - Earth crossing at the speed 
of 50% of light. 
Halfway through the journey, the ship calls for help. 
An emergency rescue shuttle leaves Earth at 90% c 
as soon as the electromagnetic distress message is 
received. 
How long will the passengers have to wait before the 
arrival of the help ?

Answers p349.

4. ▲△△ Tim, Tam, Tom

We  are  in  a  slow  universe  where  the  maximum 
speed inherent to space-time is 20 km/h. 
Tom, Tim and Tam are in the living room, the clock 
indicates 10 o'clock. They decide to meet there at 
11 o'clock. Tom stays there. Tim leaves to run at 10 
km/h. Tam goes to work at his office 10 light-minutes 
away with a bicycle that travels at 15 km/h 
Tim has to be back by what time indicated on his 
watch? 
How much work  time will  Tam have at  his  office? 
What time will his watch show when he returns? 

Answers p350.
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 III. Changing Reference Frame

CHANGING REFERENCE FRAME

We will consider a second inertial reference frame. 
The  first  observational  reference  frame  was  the 
reference frame  R of axes  (x, y, z, t), a frame often 
associated with the galactic frame of reference in 
the context of interstellar journeys. 
The second frame of reference  R' is in motion with 
respect to R, moved at a constant velocity. We say 
that  R' is  in  uniform rectilinear  translational  motion 
with respect to R. For R' the origin is denoted O' and 
the axes (x', y, 'z', t '). 
R' is then also a reference frame of inertia, where the 
principles  of  special  relativity  apply.  This  frame  of 
reference  R' will  often  be  associated  with  the 
spaceship.

 A. SPACETIME DIAGRAM

⚭    SPACETIME DIAGRAM

We will  build step by step the 
axes  of  R' in  the  Minkowski 
diagram of  R. The proper time 
τ on  board  the  space-time 
vessel corresponds to the time 
t'. The axis O't' is thus identified 
with the ship's worldline.
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The speed limit is the same in R and R'. This invariant 
shows  that  the  axis  O'x' is  necessarily  symmetrical 
with  respect  to  the  worldline  of  a  light  flash  that 
moves to the right and passes through O. We thus 
have the reference frame R' seen from the reference 
frame R :

Let's show on an example how the coordinates are 
read. From Earth, we record, 3 years after the depar-
ture  of  the  spacecraft,  a  huge  stellar  eruption 
produced by  the  star  Proxima Centauri  located 4 
light-years away. The spacecraft is moving at 60% of 
c.  In  the reference frame of  the spaceship where 
and when does the eruption occur? 
In the galactic frame of reference R the event E has 
coordinates (x=4, t=3). 
In the vessel frame of reference  R' we read on the 
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Minkowski diagram that the event E has coordinates 
(x'=2.75,  t'=0.75).  The  occupants  of  the  ship  will 
determine that the eruption occurred 9 months after 
their departure at a distance of 2.75 light-years. 

Nevertheless, the astronauts will see the flare in their 
telescope well after 9 months. Indeed, following the 
eruption,  it  is  also  necessary  to  allow time for  the 
light to propagate to the telescope and to the eye 
of the observers. To complete this we have drawn in 
gray the worldline of a light beam emitted by the 
flare. It will  first be observed in the spaceship after 
about 3 and a half years of travel, and it will then be 
observed on Earth 7 years after departure.
In Minkowski's  diagrams, the coordinates indicated 
for an event are taken from local recordings made 
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using the reference solid and the associated clock 
crystal. Propagation times are not included. 

All inertial frames of reference are equivalent in spe-
cial relativity and we can also represent R from R': 

 B. Relativity of Simultaneity

⚭    RELATIVITY OF SIMULTANEITY

In the case of the ship heading towards Proxima at 
80%  c we had a 3-4-5 triangle of times. When the 
ship  is  at  the  level  of  Proxima  4  light-years  away, 
before reducing its speed, 3 years have elapsed in 
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Simultaneity  is  relative  to  the  frame  of  reference 
considered. In Newtonian mechanics, simultaneous 
events  remained  so  in  all  frames  of  reference,  in 
special  relativity  simultaneity  is  not  an  absolute 

53



notion. In  R,  E1 and  E2 are simultaneous,  in  R',  E1 is 
earlier than E2.

 C. Causality

⚭    CAUSALITY

We can only go from the past to the future. It is pure 
logic,  the  cause  produces  an  effect  and not  the 
opposite!  The  world  is  One,  and  this  is  only  an 
obvious  principle  of  consistency.  If  you  could  go 
back  in  time  and  travel  in  the  past,  you  would 
destroy the present... 

For example, you go 50 years in the past and during 
this time travel you die in a car accident, or just your 
actions  do that  your  parents  don't  actually  meet, 
etc. If you want to travel to the past at all costs, then 
you  would  need  several  presents  and  suppose 
parallel worlds which realize all possibilities.

In physics, we choose the simplest theory to explain 
the facts,  there is  only  one world,  One reality,  the 
past cannot be changed, the future does not pre-
exist, we cannot go back and the  arrow of time is 
constantly advancing from the present to the future. 

Special relativity of course respects the principle of 
causality. Not as simply as in the old mechanics, but 
just  as  rigorously.  The  fact  that  there  are  several 
times,  the  possibility  of  traveling  in  the  future,  a 
relative simultaneity, can create a confusion that we 
will clarify immediately.
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Let us take any two events  E1 and  E2.  If  there is  a 
causal link between them we can determine which 
event  is  prior,  and this  temporal  ordering must  be 
independent of the observation frame of reference. 
Two different cases can occur, let us represent the 
events  on  a  diagram  in  an  arbitrary  observation 
frame R.

First case: there is a possible causal link between E1 

and  E2.  The two events have a constant temporal 
order whatever the observational reference frame.

In R, E2 is subsequent to E1 because t2>t1.
We then consider  R', a frame that is immobile with 
respect to R but with a new origin O' = E1.
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We  note  a  possible  causal  link  between  the  two 
events,  for  example  a  ship  can  connect  the  two 
points  (its  speed  would  not  have  to  exceed  the 
maximum speed), or a succession of events which 
propagate step by step like in a line of  dominoes 
that fall and establish a causal chain.
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We  can then  place  ourselves  in  the  ship's  proper 
frame  R'',  the  chronological  order is  not  changed 
and we always have E2 later than E1 and t2''>t1''.

Events E1 and E2 occur at the same place in R''. It is in 
this proper frame of reference that the time interval 
between events is minimal:  t2'' - t1'' = Δt'' = τ < Δt' = Δt.

Second  case: there  is  no  possible  causal  link 
between  E1 and  E2.  The  temporal  order  is  not 
defined,  E1 is prior to  E2 in one frame of reference, 
the  reverse  in  another,  and  the  events  are 
simultaneous  in  a  third.  This  does  not  call  into 
question the principle of causality, because there is 
no possible cause and effect link between these two 
events.

57



58



No  material  object  or  luminous  object  passing 
through  E1 can join  E2,  and vice versa.  No object 
can  go  faster  than  light.  These  two  events  are 
independent  and  cannot  interact.  Looking  for  a 
timeline between them does not make sense. There 
is  no proper frame where these two events are at 
rest.

 D. Composition of Velocities

⚭    COMPOSITION OF VELOCITIES

Two  ships  hurtle  towards  each  other  at  75%  of 
maximum speed.  If  you get  into  one of  the ships, 
how fast will you see the other ship coming towards 
you?
If we had the additivity of the speeds as in classical 
mechanics we would find 150% of  c, speed above 
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the limit, which is, in fact, impossible. 
We  are  going  to  represent  on  a  diagram  the 
worldlines  of  the  two  vessels  in  the  galactic 
reference frame R. The two vessels approach, cross 
in O, then move away. 
From the frame of  reference  R' of  one of  the two 
vessels, we measure the coordinates of the second 
and we will simply have its speed in R'.

The  distance  OG corresponds  to  t' and  measures 
4.8 cm on the drawing. The distance EG corresponds 
to  x' and  measures  4.6 cm  on  the  drawing.  By 
dividing EG by OG we get the relative speed of the 
vessels:

v' = 96% of c
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 E. Use of Equations

⚭    USE OF EQUATIONS

◦  Lorentz transformation

For an event E, we want 
to express its coordinates 
(x',t') in  R' in  relation  to 
that (x,t) in R.
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For t' :      t '=
OG

γ√1+β2
  

We have applied the scaling factor to go from R to 
R', a factor established in the previous chapter.

The coordinates of point  G are given by the inter-
section of the two following lines:

 t=1
β

x
c

      and      t−tE=β(
x
c
−

x E

c
)

(t' axis and straight line parallel to the  x' axis which 
passes through E with a slope inverse to that of the t' 
axis) 

After solving this system of equations :

 tG=γ
2
(tE−β

xE

c
)      and     

xG

c
=β tG

So :   OG=√ tG
2
+( xG

c )
2

=γ
2√1+β2

(tE−β
xE

c
)

And finally :   t '=γ(tE−β
xE

c
)

Proceeding in a similar way for x', we find : 
x '
c
=γ(

xE

c
−βtE)

We obtain what is called the Lorentz transformation 
of the coordinates of an event. For a motion of  R' 
with respect to Ox and the setting to zero of clocks 
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and  spatial  coordinates  when  they  coincide  in 
O=O', we can, without losing generality, write :

Lorentz
transformation

At  t=0 and t'=0,  O and O' coincide, then  O' moves 
away to the right  as  time passes.  On a Minkowski 
diagram, in full  agreement with the one above,  O 
and O' are no longer points but worldlines, the axis 
of t and the axis of t'. The origins O and O' indicated 
are the spatio-temporal positions at t=t'=0.
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x '
c
=γ(

x
c
−β t )

y '= y

z '=z

t '=γ(t−β
x
c
)



To get the coordinates in R from 
those  in  R',  simply  change  the 
sign of the speed and thus β :

Within the limits of low speeds we find the classical 
transformation  of  coordinates.  Spatial  and  time 
coordinates are then disconnected to let space and 
time both absolute: 

Galilean
transformation

In this  book we made the pedagogical  choice to 
start  from  the  triangle  of  times  to  construct  the 
special relativity. We could also start from the Lorentz 
transformation.  In  what  follows  we  find  the  time 
dilation, the length contraction and the existence of 
a relativistic invariant using this transformation.
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x
c
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x '
c

+β t ')

y= y '

z=z '

t=γ(t '+β
x '
c
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{
x '=x−v t

y '= y

z '=z

t '=t



• Time dilation: we have events  that  occur at the 
same  location  in  R,  so  x2=x1 and  Δx=x2-x1=0, 
separated by a time interval Δt=t2-t1. What happens 
to  this  time  interval  in  R' ?  Δt'=(γΔt-βΔx/c)  then 
Δt'=γΔt. QED

• Length contraction: we can imagine a ruler at rest 
in R placed on the x-axis,  L=Δx=x2-x1. The protocol for 
measuring a length in a given frame of  reference 
requires to determine the positions of the ends at the 
same time in this frame. Measurement of the relative 
length L' in R' :  Δx=γ(Δx'+βcΔt') and t'2=t'1 then L=γL',  
and L'=L/γ. QED

• Lorentz  invariant: In  classical  mechanics  we had 
two  invariant  quantities:  length  L=√Δ x 2+Δ y 2+Δ z2 
and duration Δt.  Whatever the observational frame 
of  reference,  we had the Euclidean distance and 
the duration unchanged. This is no longer the case 
in  special  relativity.  But  we have another  quantity 
that  verifies  this  property:  Δ s2=c2Δ t2−Δ x2−Δ y2−Δ z2. 
Δs is the spacetime interval between any two events, 
it corresponds to a sort of Minkowskian distance.  
Its property of invariance is verified by carrying out 
the calculation of  Δs in a second inertial reference 
frame R' :
Δ s '2=c2 Δ t '2−Δ x '2−Δ y '2−Δ z '2

Δ s '2=γ2(cΔ t−βΔ x )2−γ2(Δ x−β cΔ t)2−Δ y2−Δ z2=Δ s2

We can write Δs2 as a function of the speed v of an 
object which joins the two events along a rectilinear 
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and uniform trajectory:

Δ s
2
=c

2
Δ t

2(1− v2

c2 )
Δ s2 can be of  different signs,  if  there is  a possible 
causal link between the events, v⩽c, Δ s2 is positive or 
null and the interval is said to be timelike or lightlike 
(null  vector),  if  it  is  negative,  v>c, Δ s2 is  spacelike. 
When Δ s2 is not spacelike, we can link the interval Δ s 
to the proper time  :

 τ=Δ s
c
=Δ t √1−

v 2

c 2 

Proper  time is  the  fundamental  notion  on  which 
special and general relativity is built. This measure of 
the  aging  of  a  particle  is  invariant  and  absolute, 
unlike the space-time coordinates (ct, x, y, z) which 
are  relative  and  have  no  physical  meaning  in 
themselves.

◦  Composition of velocities

We  use  the  notations  in  the 
figure on page  61.  β1 and  β2 

are the speeds in R of starships 
1  and 2  expressed as  a per-
centage of c. β' is the speed 
of vessel 2 in R'.
The  first  equation  is  for  the 
world  line of  ship 1  in  R,  the 
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xE
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second  for  the  line  (EG) and  the  third  the 
relationship between the coordinates of a point E on 
the worldline of ship 2 .

The first equation applied to point G gives:

OG=√ tG
2
+( xG

c )
2

=√1+β1
2 tG

Besides :
tG−tE=β1(β1tG−β2 tE)     and     tG(1−β1

2
)=tE(1−β1β2)

After some calculus, we have EG as a function of β1, 
β2 and tG. We calculate the relative speed:

 β '=EG /OG.
Then :

β '=
β2−β1

1−β1β2

   (vessels in the same direction),

β '=
β1+β2

1+β1β2

   (vessels in opposite directions).

We find the good results for the two examples of the 
course:

β '=
0.75+0.75

1+0.75×0.75
=0.96    and    β '=

0.75−0.5
1−0.5×0.75

=0.4

In terms of speeds we have:   v '=
v1+v2

1+
v1 v 2

c2

If  the  speeds  are  small  compared  to  c,  the 
denominator tends towards 1 and v '=v1+v2, we find 
the classical additivity of the velocities again.
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Second method :  We reasoned with objects which 
move  at  constant  velocities.  We  can  do  a  more 
general calculation using the Lorentz transformation.
Definition  of  the  instantaneous  velocities  with 
respect to (x,t) and (x',t') in R and R' :

v= lim
Δ t→ 0

Δ x
Δ t

=
d x
d t

   and   v '=
d x '
d t '

these quantities should be noted vx and vx', we will 
write v and v'  for ease of reading.

From Lorentz's transformation:
x '=γ( x−β c t)   and  c t '=γ(c t−β x)   with  β=u/c

hence for infinitesimal variations:
 dx '=γ(dx−β cdt ) and c dt '=γ(cdt−βdx)

And by dividing the two equations:

dx '
cdt '

=
dx−βc dt
cdt−βdx

, v '
c
=

v
c
−β

1−β
v
c

and v '=
v−u

1−
u v

c2

u is the speed of R' compared to R.
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We can easily obtain the two other components of 
the velocity for y and z 6, but we limit ourselves here 
to the rectilinear motion.

◦  Transformation of accelerations

With respect to x and x' :    ax=
d v x

d t
  and  ax ' '=

d vx ' '

d t '
Simply noted a and a' thereafter.

a '=
d v '
d t

d t
d t '

=

a(1−
u v

c2 )+(v−u)
u

c2 a

(1−
uv

c2
)

2

1

γ(1−
uv
c2 )

(quotient rule)

Then :  a '=
1

(1−
u v
c2 )

3

γ
3

a

In the case where M is initially at rest in R' the initial 

velocity v is zero and   a '= a

γ
3 .

6 Done in exercise on page 101 (composition of velocities and 
accelerations in 3D).
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 F. Exercises

Exercises

1.  ▲△△ Composition of velocities

a -  Two vessels are heading towards each other at 
50% of c. What is their relative speed? 

b -  Two vessels  are  moving  in  the  same  direction, 
one at 80% of  c and the other at 50% of  c. What is 
their relative speed? 

Answers p351.

2.  ▲▲△ Two vessels

Two  spaceships  A and  B produce  the  following 
events in the galactic frame R :

EA ,1(x A=0 , y A=0 , z A=0 ,t 1=0)

EB ,1(xB=2 , y B=2 , zB=2 , t 1=0)

EA ,2(2 , 0 ,0 ,t 2=4 )      EB ,2(4 , 4 , 4 , t2=4)

EA ,3(4 , 0 , 0 ,8)            EB ,3(5 , 5 ,5 , 8)

Distances and times in light-years and years. 
R considered of inertia.

a -  What  are  the  average  velocities  of  the  ships 
between t=0 and t=4 ?
Same question between t=4 and t=8.

b -  What are the average accelerations of the ves-
sels between t=0 and t=8 ?
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c -  Vessel  A has  a  translational,  rectilinear  and 
uniform motion.  We call  R' the reference frame of 
vessel A. Is the frame of reference R' inertial? 
Determine the coordinates of the events of vessel  B 
as seen from vessel A.
Can the trajectory of vessel B in R be rectilinear? Is it 
the same for the trajectory of B seen from R' ?

d -  In R', determine the average velocity of vessel B 
between t'1 and t'2, then between t'2 and t'3.

e -  In  R',  determine  the  average  acceleration  of 
vessel B.

f -  Could you determine the average acceleration 
felt by the passengers of vessel B?

g -  Accelerations are calculated here in ly/yr2, how 
to convert them into m/s2? 
Deduce the  acceleration  to  which  the  astronauts 
are subjected as a percentage of the Earth's gravity 
field at sea level: g=9.81 m/s2.

Answers p351.

3.  ▲▲△ Low speeds limit

Two cars drive face to face at 90 km/h. What is their 
relative  speed? Determine  the  difference with  the 
classical limit.

Answers p356.
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 IV. The Appearance of Things

THE APPEARANCE OF THINGS

Sometimes we naively forget  to take into account 
the duration of the propagation of the signals to our 
eye, as if we were spontaneously seeing spacetime 
as a whole.

We will begin by studying the Doppler effect where, 
due  to  relative  motion,  the  color  of  objects  is 
modified. The color of light depends on the period 
of  the  light  wave.  This  quantity  is  a  time,  and we 
could think that it is  sufficient to take into account 
the time dilation. The perceived period would simply 
be  multiplied  by  γ as  the  travel  time  in  the  twin 
experiment.  Except  that  the  twins  end  up  in  the 
same  place  and  there  is  no  delay  due  to  the 
propagation  of  a  signal  at  finite  speed.  For  the 
Doppler  effect  the  frequency  will  not  simply  be 
divided by γ, and moreover, it will differ depending 
on  whether  the  vessel  is  moving  closer  or  further 
away.

After  studying  the  Doppler  effect,  we  will  take 
pictures  of  a  relativistic  ruler,  followed  by  a 
contemplation of  the starry  sky  in  a starship each 
time faster.

 A. Doppler Effect
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⚭    DOPPLER EFFECT
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light,  with  a  wavelength  of  600 nm,  emitted  by  a 
vessel moving at 60% c. To simplify, let's imagine that 
the  vessel  emits  regular  flashes  of  light  at  the 
frequency of the wave. We have drawn the world- 
lines of  these flashes on a Minkowski  diagram. We 
see  on  Earth  the  flashes  closer  when  the  ship  is 
approaching  and  further  apart  when  the  ship  is 
moving away.  The time between the reception of 
two flashes corresponds to the period of the signal, 
we  measure  on  the  diagram,  when  the  ship  is 
approaching the Earth:
T=T'/2 so f=2f' and λ=λ'/2 then λ=300 nm,
the light received is in the ultra-violet.
When the ship moves away:
T=2T' so f=f'/2 and λ=2λ' then λ=1200 nm,
the light received is in the infrared.

◦ Use of equations
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Pythagorean theorem in OHA :
r+=OB=OH +HB=γ+√γ2

(1+β2
)−γ

2

When moving away :  r+=γ(1+β)=√ 1+β
1−β

When getting closer :  r-=γ(1−β)=√ 1−β

1+β
In terms of frequencies, f=1/T :

f '=√ 1±β
1∓β

f     and    T=√ 1±β

1∓β
T '

Interval : 0<r<2γ

In the example of the course, β=0.6, γ=1.25 and the 
numerical  application  gives  correctly  f=2f' when 
transmitter and receiver are approaching, and f=f'/2 
when they are moving away.

The Doppler effect shows that the color of a photon 
is not an absolute quantity. A photon is neither red, 
blue, nor yellow, it all depends from where you look 
at it.  Its  wavelength depends on the observational 
inertial frame of reference and there is no privileged 
observer. 
A photon has other characteristics, such as chirality, 
which is intrinsic. A photon is either left or right and, 
unlike its color, it does not depend on the point of 
view. 

 B. Photograph of a Moving Ruler
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⚭    PHOTOGRAPH OF A MOVING RULER

A ruler moves at the velocity  v⃗ in the observational 
reference  frame  R.  A  graduated  optical  bench, 
fixed in R, makes it possible to locate the position of 
the two ends of the ruler. The proper length of the 
ruler, in the frame of reference R' where it is at rest, is 
denoted  L.  The  length  in  the  laboratory  is  the 
contracted length L/γ. We take different pictures of 
the ruler as it passes. On each photograph, we note 
the apparent length La, the difference between the 
abscissas of the two ends marked on the bench.

The  contracted  length  corresponds  to  measure-
ments at the same instant  t of  the position of  the 
ends, while the image of the ruler which appears on 
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the photographic plate is formed by photons which 
reach the sensor at the same instant and which, due 
to time of different routes, were not emitted at the 
same time at the object level. 
We do not yet know how to make a camera with 
such sensitivity and such a short shutter time, but it is 
not  out  of  reach given current  advances  in  opto-
electronics.  Second  challenge,  to  animate  a 
macroscopic  object  at  a   relativistic  speed.  The 
thinking exercise is excellent anyway, as it allows us 
to deepen our understanding of the theory. 
Let us think in the laboratory reference frame R. The 
ruler of length L/γ comes from the right. The light rays 
emitted at the same time from the A and B ends will 
not  reach  the  eye  at  the  same  time  and  will 
therefore not be in the same image. The ray emitted 
by B will arrive late. 
There is an earlier moment when the ray emitted by 
this  end compensates  this  delay,  it  is  the  case  of 
point C on the diagram. The apparent length is then 
greater than the contracted length.
When at t=0, the ruler is centered on O, the rays are 
emitted  symmetrically  and  the  apparent  length  is 
equal  to  the  contracted length.  This  occurs  for  a 
photo taken at t≃1.7 ns (light travel time from D, or E, 
to M). 
For  t positive,  when  the  ruler  moves  away,  the 
apparent  length  is  instead  smaller  than  the 
contracted length. 
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Below we have the curve of  the apparent  length 
versus time t :

We can easily  find the extreme values.  When the 
ruler is still far away, the delay of the light beam from 
C is about AC/c.  Moreover the ruler moves at the 
speed  v,  so,  to catch up, BC is  worth  v times the 
delay.

Then :   La=AB+BC=
L
γ +v

La

c
 

So :    La=
L

γ(1−β)
=L√ 1+β

1−β
≃75 cm

On the contrary, when the ruler moves away, to the 
limit of t+∞,
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HF
c

=
La

c
=

L/ γ−La

β c
,   and   La=L√ 1−β

1+β
≃5cm.

We finally find the same kind of formula as for the 
Doppler effect with inverted effects :

La, t→±∞=L√ 1∓β

1±β

When an object gets closer, the perceived period is 
shorter  and  its  length  seen,  in  the  direction  of 
motion,  is  greater,  on the contrary,  when it  moves 
away the perceived period is greater and its length 
seen smaller. 
We also had an inversion of behavior between time 
and  space  with  time  dilation  and  length 
contraction.

We just  did  the long-distance calculations.  To  find 
the  complete  curve  of  the  length  on  the  photo-
graph as a function of time, we consider a three-
dimensional Minkowski diagram (x, y, ct).

The camera is  represented by a vertical world line 
(0, D, ct). The optical bench by the world plane y=0. 
The ruler by an inclined world strip. The resolution of 
the  problem  is  in  principle  simple:  find  the  inter-
section between the past light cone from the eye at 
time t with the world strip of the mobile ruler.
The intersection gives the position of the two ends in 
R :  E1(x1, 0, ct1) and  E2(x2, 0, ct2). We then have the 
apparent length La=x2 - x1. Except at O, we have well 
t1≠t2.
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The  detailed  calculation  is  left  in  exercise.  The 
explicit  expression  La(t) is  then  given.  The  compu-
tation,  although  it  only  uses  notions  of  space 
geometry as seen in high school, is a bit long.

 C. The Starry Sky Seen From the Ship
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⚭    THE STARRY SKY SEEN FROM THE SHIP

Let's determine the change in the perception of the 
starry sky as a function of the speed of the ship. In 
addition to the change in the perceived color of the 
stars  by  Doppler  effect,  their  position  in  the  sky  is 
modified, this is called the aberration of light. When 
we are at rest in the galactic frame of reference, the 
stars are, as a whole, motionless. To simplify, we will 
consider  yellow  and  homogeneously  distributed 
stars. 

Let's  take  the  case  of  a  star  seen  at  rest  in  the 
galactic  frame  of  reference  perpendicular  to  the 
direction of motion of the spacecraft. Under which 
angle θa is this same star seen from the ship's frame 
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of reference?
We can make an analogy with  the rain  that  falls, 
seen through the windshield of a car it looks like the 
rain comes from the front, even if  from the road it 
falls  vertically.  The  demonstration  in  classic 
mechanics is quite simple, just apply the addition of 
the velocities. You can imagine that here the result 
will be, at least quantitatively, different.

We  have  to  think  again  in  a  three-dimensional 
Minkowski diagram (x, y, ct). As soon as we measure 
an  angle,  there  are  at  least  two  dimensions  of 
space. However,  there is  no need to use the third 
dimension of space, because there is invariance by 
rotation  according  to  the  direction  of  the  vessel, 
otherwise,  in  addition  to  colatitude  θ,  we  would 
have had to use longitude  φ and we would have 
had  to  work  in  a  four-dimensional  Minkowski 
diagram (x, y, z, ct). 
We consider  the galactic  frame of  reference and 
we  start  by  studying  the  case  θ=90°.  The  ship  is 
moving in the direction of increasing x and the star is 
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located on  the  y axis  at  a  distance  D.  We  have 
three world lines, one for the spacecraft in the (x, ct) 
plane, one for the star, vertical, and one for the light 
ray in the (y, ct) plane.

We define a straight line by the intersection of two 
planes defined in Cartesian coordinates.

Light ray worldline : { x=0
y+c t=0

We then use the Lorentz transformation to obtain this 
equation in the ship's reference frame R' :

{
x '=γ(x−β c t)
y '= y
c t '=γ(ct−β x )

  and { x '=γβ y '
γ y '+c t '=0

also tan (θa)=
y '
x '

then tanθa=
1
γβ
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In the case of a starship moving at 87% c, we find for 
θ=90°,  θa=30°.  We  notice  that  the  result  does  not 
depend  on  the  distance  D.  The  effect  is 
accentuated with respect to the Newtonian formula 
where tan(θa)=1/β and θa≃49°.
Now let's look for any angle θ between 0° and 180°.

A  unit  vector  parallel  to  O⃗H  has  for  coordinates 
(cosθ ,sinθ ,0). The vector u⃗1  orthogonal to the OHM 
plane has the coordinates  u⃗1(sinθ ,−cosθ ,0).
As collinear vector to the light beam we can choose 
n⃗2(cosθ , sin θ ,−1).  We verify  that n⃗3(cosθ , sinθ ,1) is 
orthogonal to u⃗1 and n⃗2. 
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Hence the world line of the light ray:

 { sinθ x−cosθ y=0
cosθ x+sinθ y+c t=0

Using the  same Lorentz  transformation  as  the  one 
used  in  the  previous  case,  we  obtain,  after  a 
somewhat long but simple calculation:

y '=
sin θ

γ(β+cosθ)
x ' .

Thus  the  expression  for  tan(θa),  or,  simpler  to  use, 
after some mathematical manipulations, detailed in 
exercise, the expression of  tan(θa/2) : 

tan (
θa

2 )=√ 1−β
1+β

tan (θ2 )
For the color of the star, we give the expression of 
the wavelength perceived in the vessel which takes 
into account the transverse Doppler effect :

λa=
1−β cosθa

√1−β
2

λ

For example, for  β=0.3 and λ=600 nm, we have the 
results in the following table which we then reported 
in a circular diagram.

Angles in degrees and wavelengths in nm:

As the ship gains  speed, the stars  in the front turn 
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θ 180 165 150 135 120 105 90 75 60 45 30 15 0
180 160 140 121 104 87 73 59 46 34 22 11 0
818 806 773 726 673 621 572 531 498 472 454 444 440

θa
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blue and those in the back red. Laterally we have all 
the  spectral  shades  with  an  zone where  the  stars 
remain yellow. The forward hemisphere, under which 
we  saw the  stars  at  rest,  is  narrowing.  Some  stars 
present in the rear hemisphere appear in the front of 
the  vessel,  for  example  for  θ=105°>90°,  we  have 
θa=87°<90°.

For even higher speeds, the stars fade in the front by 
passing in the UV, and in the back as they pass in 
the infrared. At 87% of  c, only a visible ring is left in 
the  front  around  50°.  However,  new  objects  will 
appear,  celestial  objects  in  the  infrared  in  the 
galactic frame of reference will be visible at the bow 
of the ship and objects in the UV will become visible 
at the stern.
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From  the  galactic  frame  of  reference,  the  light 
intensity received from the different parts of the sky is 
homogeneous. On the other hand, in the frame of 
the vessel, the overall energy received is greater and 
the luminosity dominates forward. 

The energy received from the starry sky depends on 
the speed of  the vessel  according to two factors, 
light aberration and the Doppler effect. A star sees 
its position and its intensity change. The intensity of a 
star varies according to the following formula:

I a=
1−β

2

(1−β cosθa)
2

I  
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The intensity corresponds to the energy received per 
m2 and per second. 
The  energy  comes  from  photons,  of  individual 
energy e=hνa=hc/λa. Due to the Doppler effect, the 
photons  see,  on  the  one  hand,  individually,  their 
frequency, and thus their energy modified, and on 
the other hand, taken as a whole, they arrive with a 
different  rhythm.  The  two  effects  have  the  same 
Doppler factor  √1−β2 /(1−β cosθa), hence the square 
in  the  expression  of  Ia.  The  photons  shoot  more 
frequently and violently at the front, and more slowly 
and softly at the back.

Now let's  look at  a group of  stars,  they occupy a 
certain  area,  also  called  a  solid  angle,  on  the 
celestial vault. As the ship speeds up one group of 
stars  in the front tightens and another,  in  the rear, 
stretches. To calculate the total energy received, we 
must  also  take  into  account  this  density  of  stars 
which varies. 
To find the total energy received, we integrate the 
light  intensity  on a spherical  surface S of  radius  R, 
centered  on  the  vessel.  We  have  the  following 
results, established in exercise:

Ea= ∫
θa=0

π

I a dΩa=γ
2
(1+ β

2
/3)E

with    E=∫
θ=0

π

I dΩ=4 π I=E (β=0) 

Ω is  the  solid angle, it  corresponds by definition to 
the cut surface on a unit sphere,  =S�, R=1.
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To illustrate, at 30% of  c,  the frontal  solid angle, of 
vertex angle 30° in  R, reduces to 22° in  R', thus the 
apparent density of stars in this frontal part of the sky 
becomes  80%  greater7.  In  addition,  the  photons 
received  have  a  higher  energy,  from  yellow  they 
become blue, and moreover they are received in 
greater number.
At 50% of c, the stars become even more rare at the 
back, and 91% of the light energy comes from the 
front hemisphere. 
At 95% of c, the sky is 13 times brighter.

Now what about the number of photons arriving on 
the ship? We have N photons which arrive on the 
ship during a proper time interval. From the galactic 

7 ratio of the surfaces seen under the solid angles Ω=2 π(1−cosθ).
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frame of reference, we observe these same photons 
arriving  on  the  vessel  during  a  relative  dilated 
interval. Thus, the more the vessel gains speed, the 
more the number of photons received per second 
by the astronauts increases with the factor γ.

At 50% c, the vessel receives 15% more photons, and 
84% of the photons come from the front hemisphere.

At  95%  of  c,  the  vessel  receives  3  times  more 
photons,  the  front  celestial  hemisphere  is  26  times 
brighter,  and the  back hemisphere  350  times  less. 
Now let's focus on a half-degree disk, which is the 
apparent size of the Moon or Sun as seen from Earth. 
This disc located at the zenith of the ship will have a 
luminosity 1500 times greater than that of the sky at 
rest. For comparison with what is observed from the 
Earth's ground, this luminosity is 40,000 times less than 
that of the Sun, and 12 times greater than that of 
the full Moon8. But beware, this central  disk emits in 
the ultraviolet, the visible corona is located between 
34 and 52°.

Of course the stars are not all the same color, the 
Sun is yellow, but Rigel is blue and Betelgeuse red. In 
addition, a star does not emit only one wavelength 
but a continuous spectrum given by what is called 
the spectrum of the black body:

8 Data: Starry sky 0.002 lux / Moon 0.25 / Sun 120,000 lux.
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Thus stars of the Sun type, such as Alpha Centauri A 
or B, can be seen with the naked eye at the front of 
the ship even at 50% of c, because they also emit in 
the IR which shifts  in  the visible by Doppler  effect, 
and, although the emitted intensity is lower in the IR, 
this is compensated by an increase in the perceived 
intensity  towards  the  front.  So,  no  navigation 
problem  by  finding  your  way  in  the  starry  sky  to 
reach Proxima Centauri. On the other hand, towards 
the rear of the ship, the stars will fade much faster. 
Regarding  the  energy  and  the  number  of  total 
photons  received  the  results  do  not  change 
because they do not depend on the wavelength. 
The Doppler factor does not depend on λ and the 
aberration displaces all the chromatic components 
of a star's spectrum by the same angle. There is no 
dispersion,  as  in  the  phenomenon of  refraction  of 
light  rays  (through  a  prism  the  frequency 
components are deflected differently and create an 
iridescence in the form of a rainbow).
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 D. Exercises

Exercises

  : resolution by numerical simulation.

1. ▲△△ The suicidal physicist

A driver arrives at a crossroads and the traffic light is 
red. The driver,  who is going crazy after reading a 
physics  book,  decides,  instead  of  stopping,  to 
increase  his  speed so  that  by  Doppler  effect,  the 
light of the traffic light appears green to him. 
What speed should his vehicle reach?
λred=700 nm, λgreen=500 nm

Answers p357.

2. ▲▲△ Laser sail

A Terajoule laser battery based on the ground 
bombs photons for 10 minutes on a sail placed in 
orbit. The sail reaches a speed of 20% of c.

a - What is the radiation pressure exerted on the sail 
depending on the light power Φ received?

b - For  a constant  luminous power incident on the 
sail  in  the terrestrial  reference frame, will  the force 
felt on the sail remain constant? 
By what factor is it modified?
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c - By what factor is the radiation pressure modified 
at the end of the acceleration phase?

Answers p357.

3. ▲▲△ Optical molasses

To slow down atoms and thus cool them we place 
two identical lasers face to face. If an atom placed 
between these two beams is stationary, it remains so, 
because the radiation pressures are in equilibrium.

a - Show that, for an atom moving along the axis of 
the lasers, a force appears that causes it to come to 
a standstill.

This  force  is  similar  to  viscous  friction,  hence  the 
name optical molasses for this phenomenon. Atomic 
clocks use optical molasses to cool atoms.

b - Show that,  for  low speeds  compared to  c,  this 
force  is  analogous  to  the  friction  force  of  viscous 
fluids in laminar regime: f⃗ =−α v⃗ .

The  radiation  pressure can  be  explained  at  the 
microscopic scale by the absorption then emission 
of  a  photon by the atom.  The momentum of  the 
atom is modified, in the direction of the laser during 
absorption  and  in  a  statistically  isotropic  manner 
during  spontaneous  emission.  The  atom  is  thus 
slowed  down  and  confined.  The  resonance 
frequency of the atom is slightly higher than that of 
lasers.
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c - As  with  viscous  friction,  we  have  an  energy 
dissipation  phenomenon.  Explain  qualitatively  how 
the process of absorption/emission of a photon by 
the atom allows it to lose kinetic energy and thus to 
cool down.

d - In the context of perfect gas, the mean kinetic 

energy of an atom is given by the relation e=
3
2

k B T , 

where T is  the temperature in Kelvin.  Once slowed 
down, the atom will have a minimum kinetic energy 
of the order of the difference of energy between the 
absorbed photon  and the  photon  emitted  during 
de-excitation. The line width of the laser is very small 
compared to that of the atom, which predominates. 
In the extreme case, at  rest,  the line width of  the 
atom is  just  below that  of  the  laser.  The  distance 
between the two lines then corresponds to the width 
of the atomic line. The lifetime τ of the excited level 
of the atom is related to the energy difference by 
the  Heisenberg  uncertainty  relation.  From  this  an 
approximation  of  the  temperature  of  the  atom 
obtained by Doppler cooling can be deduced. 
Numerical  application:  τ=27ns  for  a  rubidium  87 
atom. 

e - Give the speed of an atom thus cooled.

Answers p358.
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4. ▲△△ Detection of exoplanets
by Doppler effect

A large number of exoplanets have been detected 
until  now  and  their  known  number  continues  to 
increase. One method of detection, called Doppler 
method,  or  radial-velocity  method,  consists  in 
observing the periodic variation of the wavelength 
of  a  star.  The  motion  of  the  star  is  due  to  the 
presence of an exoplanet. When the star is moving 
towards  us,  and  thus  the  planet  backwards,  the 
characteristic  lines  of  its  spectrum  move  towards 
blue,  and when the star  is  moving away,  towards 
red.

We consider a two-body system consisting of a star 
and a planet. The two masses are in a gravitational 
bound state. Let's conduct a Newtonian study. Each 
of the bodies revolves around the center of mass G 
of the system. We can fictitiously return to a problem 
with one body M of reduced mass μ which orbits 
around G,  a fixed point  of  origin  in  the  center-of-
masse frame:
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μ=
m1 m2

m1+m2

.     Kepler's law for the fictive particle M:

                  a3

T 2=
α

4 π
2
μ

   with     α=G m1 m2

a: semi-major axis of the ellipse traveled by M. 
T: period of revolution around G. 
We then find the trajectories of the two bodies M1 

and  M2 by  applying  the  following  homothetic 
factors:

G⃗M1=−
m2

m1+m2

G⃗M      and     ⃗GM2=
m1

m1+m2

G⃗M   

We  will  consider  the  cases  of  a  two-body  system 
with  circular  orbits  and a plane of  revolution  that 
contains  the  long-distance  observation  site  of  the 
Doppler effect. 
Let's take the example of a star slightly smaller than 
the Sun around which a giant Jupiter orbits. The Sun 
is a small star, a yellow dwarf, here we will take an 
orange  dwarf  of  0.8  solar  mass.  We  will  have  a 
supermassive giant planet of 80 Jovian masses (this 
planet  may be similar  to  a brown dwarf,  not  very 
luminous  and  not  detectable  by  direct  methods). 
The star  in this  case has a mass  ten times greater 
than  that  of  the  planet.  There  are  many  stellar 
systems  of  this  type:  HD  87883,  HD  4747,  Epsilon 
Eridani, etc.

a - Determine  the  speed  of  the  star  on  its  orbit 
around the system's center of gravity. Show that this 
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speed is indeed non-relativistic.
b - Give  the  classical  limit  of  the  Doppler  effect 
formula.

c - What  will  be  the  relative  wavelength  variation 
Δλ/λ of  the  light  emitted  by  the  orange  dwarf 
observed from the Earth in its plane of revolution?

Data: G=6.67×10-11N.m2/kg2,    MS=2×1030 kg,
MJ=MS/1000,    dG-Planet=540×106 km

Answers p359.

5. ▲▲▲ Calculations for the moving ruler
 

We detail the calculations that allow us to find the 
exact  expression  of  the  apparent  length  of  the 
moving  ruler  on  the  photographic  plate  as  a 
function of time. We rely on the notations given in 
the course.
a - Determine the equations of the worldlines for the 
E1 and E2 ends of the ruler.
b - We  seek  to  express  the  equation  of  the  past 
cone  of  M(0,  D,  ctM).  We  consider  the  vector 
u⃗=(a ,b ,1)  with  √a2

+b2
=1  and  collinear  with  a 

generatrix  line of the cone. Let be  C=(x , y ,c t)  a 
point of the cone.
We have two constraints,  ⃗MC collinear  to  u⃗  and 
point C belongs to the ends of the worldsheet of the 
ruler. Deduce the apparent length La as a function 
of t.
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Answers p360.
6. ▲▲△      Velocity transformation
                       and aberration of the light

a - From  the  Lorentz  transformation  determine  the 
three components of the velocity in R' as a function 
of those in R.

v⃗=(v x , v y , v z) ,   v⃗ '=(v x ' , v y ' , v z ' )    and   β⃗= u⃗
c
=

u
c

i⃗

From the transformation of velocities we can quickly 
find the formula of the relativistic aberration of light 
which gives θa as a function of θ.
b - Give the components of the velocity of a photon 
that arrives in O at an angle θ with respect to Ox.
c - Give  the expression  of  v⃗ '  and check that  we 
have v⃗ '⋅⃗v '=c2.
d - Express tanθa as a function of θ.

Answers p361.

7. ▲▲△                Composition of velocities
                      and accelerations. 3D generalization

a - Two vessels  move at  50%  c and cross  perpen-
dicularly in O in R. 
What is their relative speed?

b - In the general case of two vessels animated by 
velocities v⃗1  and v⃗2 , one does not lose in generality 
by taking i⃗  co-directed with  v⃗1,  j⃗  co-directed with 
v⃗1∧ v⃗2  and k⃗= i⃗∧ j⃗. 
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The  angle  between  the  velocities  is  θ=(̂ v⃗1, v⃗2). 
Express the relative velocity v' as a function of v1, v2 

and θ.
Numerical  application  for  two  vessels  of  γ=2  and 
trajectories that make an angle of 30°.
c - We continue the exercise Two vessels on page 71.
   1 -  Starting from the velocity  v⃗  in  R,  find again, 
with the velocity transformation laws, the velocity  v' 
of vessel B.
   2 -  Establish  the  law  of  transformation  of 
accelerations in three dimensions. From the velocity 
v⃗  and  acceleration  a⃗  in  R,  find  again  the 
acceleration a' of the starship B.

                                      Answers on page 362.

8. ▲▲△ Starry sky at the halfway point

We  start  our  journey  to  Proxima  Centauri  with  an 
acceleration of one g. As we will  show in the next 
chapter the speed is then 95% of c at mid-course 
(after  2  ly  traveled  in  the  galactic  frame  of 
reference).  We  wonder  if  the  Sun  and  Proxima 
Centauri  are at  that  moment visible  to the naked 
eye from the spacecraft.  In astronomy we use the 
apparent magnitude to determine the brightness of 
a star. A star of magnitude greater than 6 is invisible 
to  the  naked  eye.  The  star  Vega  is  taken  as  a 
reference with a magnitude of zero. A star brighter 
than Vega has a negative magnitude. 

Magnitude formula:  M=−2.5 log(L /L0).
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L and L0 are the luminosities of  the star and Vega 
perceived at the point of observation. 
The luminosity LV of Vega, which corresponds to the 
total power emitted, is expressed as a multiple of the 
luminosity LS of the Sun: LV= 37LS. 
Distance Vega-Sun: DVS=25 ly.
For Proxima Centauri: LP= 5×10-5LS. 
The  perceived luminosity  of  a  star  decreases  with 
distance, and is inversely proportional to the square 
of the distance. 

a - Determine the apparent magnitude of the star 
Proxima Centauri from Earth. Is the star visible to the 
naked eye? 

b - Determine the apparent magnitude of Proxima 
Centauri  at  midpoint  if  the  spacecraft  was 
motionless with respect to the stars. Would the star 
be visible to the naked eye? 

c - Determine the apparent magnitude of Proxima 
Centauri  at  mid-course  when the spacecraft  is  at 
95% of c. Will the star be visible to the naked eye? 

d - Determine the apparent magnitude of the Sun at 
mid-course if  the spacecraft was stationary. Would 
the Sun then be visible to the naked eye? 

e - Determine the apparent magnitude of the Sun at 
the halfway point  when the spacecraft  will  be at 
95% of  c. Will the Sun then be visible to the naked 
eye? 

f - Here you are on the exoplanet Proxima b orbiting 
the star Proxima Centauri. A well-deserved rest. Will 
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you see the Sun in the night sky?            Answers p366.
 ▲▲△ Numerical simulation of the sky

In  the analytical  model  of  the  course  we have a 
continuous distribution of light energy to model the 
starry sky. Here we will have a discrete distribution of 
point  stars.  We  will  take  N=10,000  stars,  identical, 
monochromatic,  and,  randomly  and  uniformly 
distributed. 
This numerical model allows us to better understand 
the perception of the sky from the moving vessel, to 
better  understand  the  meaning  of  the  integrals 
calculations and to verify them. 

a - Uniform spherical   probability law: We place stars 
on  the  celestial  sphere  using  two  angles  θ,  the 
colatitude,  and  ϕ,  the  longitude.  These  are  the 
spherical  coordinates.  The positioning is  analogous 
to the one used to find our bearings on the surface 
of the Earth. The colatitude is  zero at the celestial 
North Pole, 90° at the celestial equator and 180° at 
the  South  Pole.  The  longitude  is  0°  at  a  meridian 
taken for origin and returns to it after a full 360° turn. 
Propose laws of probabilities Θ and Ψ which ensure 
a uniform distribution  on the celestial  sphere as  a 
function of the continuous uniform law  U(0,1)9.

b  -  We  use  a  spreadsheet  and  the  function  that 
generates a random number between 0 and 1. On 
the first two columns we have N values for θ and for 
9 For the laws of probability and their simulation, see, for example, 

the book Probability, Statistics and Estimation, by the same author, 
on pages 109 and 118.
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ϕ. Then we calculate for the N stars θa and Ia with the 
formulas of the course. You can thus find the values, 
for a speed of 50% of c, of the energy and the total 
number of photons received with respect to rest. 

Answers on p367.

10. ▲▲▲ A bit of math...

To do physics in higher education you have to be 
comfortable  with  math  and  I  prefer  to  put 
everything  on  the  table  in  the  same  book  to  be 
clear  and  avoid  multiple  tergiversations.  Nature  is 
logical,  logic is  mathematical,  so let's  indulge in a 
little trigonometry.

According to the relation between  y' and  x' given 
page 88:

θ belong  to  ]0,  π[ and  tanθa=
sinθ

γ(β+cosθ)
 if  the 

denominator  is  positive.  θa then  belong  to  ]0, 
π/2[ and in this case:  β+cosθ>0  so  0≤θ<θ0   with 
θ0=arcos(−β).
If  the  denominator  is  negative.  θa belong to  ]π/2, 
π[ and in this case θ0<θ≤π  then:

   tan (π−θa)=
sinθ

−γ(β+cosθ)

This  is  very  complicated.  The  tangent  function  is 
made up of an infinity of branches, and, therefore, 
for one value of the tangent there are an infinity of 
possible  angles.  A  traditional  calculator  gives  the 
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value of the angle on the central branch on  ]-π/2, 
π/2[. Our star observation angle is between -π and 
π, and by symmetry we restrict to ]0, π[.  We are then 
on two branches of the tangent. To solve this thorny 
and exciting (!) problem we prefer to have tan(θ/2), 
because  θ/2  belongs  to  ]0,  π/2[.  We  stay  on  the 
same central branch whose values are given by the 
calculators. 
a - After  recalling  the  expressions  of  cos(a+b)  and 
sin(a+b)  give  the  expression  of  tan(a+b)  as  a 
function of tan(a) and tan(b).
b - Deduce tan(θ) as a function of tan(θ/2).
c - Solve a quadratic equation to show that

 tan (θa /2)=√ 1−β

1+β
tan(θ/2).

Answers p368.

11. ▲▲▲ Energy distribution

We  establish  here  the  formulas  giving  the  energy 
received from the starry sky in the reference frame of 
the vessel as a function of β.

a -  Use the relationship between θa and θ to express 
dθ as  a function of  dθa and  θa.  Deduce how the 
solid angle d Ω=2 πsinθ dθ transforms in the vessel's 
frame of reference. You will be able to express dΩ as 
a function of d Ωa and θa. The factor gives us the star 
density  n as a function of  θa. Express this density at 
the stern and bow as a function of β, then make a 
numerical application for β=0.5.
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b -  Verify by integrating over the whole space that 
the number of stars remains well constant when the 
ship gains speed.

c -  Find again the expression of Ea as a function of β 
of the course.

d -  Determine  how  the  energy  is  distributed 
between  the  front  and  back  hemispheres  of  the 
vessel. Expression as a function of  β, and numerical 
application for β=0.5.

Answers p369.

12. ▲▲▲ Number of photons

The  number  of  photons  reaching the  vessel  every 
second  is  proportional  to  gamma.  Within  the 
framework of the model of yellow photons uniformly 
emitted in  the galactic  frame of  reference,  in  the 
moving frame of  reference,  the photons are more 
numerous  and  of  different  frequencies.  They  are 
each time less numerous and of low energy towards 
the  rear  and  each  time  more  numerous  and 
energetic towards the front. 

a - By  a  complete  integral  calculation  find  the 
factor: Na/N=γ. You can use symbolic computation 
software.

b - What proportion of photons is received from the 
front  hemisphere? Calculation  as  a  function  of  β, 
then numerical application for β=0.5.

Answers p371.
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13. ▲▲▲ Power emitted by a star 

To obtain the total power emitted, we integrate the 
luminance i on  all  wavelengths,  solid  angles  and 
surfaces:

 P=∫ i(λ)d λdΩ dS

The expression of the luminance is given on page 93.
For  a  black  body,  an  infinitesimal  area  dS emits 
uniformly over a half-space, i.e. an integrated solid 
angle of 2π.

a - In the case of  the Sun, do you find the known 
total  emitted  power  of  4×1026 W?  The  surface 
temperature  is  taken  equal  to  TS=5000 K  and  the 
solar  radius  RS=700 000 km.  You  can  estimate  the 
integral by a numerical integration.

b - How  is  the  power  emitted  by  the  Sun  divided 
between visible,  infrared (>800  nm)  and UV (<400 
nm)?

c - For  Proxima  Centauri,  we  take  T=3000K  and 
R=0.14 RS.  We  read  on  the  Wikipedia  page  of 
Proxima  Centauri  that  "Its  total  luminosity  over  all  
wavelengths  is  0.17%  that  of  the  Sun".  Does  your 
calculation confirm this assertion?

Answers p372.
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 V. Accelerated Motion

ACCELERATED MOTION

We have so far studied vessels in uniform rectilinear 
motion:  an object  animated at  a constant  speed 
and which moves along a straight line. For realistic 
interstellar  travel  the  trajectory  can  remain  recti-
linear, but, on the other hand, the speed necessarily 
varies.  We are  going to  be  interested in  uniformly 
accelerated  rectilinear  motion:  the  vessel  has  a 
constant acceleration, the speed constantly varies 
by  the  same  amount.  We  can  thus  create  an 
artificial  gravity  in  the rocket:  we will  consider  the 
case where the speed increases (or decreases) by 
10 m/s every second.

 A. STUDY OF AN ACCELERATED FRAME

⚭    STUDY OF AN ACCELERATED FRAME

The basic principles of special relativity are stated for 
inertial  frames  of  reference.  Once  we  have  a 
starting  inertial  frame  of  reference,  all  frames  of 
reference  in  uniform  rectilinear  translation  with 
respect to it are also inertial frames of reference. A 
frame of  reference accelerated with  respect  to  a 
frame of inertia does not belong to this set,  which 
does not prevent the application of special relativity 
indirectly  if  we  know the  motion  of  this  reference 
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frame with  respect  to  an inertial  reference frame, 
which we will name R. We proceed in the same way 
in Newtonian mechanics, the fundamental relation-
ship  of  dynamics  F⃗=m a⃗ is  only  valid  in  inertial 
frames of reference and therefore Newton's laws are 
used to  study  any  type of  motion  in  any  type  of 
frame of reference.
Classical  mechanics  is  used  to  construct  special 
relativity  by  using  it  as  the  limit  of  low  speeds.  In 
addition,  the  principle  of  additivity  of  the  proper 
times  on  the  particle  worldline  is  added  as  a 
construction element. With this principle, we are not 
limited to inertial  frames of  reference:  the particle 
proper frame of reference can have any motion (it is 
the clock hypothesis seen page 19).

Then τ=∫d τ=∫
d t
γ  where τ is the proper time in the 

particle proper reference frame,  t is the time in the 
inertial frame of reference and  γ is expressed as a 
function of the instantaneous speed v of the particle 
in this same frame of reference.
At  any  time  t there  is  always  an inertial  frame of 
reference named R' which coincides with the proper 
reference  frame  Rp.  The  frame  R' has  a  constant 
velocity  v with respect to  R and, at the moment it 
coincides with the proper frame Rp, the particle has 
a zero velocity in R'. Its acceleration is a' and that in 

R is  then  a=
a '

γ
3  (demonstrated  page  69).  This  is 

where  classical  mechanics  comes  in,  indeed,  the 
particle then has a low speed in  R' between t and 
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t+dt. It is like if an accelerated vessel passed a vessel 
moving at constant velocity. If at the moment they 
are at the same level their velocities are equal, their 
relative velocity  is  zero.  The vessel  accelerated by 
the thrust of its engines then moves away slowly with 
respect  to  the  speed  of  light  and  we  can  use 
classical  mechanics  to  study  the  motion  of  the 
accelerated vessel from the other vessel taken as a 
reference. 
Let's take the example of a car that first stands still at 
a  red  traffic light and  then  accelerates  to  green. 
From  the  reference  frame  of  the  road,  the 
acceleration  of  the  mobile  is  a⃗,  but  what  is  the 
acceleration  felt  by  the  passenger  in  the  proper 
reference frame of his car?
According  to  the  classical  acceleration  transfor-
mation  formula:  a⃗=a⃗r+a⃗e+a⃗c where  we  have  the 
absolute acceleration a⃗ in R, relative acceleration a⃗r 
in  Rp, coincident  acceleration a⃗e 

10 and  Coriolis 
acceleration a⃗c.
Let's write Newton's second law in R' :
F⃗=m(a⃗r+ a⃗e+ a⃗c)  and  m a⃗r=F⃗+ F⃗ ie+ F⃗ ic.
In an accelerated, non-Galilean frame of reference, 
we feel new forces, called  inertial  forces. Here the 
accelerations  a⃗r and  a⃗c are  null  because  the 
passenger is motionless in his car. The driver feels a 

10 Advanced remark: a⃗e= a⃗R(C), C (t=t0)=M (t0) and v⃗ Rp
(C)=0⃗

 a⃗e= a⃗R(O' )+
d Ω⃗Rp /R

dt
∧O⃗ ' M+Ω⃗Rp/R∧(Ω⃗Rp/R∧O⃗ ' M )

The coincident point C coincide instantaneously with M. For a non- 
rotating frame a⃗e= a⃗R(O' ). For a uniformly rotating frame we 
obtain the centrifugal acceleration. e for entraînement in French.
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inertial  force  F⃗ ie=−ma⃗e that  pushes  him  to  the 
bottom of his seat when starting. This is due to the 
inertial  acceleration which equals  that  of  the car: 
a⃗=a⃗e. For the same reason, the acceleration felt by 
the  particle  in  its  proper  frame  also  worth  a⃗ ', 
acceleration of the particle in R'.

 B. Artificial Gravity

⚭    ARTIFICIAL GRAVITY

When the car accelerates at the green traffic light, it 
is as if a force exerted at a distance pulls the driver 
towards  the  rear  of  the  car.  Like  a  non-contact 
force, analogous in these effects to a gravitational 
force due to a mass  placed at a distance at the 
back  of  the  car.  When  a  spaceship  starts  at  the 
green  traffic  light  at  an  interstellar  crossroads,  the 
passengers  first  in  weightlessness are  then  pressed 
during  the  acceleration  phase  to  the  walls 
perpendicular to the displacement. In our case the 
acceleration  is  maintained  and  the  vessel  has  a 
uniformly accelerated rectilinear motion. 

The  acceleration  is  equal  to  the  Earth's  surface 
gravity g, thus:

a=
d v
d t

=
g

γ
3       and      τ=∫

γ
2

g
d v=c

g∫
dβ

1−β
2

then   τ=c
g
∫
0

β

( 1/2
1−β

+
1/2
1+β)dβ   and   τ= c

2 g
ln (1+β

1−β)
where  v=β c is  the  speed  reached  in  R after  a 
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proper duration τ.

Let  us  express  the  distance  x traveled  in  R as  a 
function of  v:

v=
d x
d t

   then   x=∫dx=∫
γ

3

g
v d v=c2

g∫
β

(1−β
2
)
3 /2

dβ

and after integration:  x=
c2

g ( 1

√1−β
2
−1)

Let's calculate the galactic time t :

t=∫dt=∫γ
3

g
d v=

c
g
∫ 1
(1−β

2
)

3 /2 dβ

We perform the change of variable
 β=sin θ  and we find:

t=
c
g

β

√1−β2
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We  can  now  express  the  position,  speed  and 
acceleration as a function of time t :

{
x=

c2

g [√1+
g2 t2

c2 −1]
v=

c

√1+
c2

g2t 2

a=
g

(1+
g2 t2

c2 )
3 /2
=

g

γ
3

        and  γ=√1+
g2 t2

c2

We can also express the proper time τ as a function 
of galactic time t :

t=
c
g
γβ    then    τ=

c
g

ln(√1+
g2 t2

c2
+

g t
c )

and    τ=c
g

argsh(g t
c )

t=
c
g

sh (g τ

c )     x=
c2

g [ch( g τ

c )−1]
(c t)2−( x+

c2

g )
2

=( c2

g )
2
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Curves :

The speed tends towards the maximum speed c. For 
low speeds, the speed increases linearly with time, 
we find the classic limit v=g t.

Next  page,  the  variation  of  the  temporal  dilation 
factor  as  a  function  of  galactic  time.  We have a 
horizontal tangent at low speeds. When the speed 
increases,  we  tend  towards  the  ultrarelativistic 
asymptote  γ∼g t /c ,  γ then  varies  linearly  with 
galactic time.
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Previous  page,  the  acceleration  of  the  ship  seen 
from the starting frame of reference. Although the 
acceleration remains constant in the proper frame, 
observed  from  the  Earth,  the  speed  reaches  a 
ceiling and the acceleration decreases in gamma 
cubed. We have a horizontal tangent at low speeds, 
a zero infinity limit, and an inflection point at t=c /2g.
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Previous page, we see, after 6 months, the position 
move away from the forecasts of classical mecha-
nics. In Newton's theory we had a parabolic branch 
while in the context of special relativity we have a 
hyperbolic branch with an ultrarelativistic asymptote 
x=c t−c2

/g where  the  galactic  distance  traveled 
increases linearly with time. 

Below, the traveler's time accelerated according to 
that of those who remained on Earth:
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Horizon concept: 

We get the Minkowski  diagram by simply reversing 
the  x and  t axes.  We  find  that  the  asymptote 
t=x /c+c / g represents  a  horizon.  For  terrestrial 
observers, it  is impossible to communicate with the 
vessel after a period of time t lim=c /g (approximately 
11.4 months). Indeed, after this period, a photon will 
no longer be able to reach the vessel. On the other 
hand, the occupants of the accelerated vessel will 
be able to continue to send us messages throughout 
their journey. They will  also be able to permanently 
receive messages from Earth, but they will be earlier 
than t lim.
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As the proper time  τ increases,  the astronauts see 
the inhabitants of the Earth slow down their motions 
and freeze at the time limit t lim.

 C. Round Trip

⚭    ROUND TRIP

We want to join an exoplanet at a distance D from 
our planet Earth. We will be under artificial gravity for 
the entire round trip. We accelerate the first half of 
the  trip  and  then,  after  turning  the  ship  around, 
decelerate to the exoplanet. We repeat the reverse 
procedure for the return.

First phase:    D
2
=

c2

g ( 1

√1−βmax
2

−1)
Maximum speed halfway:

 βmax=√1−
1

(1+g D

2 c2)
2
  

( for D=4 light-years, βmax≃95% and γ≃3)

Duration T for the round trip:

T
4
=

c
g

βmax

√1−βmax
2

     and     T=
4 c
g √(1+g D

2c2)
2

−1

Proper time τ for the round trip:
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τ=
2 c
g

ln(1+βmax

1−βmax
)=4 c

g
argthβmax

( for D=4 l.y., T≃11.2 years and τ≃6.84 years)
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Photon rocket:

A light beam, created by the rocket, propels it  by 
reaction.  For  example,  matter  and  antimatter,  in 
equal parts, are placed at the focus of a parabolic 
mirror,  and,  by  annihilation,  produce  pure  energy 
projected backwards in a parallel beam.

Consider  the  following  case,  a  particle  and  its 
antiparticle meet and create two photons which go 
in opposite directions. One goes backwards and the 
other  forwards.  The  backward  one  does  not 
contribute to the propulsion, on the other hand, the 
second  one  contributes  doubly,  because  the 
reflection on the mirror is supposed to be perfect. On 
average,  each  photon  transfers  its  impulse  to  the 
rocket.  Ultra-relativistic particles are just as efficient 
as their mass energy converted into light.

More realistically,  a photon is  sometimes absorbed 
by  the  gamma  shield.  The  efficiency  is  then  50%. 
Also,  part  of  the energy of the absorbed  gamma 
rays can be reused to heat a gas to a very  high 
temperature. The thermal agitation generates a very 
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important ejection speed11.
On  the  contrary,  if  a  neutrino is  created  by  the 
reaction,  it  carries  away  energy  that  is  lost  for 
propulsion. 

The photon rocket is close to the perfect model, we 
can otherwise talk about an antimatter rocket.

Annihilation reactions

Proton-antiproton annihilation  is  more  complex  and 
creates cascades of particles.  γ photons, even more  
energetic  than  for  electron-positron  annihilation,  are  
created.

11 NASA proposes a rocket propelled by a positron reactor. These are 
annihilated with electrons in gamma photons. The heat produced 
heats liquid hydrogen. www.nasa.gov
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Technical data :

Travel To Proxima Centauri / Distance 4.2 ly.
Traveler duration 3.3 years - Galactic 5.5 years. 

Astronauts: 6. 
Pressurized module: 3 / 10t / 6mx10m
Main Module - Technical Module - Leisure Module

Total  height  126m / Diameter  15m /  Total  mass  2420t  /  
Payload 20t / Antimatter mass 1200t.

Antimatter: Proximium / Density 0.2 / 200 kg/m3. 
Matter:  Everything,  except  the payload,  is  progressively  
annihilated with the Proximium (shields, motors, etc).

Acceleration max 3 g / Speed max 89 % of c / γmax 2.2 /  
Periods Acceleration: aavg 2 g, sleep 2.8 g
Periods Speed: aavg 0.3 g, sleep zero g.

Interstellar  shield:  140t  /  Protects  from  the  interstellar  
medium 0.6 proton/cm3 / vertex angle 38° / Tmax 498°C. 
This  shield  is  used  on  the  first  half  of  the  course.  After  
turning over,  the motors are forward, and the  radiation  
pressure pushes the interstellar medium away.

Gamma shield: 860t / Protects passengers and Proximium  
from the  rays  γ emitted by the motors / Armoring Pb of  
20 cm, or concrete 1.2 m, reduces the flux by a factor 106.

Rocket motor: efficiency 50 % / 1st phase 7 M P-2 / Thrust  
10 MN / De 1g max 11 g/s  Proximium / 2nd 1 M P-2 /  3rd 1 M 
P-1 Thrust 2 MN / ve=150 000 km/s.

Comparison :
Saturn V / M=3038t / H=111m / D=10m / Mpropellant=2829t /  
Pmax 34 MN / 1st stage 5 Motors F-1 ve=2.6 km/s De=13.6 t/s  
Kerosene~O2(l)  /  2nd 5 M J-2  /  3rd 1 M J-2  ve=4.1 km/s  
H2(l)~O2(l) / Duration 11 min 30 s from 0  to 164 km.
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 D. Exercises

Exercises

1. ▲△△   Half-time

Leaving  Earth,  the  ship  reaches  Proxima  in  a 
uniformly  accelerated  motion  in  two  steps:  the 
rocket  cuts  off  its  engines  halfway  through  the 
journey,  giving  it  time  to  turn  around,  and  then 
arrives at Proxima at zero speed. 
Compared to the stars considered fixed, what will be 
the  distance  traveled  at  half  the  time  elapsed 
before  the  turning  point?  Is  the  result  modified 
according to whether one considers the time of a 
fixed observer with respect to the stars, or that of a 
fixed  observer  with  respect  to  the  rocket?  What 
about classical mechanics ? 
We take, as usual, the following values :
D=4 al, a=g=10 m/s2 and c=3×108m/s.

Answers on page 374.

2. ▲▲△    Reality show

On January 1, 2100 at 12:00 noon, the crew of the 
Galaxys spaceship leaves at constant acceleration 
for the other end of the Milky Way. 
Every  day  on  Earth  a  reality  show  tells  the 
adventures  of  the  astronauts.  And conversely,  the 
astronauts  also produce a daily  program with  the 
information received from the Earth during a proper 
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day  on  the  spaceship.  But  due  to  time  dilations, 
during a day on Earth we don't receive the news of 
a  whole  day lived on board the  spacecraft,  and 
vice  versa.  Light  signals  are  used  to  transmit 
information. 

a -  Preamble: Determine the expression of position x 
as a function of γ, and that of γ as a function of τ.

b - Reality TV programs on Earth :
1-  Let  tobs be the instant when the message 

corresponding to a proper  time  τ is  received (the 
instant  t is  simultaneous  to  τ in  the  galactic 
reference frame, but the reception of the message 
due to the finite speed propagation of the wave is 
of course later). Illustrate the situation on a Minkowski 
diagram using the different worldlines (Earth / Ship / 
Photons).

2-  Express  tobs as a function of  τ, and  τ as a 
function of tobs.

3-  Six  months  after  their  departure  the 
astronauts send a message to Earth. How long after 
departure is the message received on Earth?

4-  One year after departure, the daily reality 
shows will correspond to how much time spent in the 
spacecraft?  Same  question  ten  years  after 
departure.

c -  Reality show in the vessel:
1-  Let  τobs be the instant when the message 

corresponding  to  a  terrestrial  time  t is  received. 
Illustrate on a Minkowski diagram.
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2-  Express τobs as a function of t.
3-  Six  months  after  departure  a  message  is 

sent  to  the  astronauts.  How  long  after  their 
departure do they receive it?

4-  One year after departure, the daily reality 
TV shows will correspond to how much time spent on 
Earth? Same question ten years after departure.

d - Doppler effect   for an accelerating frame :
Both from the Earth and from the spacecraft a blue 
light signal is regularly emitted (λ=400 nm). 

1-  Establish the relations between the emitted 
frequency and the received frequency for the two 
reference frames, the inertial  and the accelerated 
one.

2-  After how long will the signal emitted from 
the Earth be perceived as red on board the vessel 
(λ=800 nm) ?

3-  For the same time elapsed on Earth, what 
will be the color of the light signal received?

4-  Is the Doppler effect symmetrical as in the 
case of inertial reference frames?

Answers on page 375.

3. ▲▲△     Head-to-head

Two vessels  are  traveling in  opposite  directions,  at 
the same time and under the same conditions, the 
routes from Earth to Proxima and Proxima to Earth. 
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The  rockets  are  animated  with  uniformly  accele-
rated  motions  and  complete  the  journey  as 
described in this chapter.
a -   Halfway, at the equidistant point, two light-years 
away,  the  ships  shut  down  their  engines  to  turn 
around.  What  is  the  galactic  speed of  the  ships? 
What is their relative speed?

b -  Same questions a quarter of the way.

c -  Propose a technical means that would allow the 
ships to measure their relative speed.

d -  Express the galactic speed v as a function of the 
proper time τ.

e -  Express the relative speed vr as a function of τ.

f -  Determine the acceleration ar of the spacecraft 
coming from Proxima from the point of view of the 
reference  frame  of  the  spacecraft  coming  from 
Earth as a function of τ.
Determine  this  relative  acceleration  at  the  start, 
halfway  and  a  quarter  of  the  time  of  the 
spacemen's outward journey. 
Is  the  relative  motion of  the  spacecrafts  uniformly 
accelerated? 
What  results  would  we  find  in  Newtonian  mecha-
nics? 

Answers on page 379.
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 VI. Metric

METRIC

A  metric is  used to measure distances. In relativity, 
the tool  is  generalized to space-time.  We will  give 
the metrics of the inertial frame of reference, of the 
uniformly accelerated frame in rectilinear translation, 
and of the uniformly rotating frame. We will then be 
able  to  determine  the  spacetime  structure  in  our 
spaceship on its  way to Proxima. What will  be the 
geometric properties in the vessel? How does time 
flow at the different stages of the rocket? 
Finally, we will  make a parallel with the black hole 
metric and thus build a bridge to general relativity. 
To  answer  these  questions  we  will  introduce  the 
concept of metrics through various examples.

 A. Euclidean Metric

⚭    EUCLIDEAN METRIC

We measure the distance between two points. The 
metric  can  be  expressed  in  different  coordinate 
systems to calculate a distance, which is invariant. 
Let us take the case of two points M1 and M2 on a 
plane. If the coordinates of the points are Cartesian, 
M1(x1, y1) and M2(x2, y2), the distance is given by:
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L=d M 1 M 2
=√(x2−x1)

2
+( y2− y1)

2

We can also determine the length of a curved path 
taken by a particle by integrating between the two 
points:

L=d M 1 M 2
=∫

M 1

M 2

d l    with   d l2
=dx2

+dy2

This element d l2 is our metric for this example. 

In  the  case  where  our  physical  problem  has  a 
central symmetry (common case, as for the motion 
of  planets),  the  polar  coordinates  may  be  better 
adapted. We will have the same final result, but, in 
one case the computation can be very long, and in 
the  other,  very  short.  In  polar  coordinates  these 
same points have the coordinates M1(r1, θ1), M2(r2, θ2) 
and  d l2

=dr2
+(r dθ)2.  With  x=r cosθ and  y=r sinθ , 

we  find  the  Cartesian  metric,  the  steps  are  well 
equivalent .
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In Euclidean geometry the length of an object (like 
the duration of a phenomenon) is the same for all 
observers.  Whether one carries out a translation, a 
rotation, or a Galilean transformation of the coordi-
nates, the length L is invariant (done in exercise on 
page 159).

More generally,  the laws of  Newtonian mechanics 
are invariant according to these transformations.

This is not the case for a dilation: if  x '=k x,  y '=k y 
and  z '=k z with  k the  dilation  factor,  then, 
d l ' 2

=dx '2+dy '2+dz '2,  d l '=k d l and L '=k L. The laws 
of  physics  depend on the scale,  they are not  the 
same for the infinitely small and the infinitely large.

The  straight  line  is  the  shortest  path  between two 
points.  We  can  take  a  rope  and  pull  it  to  get  a 
straight line. It is the path between M1 and M2 which 
minimizes L. 

The Euclidean metric  corresponds  to a flat  space: 
The sum of the angles of a triangle is equal to 180°, 
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the ratio between the perimeter and the diameter 
of a circle is equal to π, and every straight line has a 
single parallel line passing through a point outside it.

 B. Metric on the Sphere

⚭    METRIC ON THE SPHERE

To better illustrate our point, let us take the case of a 
two-dimensional  spherical  space. You have to put 
yourself in the place of two-dimensional beings (the 
bidiz) who live on the surface of the sphere and are 
unaware of  the third dimension.  Euclid's  postulates 
are  no  longer  verified.  We  have  simple  counter-
examples: 

◦ To draw a circle, we fix a point, we attach a 
rope to it, and, with a tight rope, we turn around to 
trace it. The circle centered on the north pole and 
perimeter of the equator has a perimeter/diameter 
ratio equal to 2, a value much less than π.

◦ Now let's construct a particular triangle: we 
have a first point at the north pole, we get a second 
point by joining along a straight line the equator, we 
turn at right angles to the east and we then follow 
the  equator  for  a  quarter  turn,  we  turn  at  right 
angles to the north, and we return to the north pole 
to finish the triangle. We have an equilateral triangle 
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and all three angles are right. The sum of the angles 
of  this  triangle is  270°,  a value much greater  than 
180°.

◦ Imagine yourself living on the surface of this 
sphere.  You  want  to  go  on  an  adventure  and 
discover  unknown  lands.  You  are  unaware  of  the 
curvature of your 2D space, you go in a straight line, 
deviating  neither  to  the  right  nor  to  the  left,  and 
finally you end up reaching your starting point from 
the  opposite  side!  This  is  very  disconcerting.  The 
straight lines of the sphere are circles of the same 
radius as the sphere (the largest circles that can be 
drawn).  For  example,  the  line  of  the  equator,  a 
meridian,  are  straight  lines  for  the  sphere.  You 
cannot  draw  parallel  straight  lines  because  they 
intersect. A latitude forms a circle with a radius less 
than that of the sphere, it is  not a straight line: an 
airplane, to reach two cities  at the same latitude, 
does  not  follow  a  latitude  because  it  is  not  the 
shortest path . 

We can clearly see, on these three examples, that 
the  space  on  the  surface  of  a  sphere  is  not 
Euclidean. It is not a flat space but a curved space.
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The curvature can also be seen on the metric that 
bidizs would use, we give it for information12:

d l2
=

dx2
+dy2

(1+ x2
+ y2

4 R2 )
2

x and y are the two Cartesian coordinates internal to 
their two-dimensional space. Even if they don't "see" 
the third dimension, they could deduce it concep-
tually.  It's  a  useful  analogy  for  the  little  three-
dimensional human beings that we are. Perhaps we 
ourselves live on the "surface" of a four-dimensional 
hypersphere,  just  as  bidiz  live  on the  surface of  a 
hypercircle (a sphere for us!).

Here is a nice way to solve the problem of the edge 
of  the Universe:  if  the Universe is  not  infinite,  there 
should be a wall to define its limit, but what is behind 
the wall? If we live on the volume of a hypersphere, 
we  have  a  Universe  of  finite 
volume,  without  border  and 
without center. 
An elegant vision allowed with 
a curved space.

12 Geometry, Relativity and the Fourth Dimension, Ruldolf v. B. 
Rucker, 1977.
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 C. Minkowski Metric

⚭    MINKOWSKI METRIC

The  time  is  now a coordinate  integrated with  the 
other  three  of  space.  It  is  the  metric  of  special 
relativity.  We  have  shown  page  65 that  the  new 
invariant is:

d s2
=c2 dt2

−dx2
−dy2

−dz2

We discern a temporal part and a spatial part,  dt  
and d l2

=dx2
+dy2

+dz2, then T=∫ d t  and L=∫ d l.

But this two quantities T and L are not invariant.

Straight  lines,  also  called  geodesics,  maximize  the 
proper time τ, invariant quantity:

τ=∫ √d t 2−dl2/c2          
(particle : ds2>0)

Minkowski  metric is  invariant by translation, rotation 
and Lorentz transformation.

 D. Metric of an Accelerating Frame

⚭    METRIC OF AN ACCELERATING FRAME

We  give  the  metric  of  the  frame  of  reference  in 
uniformly accelerated rectilinear translation studied 
in the previous chapter. This frame is not inertial and 
the metric is therefore necessarily different:

d s2
=(1+

g x
c2 )

2

c2 dt 2
−dx2

−dy2
−dz2

We  recognize  a  Euclidean-type  spatial  part,  so 
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space is flat in the ship. Regarding the structure of 
space-time as  a  whole,  we prove that  this  metric 
corresponds to a spacetime, also flat. For that it  is 
shown  that  the  components  of  the  Riemann 
curvature tensor are all  zero.  This  is  very consistent 
with  what  we  say  about  general  relativity:  in  the 
absence of mass, spacetime is not curved13.

For an immobile object in the reference frame of the 
rocket:

 

We  note,  for  observers  motionless  with  respect  to 
each other in the accelerated frame of reference, 
that  time  does  not  flow  at  the  same  rhythm 
according to where one stands in the vessel. It is a 
phenomenon of time dilation very different from that 
observed between two inertial frames of reference 
where  the  clocks  are  in  motion  relative  to  each 
other. Here, the clocks are at rest in the reference 
solid (the rocket), they are motionless with respect to 
each other, and yet they do not work at the same 
rate and cannot be synchronized. Let us consider, in 
our rocket, three clocks which we will place at three 
different levels spaced 120 meters apart. We start by 
synchronizing them on the first level at the back of 
the ship. We leave one clock at the stern, we place 
the second 120 meters forward and the third at 240 

13 It's  more  subtle  than  that.  For  example,  gravitational  waves 
propagate a spacetime curvature that persists even in the absence of 
mass.
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meters at the bow (we move them slowly so as not 
to add another source of time dilation):

After  a day we take them back down to the first 
level  to  compare  the  elapsed  times.  First  obser-
vation,  they  are  no  longer  at  the  same  date, 
moreover the clock on the second level has turned 
faster and is one nanosecond ahead, the third clock 
has turned even faster and is two nanoseconds of 
advance. 
The advance, of the clocks placed "higher"  in the 
vessel,  is  calculated using the  following  expression 
which derives directly from the metric : 

Δ τ=
gH

c2 Δ t

with  Δ t=1 day,  H=120m  and  g=10 m/ s2.

We  will  now  send  photons  from  one  floor  to  the 
other. The result will be fun, and, in addition, we will 
find the metric, in a simple and intuitive way, without 
using  a  mathematical  arsenal.  You  are  on  the 
second level and you send a photon down. By the 
time the photon moves to the bottom, the ship has 
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gained speed. Speed measured in the inertial frame 
of reference which coincides with the accelerated 
frame of reference of the rocket at the time of the 
emission of the photon.
Put  yourself  in  the place of  the one receiving the 
photon at the bottom stage; it is now at a velocity v 
with  respect  to  the  emitter  at  the  moment  the 
photon was emitted. So we have a Doppler effect 
and  as  we  get  closer  to  the  source,  the  photon 
"blues".  The  photon  passes  very  quickly  from  one 
stage  to  the  other  and  the  speed  of  the  rocket 
acquired over this time is very low; we will therefore 
only use classical formulas. 
Speed acquired by the rocket :  v=g t

and t=
x
c

 for the photon, then v=
g x
c

.

Frequency received:  f R=(1+β) f E=(1+ g x

c2 ) f E

We  find  the  expected  blueshift.  Of  course,  if  the 
photon is now sent forward, its frequency decreases, 
and there is a redshift:

f R=(1−g x

c2 ) f E  and  T R=(1+ g x

c2 )T E (small variations)

This result is directly related to the metric, because 
the clocks are motionless with respect to each other 
in  the  rocket's  frame  of  reference,  and  each 
oscillation of the light wave can be considered as a 
mini-flash emitted by the clocks. For example, for an 
emission  wavelength  of  600 nm,  the  source  clock 
emits 500,000,000,000 mini-flashes every second, and 
a clock placed 120 meters forward receives 7 less 
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mini-flashes  during  one  of  its  own  seconds  (by 
Doppler effect the signal reddens as it rises and the 
frequency decreases).
The observer  placed higher  up thus  deduces  that 
the time flows slower on the floor below and faster 
on the floor above.

And  that's  not  all,  we  can  still  broaden  our 
understanding  through  an  energetic  approach.  In 
physics  we have the  conservation of  energy,  and 
this fundamental law applies to special relativity by 
including  the  mass  energy  given  by  the  famous 
formula E=m c2.
We are going to move an atom from one floor to 
another. At the lower stage the atom is excited, we 
take it up in this state to the upper stage. Raising a 
mass requires energy from the operator. In a uniform 
acceleration field the energy received by an object 
of mass m is m g H . The energy of the atom increases 
by mI g H , where mI is the initial mass of the excited 
atom. 
Then, the atom returns to its ground state and emits 
a photon of energy eE=h f E. We then go back down 
the atom, so the operator receives an energy mF g H  
where  mF is the final mass of the de-excited atom. 
And  finally  the  photon  of  energy  eR=h f R is 
reabsorbed by the atom. The balance of this  little 
game must  be null  because the energy must  not 
vary:

−mI g H−h f E+mF g H+h f R=0
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then  f R− f E=(mI−mF)
g H

h
=
Δ E

c2

g H
h

An  excited atom A* is heavier than a de-excited atom.  
The difference in mass gives the energy of the emitted  
photon: A*→A+γ 

Δm c2=(m*−m)c2=Eγ
     Eγ=ΔE=E2−E1=h f

By  spontaneous  emission,  the  electron,  linked  to  the  
atomic  nucleus,  passes  from  the  upper  level  E2 to  the  
fundamental  level  E1 by  emitting  a  photon  of  energy  
equal  to the energy difference of the electronic levels.  
More  particles  are  linked,  more  binding  energy is  
important and more the mass of the edifice is low.
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The variation of the mass of the atom is due to the 
emission of the photon:

so   Δ E=h f E   and   f R=f E(1+ g H

c2 ).
The received photon has a different energy than the 
emitted photon and we find the same expression as 
before. The photon gains energy when it goes down, 
it  turns blue, and loses energy when it  goes up, it 
reddens.  The  conservation  of  energy  makes  it 
possible to find the Doppler effect, the time dilation 
as a function of the position and the metric of the 
uniformly accelerated frame. 

We  will  study  the  link  between  the  uniformly 
accelerated  reference  frame  and  the  reference 
frame  of  Schwarzschild,  used  for  massive  objects 
with spherical symmetry (planets, stars, black holes, 
etc.), in the following pages. 

 E. Metric of a Rotating Frame

⚭    METRIC OF A ROTATING FRAME

We are now going to approach another textbook 
case  which  can  also  be  treated  with  special 
relativity.  A  case  whose  study  opens  the  doors  of 
practical  applications,  such  as  the  ring  laser 
gyroscope14 which  allows  orientation  much  more 
precisely  than  with  a  mechanical  gyroscope or  a 
magnetic  compass.  The  ring  laser  gyro  has  been 
used  in  ships,  submarines,  airplanes  and  satellites 
since 1963.

14 Use of the Sagnac effect conceptualized in 1913.
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We have a disk of radius R rotating uniformly around 
a fixed axis.  The disc is  a rigid solid15 whose speed 
increases linearly with the distance from the axis..

The speed is measured in an inertial reference frame 
R where the axis is fixed. We now place ourselves in 
the non-inertial frame of reference R' of the disc. Let 
us take a circle concentric with the axis of rotation, 
we measure the radius ρ with a stick of unit length. 
Then  we  begin  to  measure  the  circumference  by 
transferring the stick as many times as necessary. For 
each report we use the inertial frame of reference 
coinciding at the location and given time. There is 
no contraction of the lengths radially, because the 
speed is perpendicular to the measured length, on 
the other hand in the orthoradial  direction we are 
collinear  with  the  speed  and  the  length  is 
contracted. 

By  dividing  the  perimeter  of  the  circle  by  its 

15 The rigidity criterion is verified for the disc in uniform rotation and 
the uniformly accelerated rocket: L'espace-temps de Minkowski, 
Nathalie Deruelle.
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diameter, the value is greater than π,  the space is 
curved16.

Let's  determine  the  metric  by  performing  the 
following change of coordinates17:

{
t '=t
ρ '=ρ

θ '=θ−ω t
z '=z

The metric in the inertial frame R is:

d s2
=c2 dt2

−dx2
−dy2

−dz2

This  standard expression given in Cartesian coordi-
nates  is  also  written  in  cylindrical  coordinates,  a 
coordinate system that facilitates calculations for this 
problem which has an axis of symmetry:

d s2
=c2 dt2

−dρ2
−ρ

2d θ2
−dz2

The  interval  becomes  in  R',  removing  the  z 
coordinate for simplicity:

d s ' 2
=d s2

=c2 dt ' 2
−dρ '2−ρ ' 2

(d θ '+ωdt ')2

from  where,  by  removing  the  prime  symbols  to 
lighten:

 
d s2

=(1−
ρ

2
ω

2

c2 )c2dt 2
−2 ρ

2
ω d t dθ−dρ2

−ρ
2 dθ2

16 It is a new pseudo-paradox of special relativity, presented in 1909 
by Ehrenfest as an internal contradiction of the theory. If we accept 
that  the space for an observer of  the disk is  non-Euclidean,  the 
contradiction disappears.

17 Detailed  articles:  Space  geometry  of  rotating  platforms:  an  
operational  approach,  and, The  relativistic  Sagnac  effect:  two  
derivations, Guido Rizzi and Matteo Luca Ruggiero (2008).
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By  calculating  the  components  of  the  Riemann 
curvature tensor (done in the next chapter) we find 
that all the components are zero. The spacetime of 
the uniformly rotating disk is therefore flat18. We are 
well within the framework of special relativity, there is 
no spacetime curvature, no mass present19, and the 
spacetime is well flat.

Special relativity applies in flat spacetime: a change 
of  coordinates  allows  us  to  find  the  standard 
Minkowski  metric again.  In general  relativity,  in  the 
presence of gravitation,  this  is  only possible locally 
around an event: orders zero and one can always 
coincide  with  an  inertial  frame  of  reference 
(Minkowskian spacetime), on the other hand, this is 
no longer  possible  for  order  two,  this  is  where the 
spacetime curvature is expressed.

We can create an  artificial  gravity with  a rotating 
circular platform. The advantage, compared to the 
rocket continuously accelerated by the thrust of its 
reactors, is  zero energy to spend. Once the disk in 
rotation, by conservation of energy, the disk keeps its 
kinetic  moment,  and  gravity  is  maintained  inde-
finitely for  the occupants.  On the other  hand,  the 
created gravity is not uniform, and, in addition to the 
centrifugal force that simulates gravity, there is the 

18 You  will  have  noticed  the  subtlety  encountered  here:  space  is 
curved and spacetime is flat.

19 As with the uniformly accelerated rocket, there is no mass present 
which creates a gravitational field and curves spacetime. The mass 
of the rocket, or of the disc, is here totally negligible and does not 
influence the metric. We are talking about test mass.
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Coriolis force  that  complicates  the  motion  of  the 
astronauts.

To minimize these two drawbacks, the radius of the 
centrifuge  must  be  large  enough.  The  centrifugal 
acceleration gives:  g=ω

2
ρ and  Δ g /g=Δρ/ρ.  For  a 

variation in artificial gravity of less than 1% between 
the feet and the head, a radius of about 200 meters 
is required. And the corresponding angular speed of 
rotation is two revolutions per minute:
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 ω=2π f    and   f =
1

2 π √
g
ρ .

The Coriolis acceleration is written a⃗c=2 ω⃗∧ v⃗r. When 
the  astronauts  run  around  the  wheel,  they  feel 
heavier  running  in  the  same  direction  as  the 
centrifuge  and  lighter  running  in  the  opposite 
direction, it is not very disturbing. On the other hand, 
if  they  bend  up  and down,  they  can  be  pushed 
sideways  by  the  Coriolis  force,  which  can  be 
annoying.20. Let's calculate:  ac /g=2 vr /ωρ=2 vr /√gρ, 
for  a  speed  of  20 km/h,  ac /g≃24%.  This  is  not 
negligible, but we can consider it reasonable.

Now let's look at the time dilation. For an observer at 
rest:

d τ=√1−
ρ

2
ω

2

c2 dt≃(1−ρ
2
ω

2

2c2 )dt

For observers who are immobile in respect to each 
other, time does not flow at the same pace. A set of 
rest clocks at different points on the disk cannot be 
synchronized.  The  farther  away  from  the  axis,  the 
slower the clocks go. 

We place, according to the same protocol as for the 
rocket,  a  first  clock  at  ρ=370 m,  a  second  at 
ρ=300 m, and a third at ρ=200 m.

We find:    Δ τ=
(ρ2

2
−ρ1

2
)ω

2

2 c2 Δ t.

20 Funny video: www.voyagepourproxima.fr/ManegeTournant.mp4
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After  a day we bring the clocks back down to a 
radius  of  370  meters:  the  one  at  300  meters 
advances  one  nanosecond  and  the  one  at  200 
meters  advances  two  nanoseconds.  Here,  the 
advances do not vary linearly with the distance. The 
gravity is 1.5 g at 300 m and 1.85 g at 370 m, a good 
exercise to build muscle and stay young!

We take back our excited atom. We count the work 
received by the atom at  each step.  We mount  it 
from ρ1=300 m to ρ2=200 m. The atom then gains a 
potential energy:

w I=−Δ ep I=∫mI g(ρ) dρ=mI ω
2∫ρ d ρ=

1
2

mI ω
2
(ρ2

2
−ρ1

2
)

It emits the photon:  wE=−eE=−h f E

It goes up:  wF=−Δ e p F=
1
2

mFω
2
(ρ1

2
−ρ2

2
)

It receives the photon:  wR=eR=h f R

We perform the energy balance: 
1
2

mI ω
2
(ρ2

2
−ρ1

2
)−h f E−

1
2

mFω
2
(ρ2

2
−ρ1

2
)+h f R=0

and we obtain:  f R= f E(1+ω
2
(ρ1

2
−ρ2

2
)

2 c2 )   

The photon turns blue as it moves away from the axis 
of rotation. We always have the same phenomenon, 
the photon reddens as  it  goes  up and blues as  it 
goes down.

 F. SCHWARZSCHILD METRIC
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⚭    SCHWARZSCHILD METRIC

For  comparison,  we give  the  metric  of  spacetime 
around a massive object with spherical symmetry. It 
is the Schwarzschild metric of general relativity which 
replaces Newton's force of gravity to calculate the 
orbits  of  celestial  bodies.  For  example,  it  can  be 
used for studying the motion of the space station in 
the  gravitational  field  generated  by  the  Earth.  In 
order to respect the central symmetry, the metric is 
given in spherical coordinates:

d s2
=(1−2G M

r c2 )c2dt 2
−

d r2

(1−2G M
r c2 )

−r2 dθ2
−r2sin2

θd ϕ2

M is  the mass  of  the central  body (planet,  star  or 
black  hole).  This  mass  creates  a  gravitational  field 
and  spacetime  is  curved.  There  is  no  global 
coordinate  change  that  makes  this  metric 
Minkowskian. Gravitation and spacetime curvature 
are absent in the special relativity. 

Appears in the metric a quantity with the same units 
as a radius, this characteristic distance of the system 
is called Schwarzschild radius: 

we define   rS=
2G M

c2 .

As for the accelerated frame in special relativity, we 
have an event horizon, here located in rS. 
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For an object at rest we obtain the temporal part:

d τ = √1−
2G M

r c2 dt

The further we move away from the massive object, 
the lower  the curvature.  At  great  distance,  space 
can be approximated as flat, and, according to the 
equivalence principle of general relativity, we must 
find  the  form  of  the  metric  of  the  uniformly 
accelerated rocket:

d τ≃(1−G M

r c2 )dt    for   r≫rS .

For example, for the Earth, the radius  rS is  about 9 
millimeters.  On  the  Earth  ground,  about  6370 km 
away, the approximation is extremely good21.

With r=r0+ x  and r0≫rS  :

d τr 0
=(1−G M

r0 c2 )dt    and   d τr 0+ x=(1−G M
r0 c2 (1−

x
r0
))dt

gives   d τr 0+ x=(1+G M x

r0
2 c2 )d τr0

The  form  is  the  same  as  for  the  uniformly 
accelerated rocket: 

d τ=(1+ g x

c2 )dt.

21 Also, we can forget the Earth's rotation because the ground speed 
can  be  neglected  in  front  of  the  escape  velocity  (geocentric 
reference frame).
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We find the equivalence principle when:

 g=G M

r0
2

.

Here we have also the highest clocks faster and the 
ascending  photons  that  redden.  On  the  Earth 
ground, over a height of  100 meters,  the time lag 
reaches 0.9 nanoseconds in 24 hours22. Result close 
to  that  obtained  in  the  rocket23.  Locally,  nothing 
allows astronauts to differentiate the artificial gravity 
field created by the acceleration of the rocket, from 
a natural gravity generated by a mass. On the other 
hand, over a sufficiently large space domain, they 
could differentiate the two situations: the space of 
the uniformly accelerated rocket is Euclidean while 
that of the massive celestial body is not24.

22 In the case of the space station, even if the 110 meters beam can be 
maintained directed towards the Earth with a tidal stabilization, the 
clocks remain synchronized. At the level of the station, the gravity 
field is still 90% of the one on the ground, but there is no redshift,  
because during the rotation around the Earth, the external part goes 
slightly  faster  than  the  internal  part  and  the  effect  is  perfectly 
compensated. This is the principle of equivalence, for the astronauts 
everything happens as if there was no more gravitation (they are in 
weightlessness) because they are in free fall. 

23 In both cases we have clocks at rest in relation to each other, which 
become desynchronized. For the rocket, by changing the reference 
frame,  we  can  consider  that  it  is  a  Doppler  effect.  This  is  not 
possible for gravitation and we speak of a redshift or blueshift.

24 Also in the rocket the proper acceleration is inversely proportional 
to the horizon distance, while for the massive object it varies with 
the  square  of  the  distance  to  the  center  of  the  body.  The 
equivalence principle is only true very locally.
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 G. Exercises

Exercises
1. ▲△△ Euclidean metric

d l2
=dx2

+dy2
+dz2

Show that the Euclid metric is invariant by translation, 
rotation and a Galilean transformation.

Answers p381.

2. ▲△△ Rapidity

1 - Show  that  the  standard  Lorentz  transformation 
can be written:

{
ct '=ct chϕ+ x shϕ
x '=ct shϕ+x chϕ
y '= y
z '=z

We  used  hyperbolic  trigonometry and  ϕ is  the 
rapidity.

2 - Show  that,  for  two  successive  Lorentz  transfor-
mations  in  the  same  direction,  the  rapidities  are 
additive.

Answers p382

3. ▲△△ Rindler metric25

d s2
=r2 d τ

2
−dr2

−dy2
−dz2

1 - What  are  the  invariances  of  the  Rindler 

25 W. Rindler, Relativity, Oxford Univ. Press, 2d Ed, 2006, 430 pages.
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coordinate  system  by  rotation  and  Lorentz 
transform?
2 - Show that this coordinate system corresponds to 
that of a uniformly accelerating reference frame.
3 - Show that the following change of coordinates 
makes it possible to find a Minkowskian metric: 

Deduce  the  change  of  coordinates  between  the 
frame  of  reference  (x, t) of  the  uniformly  accele-
rated rocket  and the  galactic  frame of  reference 
(x', t'). 
Draw on a Minkowski diagram, in the inertial frame 
R', the set of coordinate lines for x and t.

Answers p382

 ▲▲△ Free fall in the rocket

In our uniformly accelerated rocket, to pass the time 
during this trip of a few years, we have fun throwing 
objects at each other. Whether you drop a ball with 
no initial speed, or throw it to your partner, we call 
this motion of the object  free fall, because it is not 
subjected  to  any  force.  We  explained  that  the 
acceleration  of  the  rocket  generates  artificial 
gravity. This is locally equivalent to a uniform gravity 
field,  but,  given  the  metrics  of  the  accelerated 
frame, we suspect that the trajectory of an object in 
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free  fall  will  be  modified.  We  will  approach  the 
question in two phases: a first qualitative approach 
and then a complete computation.

1 - We  take  two  clocks  initially  synchronized  and 
stationary in the same place. As in the course, one 
will stay in the same place, and the second one will 
be moved and brought back to the starting point. 
You  play  the  following  game:  At  the  start  both 
clocks indicate zero. You have the mobile clock that 
you can move as you wish. The only constraint is that 
at  one  minute  exactly  as  indicated  on  the  fixed 
clock, your clock will have to be back, placed very 
quietly next to it. The challenge is to get the greatest 
possible  time on your  clock.  How do you have to 
move it to win? 

Variation of the game: Previously the starting point 
was  the  end  point.  If  now  the  finish  point,  while 
remaining at the same level, is different, how do we 
proceed to maximize the time on our clock?

2 - The path followed by a free particle to go from 
the initial event  Ei to the final event  Ef maximizes its 
proper time:

τ=∫
Ei

Ef

d τ=∫
C √g (x)−

v2

c2 dt    with  g(x )=(1+ a x
c2 )

2

Lagrangian: L(x , v)=√g( x)−
v2

c2   
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δ v

Thus: ∫
C '

L(x+δ x , v+δv )dt

=∫L(x , v )dt+∫( ∂L
∂ x

δ x+
∂ L
∂ v

δv )dt=τ+δ τ

For the searched path δ τ=0 .

a- Continue the reasoning and establish the 
equation of motion of an object in free fall.  Show 
that this equation, at the start of the throw and at 
low  speeds,  gives  the  equation  of  free  fall  in 
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Newtonian mechanics. 
Finally, how will you move your clock to win?

   b- Demonstrate the following conservation law:

L−
∂L
∂v

v=cst

We consider the case of a release from rest. Find the 
expression of position, velocity and acceleration as 
a function of g(x ). How does g vary during the fall? 
Show that the falling velocity reaches a maximum 
and  then  cancels  on  the  horizon.  What  is  the 
maximum falling speed? At what distance from the 
horizon?

   c- Perform a numerical simulation to plot position, 
velocity  and acceleration  curves  as  a  function  of 
time. When is the maximum speed reached? When 
does the object reach the horizon for an observer of 
the rocket?

   d- Proper time:  Give the expression of the proper 
time. In its proper reference frame, when does the 
object reach the horizon? Suppose that the object is 
a mini auxiliary rocket that leaves the mother ship in 
free fall. What will  happen to the occupant of the 
mini-rocket when it  reaches the horizon? This  small 
rocket  is  very  fast,  the  pilot  decides  to  ignite  the 
engine to return to the main ship, will he succeed? 
You  can  illustrate  the  situation  on  two  Minkowski 
diagrams (galactic and rocket frames).
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   e-  Local  Minkowskian  observer:  The  coordinate 
system of the accelerated rocket is not Minkowskian. 
The  velocity  previously  determined  in  a  non-
Minkowskian metric is called the coordinate velocity. 
This  coordinate  system has  been constructed in  a 
non-inertial frame of reference and the assumptions 
of  special  relativity  do not  apply directly  to it.  This 
reference  frame  is  nevertheless  very  useful  and 
necessary for the occupants of the rocket, but the 
speed of  light is  not fixed at  c.  This  is  why we will 
consider a new observer,  an inertial  one. At each 
instant  and  position  of  the  object  in  free  fall,  we 
consider  the  Minkowskian  reference  frame 
coinciding with that of the rocket: 

For example, imagine two rockets fixed relatively to 
each  other  and  uniformly  accelerated.  All  of  a 
sudden,  one of  them cuts  its  engine, its  reference 
frame  becomes  inertial,  and  for  some  time  it 
coincides with the rocket still  accelerated. Thus an 
observer  in  the  rocket  which  cut  its  engine  is 
minkowskien,  and  he  can  observe  the  fall  of  the 
object. What speed will  he measure for the falling 
object?  What  will  be  the  velocity  of  the  falling 
object at the horizon for a Minkowskian observer? 

3 - Analogy with the fall into a black hole:
   a- The Schwarzschild coordinate system is that of 
an  outside  observer  at  the  black  hole.  We  can 
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compare the radial fall of an object towards a black 
hole with the vertical fall of an object observed by 
the occupant of a uniformly accelerated rocket:

d τ
2
=g (r )dt 2

−
d r2

c2 g (r)
   with   g(r )=1−

2G M

r c2

τ=∫ L(r , v )dt      and     L(r , v )=√ g(r )−
1

g(r )
v2

c2

Describe  the  velocity  profile  of  a  falling  body, 
dropped without initial velocity, to the horizon of the 
black hole r H=r S=2 G M /c2. You will draw curves for 
speed and acceleration as a function of r. 
What  is  the  maximum  speed  reached?  At  what 
distance from the horizon?

   b- Perform a numerical simulation to plot position, 
speed  and  acceleration  curves  as  a  function  of 
time. When is the maximum speed reached? When 
does the object reach the horizon for an observer 
outside the black hole?

   c- Proper time:  Give the expression of the proper 
time. In its proper reference frame, when does the 
object reach the horizon? Suppose the object is a 
spacecraft  in  free  fall.  What  will  happen  to  the 
occupant of the spacecraft when he reaches the 
horizon?  This  rocket  is  very  fast  and  powerful,  the 
pilot decides to start the reactor to leave the black 
hole, will he succeed?

d- Local Minkowskian observer: The Schwarz-
schild  coordinate  system  is  not  Minkowskian.  We 
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have previously determined the coordinate velocity 
and  coordinate  acceleration in  this  coordinate 
system.  This  coordinate  system  is  very  convenient 
and useful but the speed of light is  not fixed at  c. 
That  is  why  we  will  consider  a  new  observer,  him 
inertial.  At  each instant  and position of  the falling 
object, we consider the Minkowskian frame motion-
less with respect to the black hole and coinciding 
with the Schwarzschild frame of reference: 

Which speed is measured in this way for the object 
in  free  fall?  What  will  be  the  speed of  the  falling 
object for a Minkowskian observer at the horizon?

   e- Comparison to experimental data: 
In 2018, a study26 of the measurements made by the 
XMM-Newton  probe,  which  observed  a  super-
massive black hole of 40 million solar masses, shows 
a wind of matter in free fall towards the black hole 
that reaches relativistic speeds:

v~0.3c     for    r~20 RS

v~0.1c     for    r~200 RS

Do these results seem consistent with those found in 
the exercise?

 Answers p384.

26 An ultrafast inflow in the luminous Seyfert PG1211+143 , 2018, 
K.A.Pounds, C.J.Nixon, A.Lobban and A.R.King. University of 
Leicester, United-Kingdom.

166

c2 d τ
2
=c2 d t Mink

2
−d r Mink

2



5. ▲△△     Fall of a blue ball

We release from rest a blue ball  into the uniformly 
accelerated rocket and watch it fall in free fall. What 
will be the color of the ball perceived during its fall 
by the astronauts of the rocket?

Answers p404.

6. ▲▲△    Trajectory of a ray of light
                   in the Einstein's Elevator

Albert Einstein proposes a thought experiment in his 
book Relativity written in 1916. We imagine a portion 
of empty space infinitely distant from all masses. We 
have  at  our  disposal  a  large  box  in  which  an 
observer evolves in weightlessness. A hook makes it 
possible  to  exert  a  constant  force  on  the  box  by 
means  of  a  rope,  which  is  then  animated  by  a 
rectilinear translation motion uniformly accelerated. 
The observer thus experiments an artificial gravity. 
Compared  to  the  immobile  box,  constituting  an 
inertial frame of reference, the trajectory of a light 
ray of speed  c is  rectilinear. On the other hand, in 
the box accelerated by the traction of the rope, a 
light ray, here, initially perpendicular to the direction 
of motion, will  take a curved trajectory. Let's quote 
Einstein: "It can easily be shown that the path of the  
same ray of light is no longer a straight line". 
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1 - Newtonian   
     approximation:
We consider the speed of 
light constantly equal to c, 
and  the  rectilinear  trajec-
tory, in the Galilean frame 
of reference which initially 
coincides with the box.
For a constant 
acceleration box a,
determine Δx.
Express the equation of the 
trajectory  y(x)  and  of  the 
light  speed  v(x)  in  the 
accelerated frame. 

2 - Special Relativity:
We answer the same questions as above. For that, 
we  first  consider  the  equation  of  the  light  ray 
worldline in an inertial  reference frame. Then,  with 
the appropriate change of coordinates, we obtain 
the equation of the worldline in the non-inertial box.

3 - Drawing of curves.

Answers p404.
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7. ▲▲△     Spherical coordinate system

Spherical coordinate system definition:

1 - Conversions between spherical and rectangular 
coordinates.

2 - Express  the  position  vector  r⃗=O⃗M  and  the 
infinitesimal  element  vector  d⃗r=M⃗M ' between  M 
and M' infinitely close.

3 - Find by integration the surface and the volume of 
a sphere.

4 - Definition of plane angles and solid angles: from 
an observation point O, we observe an object. The 
extensions of the periphery of the object cuts an arc 
on the circle unit of center O. The length of this arc 
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gives the value of the angle in radians under which 
we see the object. In 3D space the circle is replaced 
by a sphere unit on which a surface is cut out. The 
area  of  this  surface  gives  the  solid  angle  in 
steradians under which we see the object. 

  a- From which  solid  angle  do  we  see  the  whole 
space? The starry sky on a clear night? A room from 
one of its corners?

  b- Calculate the solid angle of an angle cone α.

  c- What is the probability that a star is in the plane 
of the ecliptic within ten degrees?

Answers p407.
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 VII. Four-Vectors

FOUR-VECTORS

We  have  introduced special  relativity  through  the 
Minkowski spacetime: events space with its metric27. 
We  can  extend  this  points  space  to  build  more 
complex elements such as vectors or tensors.

The  following  presentation  is  a  bit  formal  but 
necessary  for  a full  understanding of  relativity.  We 
will continue to rely on a geometrical vision as soon 
as possible.

The elements of a vector space E are vectors, noted 
in this book with bold letters : v.

If  we need to specify  that  we are in  a Euclidean 
vector space, we will  use the classic notation with 
arrows : v⃗.

In the case of the Minkowski space, we can clarify 
the context by talking about four-vectors noted with 
tildes : ~v .

27 We considered the standard Minkowski metric of an inertial frame 
d s2

=c2 dt2
−dx2

−dy2
−dz2 in  an  orthonormal  Cartesian  coordinate 

system. While keeping an inertial reference frame, the form of the 
metric can be different. For example, in cases where the metric is 
expressed  in  a  non-orthonormal  or  non-Cartesian  coordinate 
system. We then speak of  Minkowskian metric. When the change 
of coordinates gives a non-inertial frame of reference (as for our 
rocket  and  the  rotating  disk)  the  special  relativity  is  applied  by 
adding metric effects (page 229).
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In general, a vector can be uniquely defined from 
two points (or events) in our space (or spacetime):

Vector space is affine and with a third point we have 
the relation AC = AB + BC :

By multiplying by a real we have a new vector  k AB 
and  the  vector  is  directed  BA = - AB.  Any  linear 
combination of E vectors is a new E vector.

We express a v vector in a basis. 
The basis vectors are denoted  ei 

and  form  a  spanning  and 
generating set of E.

For a vector space of dimension n:

v=v1e1+v2e2+...+vn en=∑
i=1

n

v iei=vie i
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We  use  Einstein  summation  convention,  the 
summation is implied for a repeated index up and 
down.  The  v 

i are  the components  of  v expressed 
with the basis vectors (e1 , e2 , ... , en).

Scalar product of two vectors a and b :

a⋅b=(aie i)⋅(b
je j)=ei⋅e j a

i b j

We define the components of the  metric tensor g 
such as:  gi j=ei⋅e j.

so      a⋅b=gi j a
i b j.

For example, for n=2, we have:
 a⋅b=g11 a1 b1

+g1 2 a1 b2
+g21a2b1

+g2 2 a2 b2

The  scalar  product28 is  commutative  and  the 
components of the metric tensor are symmetrical:

 gi j=g j i

We can write the components of the metric tensor in 
a matrix.
For example, for n=3 in the basis (e1 , e2 , e3) :

g=(
g1 1 g12 g13

g2 1 g22 g23

g3 1 g3 2 g33
)

We have a second way to project a vector. The first 

28 In math, we talk about bilinear form, it associates to two vectors a 
number, called scalar.
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components, given above, are obtained parallel to 
the  basis  vectors.  We can  obtain  a  new set  of  v i 

components with orthogonal projections:

v⋅ei=(v
je j)⋅ei=gi j v

j
=v i

We then have a new basis  associated with  these 
new components:  e i

=gi je j.  The  gi j are calculated 
from  the  gi j with:  gik gk j

=δi
j where  δi

j is  the 
Kronecker delta, null, if the indices are different, and, 
equal to one, if they are equal. 
We then have a new writing :

v=v ie
i

Lower-index objects  are  covariant quantities,  while 
upper-index objects are contravariant quantities.
For  example,  the  components  v i  are  covariants 
and  the  basis  vectors  ei  are  contravariants.  The 
components  gi j are two times covariants  and the 
tensor gi j is two times contravariants. We will see the 
precise meaning and importance of this vocabulary 
at the moment of the change of basis.
The metric tensor allows us to switch between these 
two types of quantities. 
In the end, we can have four  different writings for 
the scalar product:

a⋅b=gi j a
i b j

=ai bi=ai b
i
=g i j ai b j
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Orthogonal vectors:  a⋅b=0.

In the case of orthogonal bases:

if  i≠j  then  gi j=0.

For example, for n=2:  a⋅b=g11 a1 b1
+g2 2 a2 b2

and    g=(g1 1 0

0 g2 2
).

Vectors,  tensors  and  scalars  are  essential  mathe-
matical objects for physics. The laws of nature are 
expressed using equations  constructed from these 
three types of objects,  because if  we change the 
basis, the laws keep the same form. The new basis is 
associated with new coordinates used to realize a 
translation,  a  rotation  or  a  change of  Galilean  or 
inertial reference frame. We will study the change of 
coordinates later. 

Following  this  somewhat  abstract  interlude,  let  us 
approach different practical cases. 
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 A. EUCLIDEAN VECTOR SPACE

⚭    EUCLIDEAN VECTOR SPACE

Newton's  laws  and  all  classical  mechanics  is  built 
with vectors, scalars and tensors.

Newton's second law:

 F⃗=m a⃗ ,

Kinetic power:

 Pk=
d Ek

dt
=

d
dt (

1
2

m v⃗⋅⃗v )=P=F⃗⋅⃗v ,

Angular momentum:

d σ⃗
dt

=
d
dt

(m r⃗∧v⃗ )= r⃗∧F⃗ .

All  these  laws  keep the  same form by  translation, 
rotation  and  Galilean  transformation.  The  use  of 
vectors assures us that.

In  Euclidean  geometry  the  scalar  product  of  a 
vector with itself can only be positive or zero, we can 
then define a norm:

‖v⃗‖=√ v⃗⋅⃗v

The norm is positive definite:

• v⃗⋅⃗v⩾0.

• v⃗⋅⃗v=0  if and only if v⃗=0⃗.
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In  Euclidean  geometry,  the  norm  of  a  vector  is  repre-
sented by its length and this length is independent of the  
chosen basis. Starting from O, all the ends of vectors of  
the same norm are placed on the same circle (we have  
represented four vectors of norm 2). 
A  property  of  the  circle:  if  we draw a radius  OM,  the  
tangent  (T)  is  always  perpendicular  to  (OM).  We  thus  
obtain a pair of orthogonal vectors:

 u⃗⋅⃗v=0.

For a set of concentric circles of radii multiple of unity, a  
line through O intersects the circles at a set of equidistant  
points.
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Geometric determination of the scalar product:

   a⃗⋅⃗b=‖a⃗‖‖b⃗‖cos (
^
a⃗ , b⃗)

O⃗A⋅⃗OB=OA×OB×cosθ

                =±OH A×OB

                = ±OH B×OA

a⃗⋅⃗b=O⃗A⋅⃗OB=(O⃗H+ H⃗A )⋅⃗OB=( c⃗+n⃗)⋅⃗b= c⃗⋅⃗b+ n⃗⋅⃗b  

In the end, if  we find an orthogonal vector  n⃗,  the 
dot  product  comes down to that  of  two collinear 
vectors and the value is the product of their radii:

a⃗⋅⃗b= c⃗⋅⃗b=±Rc×Rb

The sign is positive if the two collinear vectors are in 
the  same  direction,  and  negative  if  they  are  in 
opposite  directions.  We  have  two  equivalent 
options, find a vector orthogonal to a⃗ or to b⃗.

◦ Orthonormal Cartesian bases:

We can always go back to 
an orthonormal Cartesian 

basis:

 e⃗i⋅⃗e j=δi j.

For example, for n=2, we 
have in this case:
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g=(1 0
0 1)

a⃗⋅⃗b=a1b1
+a2 b2

and for the norm:

 v=√‖v⃗‖=√(vx
)
2
+(v y

)
2

The  covariant  and  contravariant  components  are 
then identical. The same applies to the bases.

◦ Normal and non-orthogonal Cartesian bases:

Case for a vector of the plane (2-vector) :

We know the contravariants 
components of v⃗  in the 
covariant base:

v⃗=v1 e⃗1+v2 e⃗2= e⃗1+2 e⃗2

with   gi j=( 1 cosθ
cosθ 1 )

and   θ= π
3

.

Let's determine the covariant components of v⃗ :

v i=gi j v
j
=gi1 v1

+gi 2 v2

v1=g11 v1
+g12 v2

=v1
+cosθ v2

=2= v⃗⋅⃗e1
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v2=g21 v1+g22 v2=cosθ v1+v2=
5
2
= v⃗⋅⃗e2

We now have two 
possible decompositions 
for v⃗  :

v⃗=e⃗1+2 e⃗2=2 e⃗1+
5
2

e⃗2

Let  us  determine the metric  tensor  components  in 
the contravariant base:

gi1 g1 j
+gi2 g2 j

=δi
j

g11 g11
+g12 g21

=1    then   g11
+cosθ g21

=1

g11 g12
+g12 g22

=0    and   g12
=−cosθ g22

g21 g12
+g22 g22

=1    and   cosθ g12
+g22

=1

g21 g11
+g22 g21

=0    and   g21
=−cosθ g11

so:  g11
=g2 2

=1 / sin2
θ

and   g12
=g21

=−cosθ/sin2
θ

Metric :   gi j
=

1

sin2θ (
1 −cos θ

−cosθ 1 )

182



Let's find the contravariant basis:

e⃗i
=gi j e⃗ j=gi1 e⃗1+gi2 e⃗2

so  e⃗1
=g11 e⃗1+g12 e⃗2=

e⃗1−cosθ e⃗2

sin2θ
=

4
3
( e⃗1−

1
2

e⃗2)

e⃗2
=g21 e⃗1+g22 e⃗2=

−cosθ e⃗1+ e⃗2

sin2θ
=

4
3
(−

1
2

e⃗1+ e⃗2)

Now, if you are a math teacher in middle school and 
when studying non-orthogonal coordinate systems a 
pupil asks you, "Why do we project along parallels  
and  not  perpendiculars?"  you  will  know  what  to 
answer.  The pupil  is  absolutely  right,  both types  of 
projections are possible and even complementary.
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 B. MINKOWSKI VECTOR SPACE

⚭    MINKOWSKI VECTOR SPACE

We will  establish  the  new physical  laws  of  special 
relativity based on four-vectors. For the formulas, we 
will  be inspired by Newton's mechanics via the low 
speed limit. 

We note the components of an event E with indices 
from 0 to 3 :

~x=xμ
(x0 , x1 , x2 , x3

)

x0
=c t,    x1

=x,    x2
= y,   and   x3

=z

~v=~O E=xμ
(E)−xμ

(O)   29

For the scalar product:   ~a⋅~b=gμ νaμbν.

With the Minkowski metric:

gμ ν=(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
 

We will show that this metric gives back the triangle 
of times.

We have:  ~a⋅~b=a0 b0
−a1 b1

−a2b2
−a3b3.

29 Vectors, or tensors, are regularly misidentified with their 
components. In general, this does not lead to confusion.
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For the spatial part, we recognize a Euclidean scalar 
product, we can then write:

~a⋅~b=a0 b0
−a⃗⋅⃗b.

The scalar product of a vector  ~v  with itself can be 
positive, zero or negative:

 ~v⋅~v=(v0
)
2
−‖v⃗‖2.

Contrary  to  the  Euclidean  case,  the  Minkowskian 
scalar  product of a vector  with itself  is  not always 
positive.  Moreover,  ~v⋅~v=0 does  not  imply  ~v=~0 . 
There is no norm for a vector in Minkowski space. The 
quantity ~v⋅~v  is sometimes called pseudo-norm30.
In  Euclidean  space  the  length  of  a  vector, 
represented on an orthonormal coordinate system, 
corresponds to its norm, and the vectors of the same 
norm, starting from the same point,  are distributed 
on the same circle. This is no longer the case on a 
Minkowski diagram: two vectors can have the same 
pseudo-norm  and  not  appear  with  the  same 
length.31.  The  4-vectors  of  the  same  pseudo-norm 
are distributed on hyperbolas. 

30 Term used and debatable: this term refers to the Euclidean norm 
without  taking  up  all  its  principles.  Contrary  to  the  norm,  the 
pseudo-norm does not have the same units as the vector (the square 
root is missing). We could consider the quantity: k=√|~v⋅~v| where 
k is the parameter of the hyperbola associated with the 4-vector. 
We could name k, the timelike or spacelike norm depending on the 
case (as in Euclidean where R is the parameter of the circle and the 
norm of the vector). We will use the term intensity for the  k of a 
four-vector. 

31 We represent the two-dimensional  Euclidean space on a sheet of 
paper which is itself a 2D Euclidean physical object. On the other 
hand,  using  a  Euclidean  sheet  to  represent  Minkowski's  plane 
requires an effort of abstraction.
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We have three kinds of 4-vectors :

• timelike :     ~v⋅~v >0

• lightlike :   ~v⋅~v=0

• spacelike :  ~v⋅~v <0

The  light-like  vectors  are  on  the  light  cones 
associated with the world-lines of photons. The time-
like vectors are in the cone (towards the vertical), 
and the  space-like  vectors  towards  the  outside  of 
the cone. 

Depending on the sign of the time component,  a 
four-vector can point towards the future or the past. 
This property and that of the time, light or space-like 
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kind  do  not  depend  on  the  inertial  frame  of 
reference considered. 
When the scalar  product of two vectors is  null  we 
have orthogonal vectors:

~a⋅~b=0

This  property  of  orthogonality  is  also  valid  in  all 
inertial frames of reference. 

Again, the situation is not as intuitive as in Euclidean, 
it  is  not  because two vectors  are  orthogonal  that 
they appear perpendicular on a diagram.

We have two types  of  hyperbolas,  those time-like, 
internal to the light cone, of equations t2

−x2
=k2  (to 

simplify  we have set  c=1),  and the  external  ones, 
space-like, of equations t2

−x2
=−k2   32.

k defined as positive.

32 "Space and Time",  Hermann Minkowski, lecture delivered at 
Cologne on 21st September 1908.
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We  easily  find  again  the  hyperbolas  by  a 
construction with the triangle of times:

Plot of an internal hyperbola of parameter k. For a given x 
it corresponds to a value of t which forms a right-angled  
triangle with k: t 2

=k2
+x2. For a 4-vector position xμ, time-

like,  k corresponds  to  a  proper  time  τ.  For  an  external  
hyperbola,  k is  represented by a vertical line and it  is  x 
which is placed at the hypotenuse: x2

=k 2
+t 2.
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A  hyperbolic  geometry:  vectors  of  the  same  pseudo-
norm, that start in O, end on the same pair of hyperbolas.  
We have represented four 4-vectors which have the same  
pseudo-norm 1, they join the unit hyperbola on one or the  
other of these two branches. The time-like hyperbolas are  
indexed by k and the space-like hyperbola by -k. 
A property of the hyperbola: if we plot a radius OM, the  
tangent  (T)  is  always  symmetrical,  with  respect  to  the  
bisectors, at (OM). We thus obtain a pair of orthogonal  
vectors: ~u⋅~v=0. 
For a set of hyperbolas with the same center O, the same  
orthogonal axes, and parameters multiple of the unit, a  
straight line passing through O cuts the hyperbolas into a  
set of equidistant points. 
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In 2D, in Minkowski's plane:

 ~a⋅~b=0    ⇒  a0 b0
=a1 b1

Two  orthogonal  4-vectors  are  symmetrical  with 
respect to the photon worldlines:

tan θ=
a1

a0=
b0

b1

Triangles

Four isosceles triangles, one equilateral triangle, one right-
angled triangle and one isosceles right triangle. All these  
triangles keep their properties by 90° rotation and change  
of scale.
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Examples of 4-vectors orthogonal

For all pairs represented: ~a⋅~b=0

By taking the opposite of one of the vectors of the pair, or  
by  multiplying  it  by  a  constant,  the  pair  remains  
orthogonal. 

Geometrical methods:
• Use of the hyperbola.
• Symmetry with respect to the photon worldlines.
• Passage  through  the  Euclidean:  two  perpen-

dicular  vectors  and we take  the  symmetry  with  
respect to the vertical of one of them.
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Case of 4-vectors collinear :

Two examples, the pair (~a , ~b ) and the pair (~u , ~v )

Pythagorean theorem in Minkowski space:

~a+~b=~c  with ~a  and ~b  orthogonal.

k a
2−k b

2=±k c
2

k : parameter of the 
hyperbola / 

magnitude / intensity 
of the 4-vectors.
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◦ Geometric determination of the scalar product

To evaluate ~a⋅~b  in the space of Minkowski:

• We break down one of the two four-vectors 
as  the  sum of  an orthogonal  vector  and a 
collinear vector to the second one.

~a⋅~b=(~c +~n )⋅~b=~c⋅~b+~n⋅~b

• We  determine  with  a  compass the  para-
meters of the hyperbolas of the two collinear 
vectors obtained.

• The scalar product is the product of the two 
parameters:  ~a⋅~b=~c⋅~b=±kc×kb.
The sign is positive if the two collinear vectors 
are timelike and in the same direction, or,  if 
they are spacelike and in opposite directions. 
In other cases the sign is negative.
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Examples of geometric determination 
of the scalar product :
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◦ Orthogonal bases

We can always go back to an orthogonal base such 
as ~eμ⋅

~e ν=0  for  μν.

 • Reference frame R

Let's  look  at  the  case  of  the  contravariant  and 
covariant components on a Minkowski diagram:

Let's  check,  on  this  particular  case,  the  general 
formulas:

gμν=
~e μ⋅

~e ν,    ~x=xμ~e μ,

xμ=gμν xν,    ~eμ=gμ ν~e ν
    and    ~x=xμ

~e μ.

We  have  well,  by  graphically  calculating  scalar 
products : ~e 0⋅

~e1=(e⃗0⋅s( e⃗1))Euclid=0=g10.

Also  ~e 0⋅
~e 0= e⃗0⋅⃗e0=1 ,  ~e 1⋅

~e 1=−e⃗1⋅⃗e1=−1  then 
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g00=1 and  g11=−1.  ~e 0 pseudo-norm worth 1 and 
~e 1 pseudo-norm worth -1.

2D metric :  gμν=(1 0
0 −1).

For the covariant components :

x0=g0 0 x0
+g0 1 x1

=x0   and  x1=g10 x0
+g11 x1

=−x1

~e 0
=g00~e 0+g0 1~e 1=

~e 0  and  ~e 1
=g1 0~e 0+g11~e 1=−

~e 1

~x=x0
~e 0

+x1
~e 1

=x0~e 0+x1~e1=x0
~e 0−x1

~e 1

 • Reference frame R'

Let's now take the case of the inertial frame R' seen 
from R :
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An unwarned Euclidean glance would naively see a 
non-orthogonal  coordinate  system,  and,  basis 
vectors longer than one. It is not so, the basis vectors 
are well  orthogonal because they are symmetrical 
with  respect  to  the  worldline  of  a  photon,  and, 
besides, the time vector of the bases of  R' is along 
the unit hyperbola and, therefore, of pseudo-norm 1, 
the  space  vector  is  along  the  hyperbola  corres-
ponding to a pseudo-norm -1. The metric is thus the 
same as  for  R,  which is  to  be  expected because 
there is no privileged inertial frame of reference:

 g 'μ ν=(1 0
0 −1).
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For  the  covariant  components  and  the  contra-
variant  basis,  we  necessarily  have  the  same 
relationships as for R :

x '0=x '0,    x '1=−x '1,    ~e '0
=~e '0    and    ~e '1

=−~e '1.

~x=x '0~e '0+x '1~e '1=x '0
~e '0

+x '1
~e '1

~x=2~e ' 0+
3
2
~e '1=2~e '0−

3
2
~e ' 1

=
11

2√3
~e 0+

5

√3
~e 1

 C. Change of Coordinates
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⚭    CHANGE OF COORDINATES

We can switch from a system of n coordinates x i to 
a new system of  n coordinates  x' i,  where each of 
the n coordinates  x' i depend on the n coordinates 
x i :

x ' i
(x1 , ... , x2 , ... , xn

)

We have a function with n variables. For a function f 
with  two variables,  we  add the  variations  in  both 
directions :

df (x , y)=
∂ f
∂ x

dx+
∂ f
∂ y

dy

When we move from M (x , y) to  M ' (x+dx , y+dy), 
infinitely close, the function f varies by df .

The generalization gives :    df (x i)=∑
i=1

n
∂ f

∂ x i
dxi.

Then    d x ' i
=
∂ x ' i

∂ x j dx j    and    d xi
=

∂ xi

∂ x ' j d x ' j.

We note :     Λi
j=

∂ x ' i

∂ x j     and    Λ j
i
=

∂ xi

∂ x ' j .

These  two  tensors  are  used  to  switch  from  one 
coordinate system to the other, they are the change 
of basis matrices. The superscript indices correspond 
to the rows and the subscript indices to the columns.
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Let's do the product of the two matrices33 :

  Λi
k Λ j

k
=
∂ x ' i

∂ xk

∂ xk

∂ x ' j =
∂ x ' i

∂ x ' j =δ j
i .

The matrices are inverse to each other : 

Λ Λ
−1
=Λ

−1
Λ=I

The  covariant components  of  a  vector  are 
transformed according to  Λ, and the contravariant 
components  according  to  Λ−1.  This  is  where  the 
famous name comes from. The same is true for the 
base vectors :

v ' i=Λi
j v j     v ' i

=Λ
i
j v

j     v i=Λ
j
i v ' j     v i

=Λ j
i v ' j

e ' i=Λ i
j e j     e ' i

=Λ
i
j e

j     ei=Λ
j
ie ' j     ei

=Λ j
ie ' j

We can easily verify that the scalar product of two 
vectors is invariant by basis change :

A⋅B=Ai B
i
=Λ

j
i A ' jΛk

i B' k
=δ k

j A ' j B 'k
=A ' j B ' j

Also if  two n-vectors are equal,  they are still  equal 
after changing the coordinate system:

Ai
=Bi  ⇒ Λ

i
k A k

=Λ
i
k Bk  ⇒ A ' i

=B 'i  ⇒ A=B

33 Some additional mathematical tools :

If x ' ( x , y)  and y ' (x , y )  then 
∂ x '
∂ y '

=
∂ x '
∂ x

∂ x
∂ y '

+
∂ x '
∂ y

∂ y
∂ y '

.

Generalized : 
∂ x ' i

∂ x ' j=
∂ x ' i

∂ xk

∂ xk

∂ x ' j
 and 

∂ f

∂ x ' j=
∂ f

∂ x k

∂ x k

∂ x ' j
.
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Fundamental  properties  for  constructing  physical 
laws,  whether  in  classical  mechanics,  special 
relativity or general relativity.

Let's look for the new metric:

g' i j=e ' i⋅e ' j=Λi
k ek⋅Λ j

lel=Λi
k
Λ j

l gk l

In general, the change of basis matrix is applied as 
many  times  as  there  are  indices  on  a  tensor.  For 
example, on the Riemann curvature tensor :

R ' β γ δ
α

=Λ
α
μΛβ

ν
Λγ

ρ
Λδ

λ R ν ρ λ
μ

◦ Rotation in Euclidean geometry :

{
x (r ,θ)=rcos θ

y (r ,θ)=r sinθ

x '1
= x(x1

=r ; x2
=θ)

x '2
= y

Λ
1

1=
∂ x
∂ r

=cosθ Λ
1

2=
∂ x
∂θ

=−rsinθ

Λ
2

1=
∂ y
∂ r

=sin θ Λ
2

2=
∂ y
∂θ

=r cosθ

then Λ=(
cosθ −r sin θ

sin θ r cosθ )
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Λ1
1
=
∂ r
∂ x

=
x
r
=cosθ because    r=√x2

+ y2

Λ1
2
=∂θ
∂ x

=−
sin θ

r
     as    ∂θ

∂ x
∂ x
∂θ

+ ∂θ
∂ y

∂ y
∂θ

=1

Λ2
2
=∂θ
∂ y

=
1/ x

1+ y2
/x2

=
cosθ

r        Λ2
1
=
∂r
∂ y

=sinθ

finally : Λ
−1
=(

cosθ sinθ

−
sinθ

r
cosθ

r
)

we well have   ΛΛ
−1
=Λ

−1
Λ=I.

e1= e⃗r=Λ
1
1 e ' 1+Λ

2
1e '2=cos θ i⃗+sin θ j⃗

e2= e⃗θ=Λ
1

2 e ' 1+Λ
2
2 e ' 2=−r sinθ i⃗+rcos θ j⃗

The basis  (e⃗ r , e⃗θ) is orthogonal and not normalized. 

For an orthonormal basis we have the unit vectors as 
follows  e⃗r=u⃗r  and  e⃗θ=r u⃗θ.

Metrics :  g' i j=( i⃗⋅⃗i i⃗⋅⃗j
j⃗⋅⃗i j⃗⋅⃗j )=(

1 0
0 1)

and  gi j=Λk
iΛ

l
j g 'k l=(1 0

0 r2)

for example  g22=Λ
1

2Λ
1

2 g' 11+Λ
2
2Λ

2
2 g ' 22+0+0=r2
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Invariant length element :
 

dl2
=d⃗l⋅⃗dl=d x ' i d x ' i

=g ' i j d x ' i d x ' j
=dx2

+dy 2

dl2
=d x i d x i

=gi j d x i d x j
=dr2

+r2dθ2

Vector components : v⃗(vx ,v y
)

v1
=v r

=Λ1
1 v '1

+Λ2
1 v '2

=cosθ vx
+sinθ v y

v2=vθ=Λ1
2 v '1+Λ2

2 v '2=−
sinθ

r
vx+

cosθ
r

v y

we well have v⃗⋅⃗v=gi j v
i v j

=(vx
)

2
+(v y

)
2
=g' i j v ' i v ' j

◦ Lorentz transformation :  {
ct ' (ct , x)=γ(ct−β x )

x '(ct , x)=γ(x −β ct)

x '0
=ct ' (x0

=ct ; x1
=x)     x '1

= x '

Λ
0

0=
∂ ct '
∂ ct

=γ    
Λ

0
1=

∂ ct '
∂ x

=−γβ

Λ
1

0=
∂ x '
∂ct

=−γβ
   

Λ
1

1=
∂ x '
∂ x

=γ

then Λ=Λ
μ
ν=(

γ −γβ

−γβ γ )

Inverse standard Lorentz boost : {
ct=γ(ct '+β x ' )

x=γ(x ' +β ct ' )

Then : Λ
−1
=Λν

μ
=( γ γβ

γβ γ ) and  ΛΛ
−1
=Λ

−1
Λ=I.
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Basis vectors :

~e 0=
~e t=Λ

0
0
~e '0+Λ

1
0
~e '1    and    ~e t=γ(~e t '−β~e x ')

~e 0=
~e t=Λ

0
0
~e '0+Λ

1
0
~e '1   and   ~e x=γ(−β~e t '+

~e x ')

also   ~e t '=γ(~e t+β
~e x)    and    ~e x '=γ(β~e t+

~e x)

For the Minkowski diagrams, we find the results given 
on page 42 and following. On a Euclidean sheet of 
paper  the  vector  ~e t '  appears  longer  than  ~e t  : 

‖~e t '‖Euclid=γ√1+β2 .

Apparent angle : (̂~e t ,
~e t ' )Euclid=arctanβ .

Metrics : gμ ν=(
~e t⋅

~e t
~e t⋅

~e x
~e x⋅

~e t
~e x⋅

~e x
)=(1 0

0 −1)
~e t '⋅

~e t '=γ
2
(~e t⋅

~e t+2β~e t⋅
~e x+β

2~e x⋅
~e x)=1

and so on, hence  g'μ ν=Λμ
α
Λν

β gαβ=(1 0
0 −1)

The metric remains the same.

The invariant ds2 :   ds2
=gμ ν d xμd xν

=c2 dt2
−dx2

                                 =g 'μ ν d x 'μd x 'ν=c2 dt '2
−dx '2

Vector components : ~v (vt , v x
)

v ' 0
=v t '

=Λ
0
0 v0

+Λ
0

1v1
=γ(vt

−β vx
)

v ' 1
=vx '

=Λ
1
0 v0

+Λ
1
1 v1

=γ(−β vt
+v x

)
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We find the  Lorentz  transformation that  applies  to 
any four-vector.

Also :   ~v⋅~v=gμ ν vμvν
=(v t

)
2
−(v x

)
2
=(v t '

)
2
−(v x '

)
2

And the scalar product is well invariant :
~u⋅~v=gμ νu ' μ v ' ν=u ' 0 v ' 0

−u' 1 v ' 1
−u' 2 v ' 2

−u' 3 v ' 3  
=γ

2
(u0

−βu1
)(v0

−β v1
)−γ

2
(u1

−βu0
)(v1

−β v0
)−u 2 v 2

−u 3 v 3

=γ
2
(1−β

2
)u0 v0

+0+0−γ
2
(1−β

2
)u1 v1

−u 2 v 2
−u 3 v 3

=u 0 v 0
−u 1 v 1

−u 2 v 2
−u 3 v 3

=gμ νu μv ν

For  all  4-vectors  we  have  the  standard  Lorentz 
transformation :

{
vt '
=γ(vt

−β vx
)

v x '
=γ(v x

−β v t
)

v y '
=v y

v z '
=v z

The change of basis lambda matrices :

  
Λ=Λ

μ

ν=(
γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

)
Λ

−1
=Λν

μ
=(

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

)
 D. FOUR-VELOCITY

205



⚭    FOUR-VELOCITY

After building a new geometry of space and time, 
let us build the new physics associated with it. The 
position  vector  and  universal  time  have  been 
replaced  by  the  four-vector  ~x .  What  about  the 
other  physical  quantities  introduced  by  Newton: 
velocity,  acceleration,  momentum,  energy,  force, 
etc?
First  of  all,  we  are  looking  for  quantities  that 
transform according to Lorentz's transformation, then 
we will  establish  laws  that  give back the  classical 
mechanics  at  low  speeds,  and  of  course,  the 
supreme criterion,  the experimental  verification will 
finalize the selection. 
We  will  construct  the  covariant  velocity  from  the 
four-vector  x 

μ.  We  resume the  classical  approach 
which  allows  to  build  a  vector  tangent  to  the 
trajectory of an object. For two infinitely close events 
on a worldline, we have the infinitesimal 4-vector :

 d~x=~E E '=~x (E ' )−~x (E).

To define the velocity, simply divide by the duration, 
just  as  infinitesimal,  which  separates  these  two 
events.  Of course,  in Newton's  mechanics,  there is 
no hesitation to have, on the other hand, in special 
relativity, we have the duration  dt measured in the 
same frame of reference as the dx 

μ, or, the duration 
dτ  measured in the proper reference frame of the 
moving object. No hesitation because dτ  is the only 
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duration  invariant  by  the  Lorentz  transformation34, 
hence the expression of the four-vector velocity :

~u=
d~x
d τ

     and     uμ=
d xμ

d τ

For the three spatial components, we find well  the 
classical velocity v⃗  at low speeds :

~u=(γc ,γ v⃗ )

with   γ= 1

√1−β2
,    β= v

c
,   v=‖v⃗‖,

γ(v )=
d t
d τ

,     vi
=

d x i

d t
    and    v⃗=(v1 , v2 ,v3

).

This  four-velocity  transforms  well  according  to  the 
Lorentz  transformation  given  on  page  205,  which 
was not the case for the classical velocity (easy to 
convince oneself by looking at the relations on page 
362).

For example, along the x axis :  ux=
d x
d τ

=γ vx.

To think  about  relativity,  it  seems logical  to  reason 
with the velocity provided by this same theory, and 
not with that of Newton. But as with the notion of 
absolute  space  and  absolute  time,  habits  are 
tenacious,  and  it  must  be  noted  that  Newton's 
velocity makes resistance. 

34 dτ is  obtained  by  doing  the  scalar  product  of  two  four-
vectors,  it  is  therefore  invariant  by  the  Lorentz  transfor-
mation : d~x⋅d~x=gμ ν d xμd xν=c2 dt2−dl2=c2 d τ2
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"You can't go faster than the speed of light" we hear. 
Everything would then happen as  if  there  were  a 
forbidden zone from  c to infinity. We don't like the 
prohibitions,  and  neither  does  nature,  it  seems  to 
realize everything that is possible. So, not supporting 
limits,  in  this  supposedly inaccessible zone,  we put 
strange  particles,  tachions,  particles  that  would 
always  have  been  faster  than  light...  except  that 
these tachions violate causality, a basic principle in 
physics. 

Let's think differently, let's use the right definition for 
velocity,  the  one  that  respects  the  symmetries  of 
spacetime. When you give each time more energy 
to a particle to accelerate it, it gains speed and its 
velocity tends towards infinity : 

vNewton=
d x
d t

→c,    γ→∞     and    vEinstein=
d x
d τ

→∞.

The prohibited zone no longer exists!

Let's  take  again  the  example  of  the  journey  for 
Proxima. From the Earth the astronaut travels 4 ly, his 
journey lasts 3 years, and 5 years for the Earthlings. 
Sometimes I hear "but he goes faster than light!". He 
is going well, slower than light, he arrives after a ray 
of light, and in the ship's frame of reference he has 
traveled a distance of only 2.4 ly. But it is interesting 
to note that the person finally refers to the covariant 
velocity u=Δx/Δτ=4/3 c,  and,  in  terms  of  covariant 
velocity, that of light is infinite. Finally, we are not so 
limited  as  that,  at  speeds  close  to  c we  find 
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ourselves  on  the  other  side  of  the  galaxy  very 
quickly.  For  example,  an  ultra-relativistic  electron 
can travel 100,000 ly in one year (in its own frame of 
reference!).

The temporal component of ~u  is always positive, the 
four-velocity is always directed towards the future. 

Let's calculate the pseudo-norm :

~u⋅~u=γ
2 c2

−γ
2 v2

=c2
>0

The  4-velocity  is  a  time-like  vector  whose  end  is 
located on the upper  branch of  the  c parameter 
hyperbola.  The  4-velocity  cannot  be  null.  For  a 
particle  at  rest  there  is  only  the  time  component 
which corresponds,  in a way, to  the speed of  the 
flow of time.

Particle at rest :  ~u=(c , 0⃗).

Particle in motion :  ~u=γ c(1 , β⃗).
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Minkowski Diagram for the 4-velocity :

~u1  : relativistic velocity of an object at rest in R. 
The vector is vertical. 

~u2  : 4-velocity of an object moving to the right. 
The tip is on the hyperbola of parameter c.
The corresponding gamma is 1.15 and v=50%c.

~u3  : 4- velocity of an object moving to the left.

~u4  : The more gamma increases, the closer the 
velocity vector gets to the asymptote and the 
light cone.

We  have  built  the  frame  where  the  particle  2  is  
motionless. By projecting the tip of ~u1  into R',  we obtain  
a particle 1 that moves to the left at 50 % of c.
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The velocity triangle :   ~u⋅~u=(ut )2−(ux)2=c2

(Triangles for γ=2 and β=√3/2)

Here  is  the  worldline  of  a  particle.  The  
velocity is always tangent to the worldline  
and contained in the future light cone. In  
E1 the tangent is vertical, the particle is at  
rest, then it starts moving to the right, slows  
down and stops further to the right in E2. It  
resumes its motion to the left, accelerates  
and  reaches  its  maximum  speed  at  the  
point of inflection in E4.

 E. FOUR-ACCELERATION
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⚭    FOUR-ACCELERATION

The approach is of course quite similar:

~w=
d~u
d τ

    and    w μ
=

d uμ

d τ

As  for  the  4-velocity,  we  do  not  use  the  classical 
notations  so  that  the  differences  appear  without 
ambiguity : ~w  for the 4-acceleration and a⃗  for the 
Newton acceleration.
To begin with, we have a nice property, 4-velocity 
and 4-acceleration are orthogonal vectors :

d
d τ

(~u⋅~u)=0=
d~u
d τ

⋅~u+~u⋅
d~u
d τ

    then    ~u⋅~w=0.

As we have established the link between ~u  and v⃗, 
we are going to make the link between  ~w  and  a⃗. 
There, however, the link will be much less immediate 
and the calculations are longer:

~w=
d~u
d τ

=(d γ

d τ
c ,

d γ

d τ
v⃗+γ

d v⃗
d τ )

after calculation  d γ

d t
=
γ

3

c2
a⃗⋅⃗v   with  β⃗= v⃗

c

we have   ~w=(γ
4 a⃗⋅⃗β , γ4

(a⃗⋅⃗β)β⃗+γ2 a⃗)

Now  let's  determine  the  pseudo-norm  of  ~w .  The 
scalar  product  is  the same in all  inertial  frames of 
reference.  We  then  place  ourselves  in  the  inertial 
frame  of  reference  which  coincides  at  a  given 
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moment with the proper frame of reference. In this 
coinciding  reference  frame,  by  definition,  v⃗= 0⃗ at 
t=0.  Thus  ~w=(0 , a⃗(0)) and  ~w⋅~w=−ap

2 ,  where  ap is 
the  acceleration  felt  in  the  proper  frame  of 
reference.  All  inertial  observers  will  agree  on  the 
value  of  the  proper  acceleration  ap.  The  4-
acceleration is  a space-like vector,  in accordance 
with the orthogonality with the 4-velocity.

In the Minkowski plane (w0
)

2
−(w1

)
2
=−ap

2  and ~w  is 
placed on a space-like hyperbola of parameter ap.

The acceleration triangle:

For one-dimensional motion :  ~w=γap(±β,±1)

Generally speaking, one can always place oneself 
locally  in an inertial  reference frame that contains 
the worldline in a Minkowski plane coinciding on a 
portion. We then have an osculating hyperbola that 
allows us to determine the proper acceleration.
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◦ A look back on the trip to Proxima

We are on a particular case of rectilinear motion at 
constant  proper  acceleration,  where the worldline 
of  the  rocket  corresponds  with  the  hyperbola  of 
parameter g.
We will elegantly retrieve the expressions of the page 
116.
In the coinciding inertial reference frame ~w=(0 , g).
We perform a Lorentz transformation to obtain the 
coordinates of this same acceleration in the terres-
trial frame of reference:

~w=(γβg ,γ g),

as    γβg=γ
4 a⃗⋅⃗β     we have   a(t)=

d v
d t

=
g

γ
3

after integration we find the expressions for v(t )  and 
x (t ).
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Voyage to Proxima :

We  have  represented  the  Minkowski  diagrams  for  the  
three  four-vectors  ~x ,  ~u  and  ~w .  We  have  made  an  
appropriate  choice  of  units  so  that  the  hyperbolas  
correspond: OJ worth c2/g for the 4-position, c for the 4-
velocity  and  g  for  the  4-acceleration.  We  study  the  
uniformly  accelerated  motion  in  its  generality,  both  for  
positive and negative t : in the latter case v⃗ and a⃗ are in  
opposite  directions,  the  rocket  decelerates,  and 
~w=(−γβg ,γ g). For this motion, the rocket worldline is a  
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hyperbole  branch  of  equation  c2 t2
−x2

=−c4
/g2 which 

coincides here with the space-like hyperbole branch of ~w  
The hyperbola branch of  ~u  is simply rotated by 90°. For  
any event E of our worldline, ~u  and ~w  are as it should be  
symmetrical  with  respect  to  the  bisectors,  but,  in  this  
particular situation, they appear, moreover, of the same  
length on our  Euclidean sheet.  Indeed we have in this  
case  ~u /c=γ(1 ,β) and  ~w / g=γ(±β, 1).  The drawing is  
very simple, for any event E, you draw the line (OE),  ~w  
corresponds  with  ~OE ,  and  ~u  is  the  symmetrical  with  
respect  to  the  photon  worldline.  Although  the  4-
acceleration  remains  constantly  on  the  spacelike  
hyperbola of parameter g, on the diagram, the Euclid's  
length of the relativistic acceleration ~w  increases with γ,  
while that of the classical acceleration a⃗ decreases in γ3.

◦ Geometric determination of 4-acceleration
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For any event 
of a world line, 
there is always a
tangent  
hyperbola 
unique that 
gives the proper
acceleration. 
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 • From three close events :
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 F. MASS-ENERGY EQUIVALENCE

⚭    MASS-ENERGY EQUIVALENCE

Let  us  look  for  the  relativistic  equivalent  of  the 
Newton's second law. In classical mechanics :

m a⃗=F⃗    or   d p⃗
d t

=F⃗

with the momentum  p⃗=m v⃗  

We will also need the kinetic power theorem : 

Pk=
d Ek

d t
=F⃗⋅⃗v
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◦  Four-momentum

The mass is a property specific to a particle, it does 
not depend on the frame of reference. It thus seems 
natural to consider the four-vector ~p=m~u .

For the 4-momentum we keep the letter p because 
contrary to the 4-velocity or the 4-acceleration, this 
one  has  been  directly  adopted  in  the  scientific 
mores.  Its  spatial  part  is  commonly  called 
momentum and the  4-vector  as  a  whole  can  be 
called  the  4-momentum  or  more  precisely  the  4-
vector energy-momentum: ~p=(m γc , mγ v⃗).

 ~p=(E/c , p⃗)   with  E=mγ c 2   and  p⃗=m γ v⃗

The temporal component shows a quantity with the 
units  of  an energy.  Let's  find out  what  this  energy 
corresponds  to.  In  the  coinciding reference frame 
~p=(m c, 0⃗) and  ~p⋅~p=m2 c2.  In  the  observational 
frame  ~p⋅~p=E2

/c2
− p⃗2.  In  the  proper  frame,  where 

the particle is at rest, ~p⋅~p=E r
2 /c2, then Er=m c2.

A  completely  new  notion,  absent  in  classical 
mechanics,  appears,  an energy is  associated with 
the mass of an object. Even at rest, a particle has an 
energy, it is an energy of mass.

When the particle is in motion :

m2c2
=E2

/c2
− p⃗2     and    E2

=(m c2
)
2
+(p c)2.
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The Energy-Momentum Triangle :

E corresponds  to  the  total  energy  of  the  particle, 
which  includes  its  mass  energy  and  its  kinetic 
energy: 

E2
=m2 c4

+ p2 c2
=m2c 4

+m2
γ

2 v2 c2
=m2

γ
2 c4

and we find: E=mγc2

For the kinetic energy: Ek=E−Er .
At low speeds:

E=m(1−β
2
)
−1/2c2

≃mc2
+

1
2

m v2

We  find  again  the  classical  expression  of  kinetic 
energy. 

For  a  massless  particle,  like  a  photon,  E=p c, 
~p=( p , p⃗)  and ~p⋅~p=0.

◦  Four-force

For the 4-force ~g  we suggest :

d~p
d τ

=~g

Equation  covariant  with  respect  to  the  Lorentz 
transformation.  In  the  classical  limit,  the  temporal 
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part gives back the kinetic power theorem, and the 
spatial part gives the Newton's second law:          

d~p
d τ

=m~w=(γ4 F⃗⋅⃗β , γ4 (F⃗⋅⃗β)β⃗+γ2 F⃗)=~g

The link between 4-force and Newton's force is not 
obvious. Classically, the force F⃗ is collinear and has 
the same direction as acceleration a⃗, in relativity it is 
the case for ~g  and ~w.

Pseudo-norm :   ~g⋅~g=−F p
2    with   F p=map.

Force Triangle :

For one-dimensional motion : ~g=γ F p(±β ,±1).

For the spatial part :    d p⃗
d τ

=g⃗    and   d p⃗
d t

=
g⃗
γ .

We have the spatial part  g⃗ of the 4-force, and on 
the other hand the classical force  F⃗,  the Newton's 
second law then takes the following form:
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d p⃗
d t

=
g⃗
γ=γ3( F⃗⋅⃗β)β⃗+γ F⃗= f⃗

The relationship between g⃗ and F⃗ is not simple and 
we find that they are not collinear.  Within the limit of 
low speeds, we find Newton's second law m a⃗= F⃗.

Most often, to build relativity, the third force f⃗  is used. 
When  one  injects,  in  Newton's  law,  the  relativistic 
momentum  instead  of  the  classical  one,  it  is  the 
force that appears. This force f⃗  is commonly used as 
an equivalent of the classical force at the relativistic 
level.  This  standard force has a definition similar to 
that of classical mechanics, but it is not the spatial 
part of a covariant four-vector.

In Newtonian mechanics the force is independent of 
the inertial frame of reference F⃗ '= F⃗, in relativity it is 
also the case for the four-force ~g '=~g . On the other 

hand, we have in general  f⃗ '≠ f⃗  and  g⃗ '≠g⃗.
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◦ Power

~w⋅~u=0 ⇒ ~g⋅~p=0

d~p
d τ

⋅~p=
d E /c

d τ
E /c−

d p⃗
d τ

⋅⃗p=0

γ
d E
d τ

=g⃗⋅⃗u    and   d E
d t

= f⃗⋅⃗v
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◦ Conservation of momentum and energy

For an  isolated system,  ~g=~0  and the momentum-
energy four-vector is constant. For a set of particles, 
the  total  momentum  is  the  sum  of  the  individual 
momenta, and the same applies to the energy : 

~p=∑~pi,     E=∑ Ei      and     p⃗=∑ p⃗i

This quantities are then conserved:
~p=~cst ,     E=cste      and     p⃗= c⃗st

For  example,  during  a  collision,  the  particles  may 
change  in  nature  and  number,  but  whatever 
happens there will always be conservation of these 
three  quantities:  they  will  have  the  same  values 
before and after the  impact. We can consider an 
isolated system in three situations: no force is exerted 
on the system, the sum of the forces is zero, or, as in 
a  collision,  the  interaction  being very  brief,  the  4-
momentum  of  the  system  has  no  time  to  vary 
significantly. The forces internal to the system do not 
intervene in these balances. 

  • Annihilation of an electron with a positron

Two gamma photons are produced :

e-
+e+

→2γ      with     ~p
e-+~pe+=~pγ1

+~pγ2

We  take  the  case  where  the  electron  and  the 
positron  have  the  same  velocities  (opposite 
directions).  In  the  frame  of  reference  where  the 
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particle and the antiparticle are at rest, we have the 
following  Minkowski  diagram  of  momentums-
energies:

We  have  at  least  two  photons  produced  by 
annihilation. It is not possible that only one photon is 
produced because a photon cannot be at rest and 
its  momentum cannot  be annulled to  respect  the 
conservation  of  the momentum in  the considered 
frame of reference. If two photons are created, they 
necessarily  have the same energy and they go in 
opposite  directions.  The  energy  of  a  photon 
corresponds to the mass energy of an electron (or 
what is the same of a positron). Photons thus have 
energies  of  511  keV.  They  are  very  energetic 
photons, as a comparison the visible photons have 
an energy of the order of eV. 

We study in exercise the collision of two protons with 
the creation at the threshold of a proton-antiproton 
pair. 
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Summary

Quantity
Classical 
Physics

Links /
Standards

Special
Relativity

position r⃗=( x , y , z )

velocity v⃗=
d r⃗
d t

u⃗=γ v⃗

γ=
d t
d τ

~u=
d~x
d τ

~u=(γ c , u⃗ )

~u⋅~u=c2

momentum p⃗=m v⃗ p⃗=m γ v⃗

~p=m~u
~p=(E /c , p⃗)

p⃗=m u⃗

acceleration a⃗=
d v⃗
d t

w0
=γ

4 a⃗⋅⃗β

w⃗=γ
4
( a⃗⋅⃗β)β⃗

~w=
d~u
d τ

~w=(w0 , w⃗)

~w⋅~w=−a p
2

~u⋅~w=0

force F⃗=m a⃗
f⃗ =

d p⃗
d t

g⃗=γ f⃗

g⃗=
d p⃗
d τ

~g=m~w
~g=(g0 , g⃗)

energy

d E k

d t
=F⃗⋅⃗v

Ek=
1
2

mv2

d E
d t

= f⃗⋅⃗v

γ
d E
d τ

= g⃗⋅⃗u

E=γm c2

Ek=E−mc2
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~x⋅~x=c2

τ
2
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electro
-magnetic 

field

F⃗E=q E⃗

F⃗B=q v⃗∧B⃗

Lorentz force :

f⃗ =

q ( E⃗+ v⃗∧B⃗)

g⃗=γ f⃗

~g=F
~
j

~
j=q~u

g⃗=

q (γ E⃗+u⃗∧B⃗)

The standard definition f⃗  for force is widely used by 
the scientific community, which summarizes relativity 
in a few equations: 

  p⃗=mγ v⃗     f⃗ =d p⃗
dt

     f⃗ L=q ( E⃗+ v⃗∧B⃗) 

 d E
dt

= f⃗ ⋅⃗v         E=γm c2
=T +m c2.

Taught directly in this way it is fast and effective, but 
at the same time, if  the student wants to deepen 
the concepts it will be necessary for him to enlarge 
his  view in order to have a clear vision and avoid 
confusion. Moreover, in our book we put forward a 
geometrical perspective which is  mainly based on 
the approach of  Hermann Minkowski.  These are of 
course  the  covariant  quantities  that  are  naturally 
represented  in  a  diagram  and  are  simply 
transformed with the Lorentz boost.

For  the  electromagnetic  field,  the  quantities  are 
detailed in exercise on page 252.

 G. NON-INERTIAL REFERENCE FRAMES
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⚭    NON-INERTIAL REFERENCE FRAMES

As we know how to do in Newtonian mechanics, we 
must  also  learn  to  apply  special  relativity  in  non-
inertial frames. 
Let us  recall  the approach in classical  mechanics. 
Newton's laws are verified in Galilean frames and by 
a change of frame of reference we find their new 
expressions in any moving frame:

m a⃗r=F⃗+ F⃗ ie+ F⃗ ic

Everything happens as if we had new forces, called 
inertial or fictitious. One may wonder if these forces 
really exist. Indeed, these forces are not related to 
fundamental interactions but to the change in the 
frame  of  reference.  Nevertheless,  the  driver  and 
passengers  of  a  car  experience  these  different 
dynamic  effects  as  real  during  the  acceleration 
phases,  such as a sudden start,  more or  less  tight 
bends and braking strokes. 

Classical mechanics give an interpretation of these 
effects  in  terms  of  forces:  coincident  forces  and 
Coriolis forces. 

It  goes  without  saying  that  special  relativity  must 
allow all  these effects to be found. At low speeds, 
they must be equivalent. We will  have new effects 
that will  appear with increasing speed. But also at 
low speeds,  for  precise measurements  and for  the 
behavior  of  light  which  is  now  included  in  the 
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theoretical framework. The interpretation is however 
very different.

In special  relativity,  there are no  inertial  forces but 
metric effects. By a non-inertial change of frame, we 
deviate  from  the  Minkowskian  metric  and  a  free 
particle follows a geodesic which modifies its initially 
rectilinear  and uniform  motion  to  follow  a  curved 
and accelerated trajectory.

For example, when the car accelerates at a green 
traffic light,  it  is  not  an inertial  force that  puts  you 
against the seat, but a metric modification that puts 
you in free fall towards the back of the car (as in the 
uniformly accelerated rocket). At the same time, the 
watches of the passengers in the back of the car 
are slow with respect to those in the front. Quite the 
opposite  when you brake,  the metric  modification 
makes you plunge in free fall towards the windshield.
In  a  turn,  the  metric  change  causes  you  to  fall 
towards  the outside of  the bend,  the watches will 
also go out of  sync and Euclid's  postulates will  no 
longer be verified.

In  special  relativity,  the  notion  of  inertial  force  is 
replaced  by  that  of  metric  effect.  We  have 
previously  studied  the  two particular  cases  of  the 
uniformly  accelerated  reference  frame  and  the 
uniformly rotating frame and we will  now focus on 
the general case35.

35 Here we make the analogy between classical mechanics and special 
relativity, but historically we are rather used to the analogy made 
with general relativity. In this analogical framework, during a brake 
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◦  Coordinate lines, local basis and connections

Here  we  complete  our  description  of  a  vector 
space.  These  are  very  general  mathematical 
concepts that can be used in all scientific fields.

Coordinate lines are obtained when one coordinate 
varies and all others are fixed.

At each point of this network we have a local basis 
with the basis vectors tangent to the lines. When we 
go from M to  M'  infinitely  close,  we have a small 
variation of the basis vectors :

stroke, we say that everything happens as if a gravitational field was 
pulling you forward. This gravitational field is of course fictitious. If 
it were real, at the same time as you brake, a gigantic massive wall 
of infinite size would have to appear in front of the car to justify 
such a gravitational field! In general relativity, the gravitational field 
creates an additional metric effect, spacetime is then curved, and 
the gravitational field is very real (it exists in all observation frames 
of reference).
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d ei=
∂e i

∂ x j dx j
=Γ ij

k ek dx j

 

This variation can be projected on the starting basis. 
The quantities  Γ ij

k  allow to encode the variation of 
the local basis at this point. We will call  connection 
the object  Γ ij

k .  For a global basis,  which does not 
depend  on  the  point,  all  the  components  of  the 
connection are null.

The  connection  is  symmetrical  on  the  last  two 
indices:

Γ ij
k ek=

∂ ei

∂ x j=
∂

∂ x j ( ∂MM '
∂ xi )=∂

2 MM '
∂ x j

∂ xi =
∂

2 MM'
∂ x i

∂ x j =Γ ji
k ek

The metric contains all the information about space. 
We can establish the expression of the connection 
coefficients according to the metric:

gij=ei⋅e j    d gij=∂k gij dxk
=(d ei)⋅e j+ei⋅(d e j)

gij , k dx k
=(Γ i r

l el dxr
)⋅e j+ei⋅(Γ jn

m em dxn
)

gi j , k=gl jΓ i k
l
+gimΓ j k

m

gi j , k+gk i , j−g j k ,i

=gl jΓ i k
l
+gimΓ j k

m
+gl iΓ k j

l
+gk mΓ i j

m
−gl kΓ j i

l
−g jmΓ k i

m

gi j , k+gk i , j−g j k ,i=2 gimΓ j k
m

gni
(gi j , k+gk i , j−g jk ,i)=2 gn i gimΓ j k

m

Finally :    Γ jk
i =

1
2

gi l(gl j , k+gk l , j−g j k ,l )
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◦  Covariant derivative

Variation of a vector A when moving from M to M' : 
dA=A(M')-A(M).  In  the  Minkowski  basis,  or  in  a 
Cartesian basis, we are in particular cases where the 
basis  is  global,  the basis  does not  depend on the 
point  and only  the  variations  on  the  components 
are to be taken into account.
In the general case:  d A=d (Ai ei)=d(Ai

)e i+A i d ei.

d A=∂ j A
i dx jei+Γ ij

k A i dx jek=(∂ j Ai
+Γ kj

i Ak
)dx jei

Notations: D j A
i
=A ; j

i
=∂ j A i

+Γ kj
i A k ,   D Ai

=A ; j
i dx j

The capital D makes it clear that all variations have 
been  taken  into  account.  For  inertial  frames  of 
reference, the connections are null in the Minkowski 
basis,  and  ∂μ was our covariant derivative. In non-
inertial frames Dμ is the covariant derivative.

◦  Illustration on an example

⃗ ⃗

233



usually take unit vectors. 

Basis Variations :   d u⃗ρ

dθ
=u⃗θ

   and   d u⃗θ

dθ
=−u⃗ρ.

Then :   ⃗OM= r⃗=ρ u⃗ρ   gives   v⃗=ρ̇ u⃗ρ+ρθ̇ u⃗θ   and

a⃗=(ρ̈−ρ θ̇
2
)u⃗ρ+(ρθ̈+2ρ̇ θ̇) u⃗θ

We can retrieve this result with the metric and the 
connections :

ds2
=gi j dx i dx j

=dl2
=dρ2

+ρ
2 dθ2

     dl2
/dt 2

=gi j v
i v j

e⃗ρ= u⃗ρ
     e⃗θ=ρ u⃗θ

     ⃗OM=ρ e⃗ρ+θ e⃗θ
   v⃗=

d l⃗
dt

=(ρ̇ , θ̇)

   g22,1=2ρ       Γ 11
1
=0       Γ 22

2
=0       Γ 11

2
=0

Γ 22
1 =−

1
2

g11 g22,1=−ρ      Γ 12
2 =

1
2

g22 g22,1=
1
ρ      Γ 12

1
=0

d v⃗=(∂ j v
i
+Γ kj

i vk
)dx j e⃗ i

a⃗=(∂ j v
i+Γ kj

i vk) ẋ j e⃗i=∂t v i e⃗i+Γ kj
i vk ẋ j e⃗i

a⃗= v̇1 e⃗1+v̇2 e⃗2+Γ 22
1 v2 ẋ2 e⃗1+Γ 12

2 v1 ẋ2 e⃗2+Γ 21
2 v2 ẋ1 e⃗2

then   a⃗=ρ̈ e⃗ρ+θ̈ e⃗θ−ρθ̇ θ̇ e⃗ρ+
1
ρ ρ̇θ̇ e⃗θ+

1
ρ θ̇ρ̇ e⃗θ.

We  have  a  new  method  that  uses  the  metric  to 
account for local basis variations using connections.

◦  Geodesics

Geodesics  are  the  worldlines  followed  by  free 
particles.  These  curves,  the  equivalent  of  Euclid's 
straight lines, maximize proper time. 
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On a geodesic, the proper acceleration is zero. 
Let us take up again the building of special relativity 
for non-inertial frames of reference:

ds2
=gμνdxμdx ν

=gμνuμuνd τ
2,   uμ=

d xμ

d τ
  and  pμ=muμ.

With the covariant derivative, we can generalize the 
Newton's second law :

d p⃗
d t

=F⃗    and   a⃗= F⃗
m
−a⃗e−a⃗c    becomes   D~p

D τ
=~g

Equations of Motion:   d uμ

d τ
=

gμ

m
−Γ αβ

μ uαuβ.

For the geodesics equation:   gμ=0.

The metric effects, equivalent to the classical forces 
of  inertia,  are  expressed through the connections, 
which themselves reflect the variations of the metric 
in a non-inertial frame.

In classical mechanics :  d vi

d t
=

F i

m
−Γ j k

i v j vk.

◦  Classical limit

In  the classical  case we already noticed that  the 
mass of the particle did not play a role:  a⃗=−a⃗e−a⃗c.
For the calculation of the acceleration  a⃗ from the 
velocity v⃗, we have two kinds of terms, those which 
involve the variation of the coordinates only, and the 
others for the variations of the basis: 

a⃗=a⃗coord+ a⃗base    and    a⃗ coord=−a⃗e−a⃗c−a⃗base
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These  are  the  three  terms  on  the  right  that  are 
expressed using connections.

Uniformly accelerated frame :

→ Mechanics of Newton :

a⃗r=−a⃗e=
d2 O⃗M

d t2 =−a⃗R '(O)

R : rocket,     a⃗R '(O)=
d2 O⃗ ' O

d t2 =a i⃗    and   ẍ=−a.

→ Special relativity : as demonstrated in the exercise 
on page 243,  the non-zero connection components 

are Γ 00
1 =

g '
2

 and Γ 10
0 =Γ 01

0 =
g'
2 g

 with g(x)=(1+ a x
c2 )

2

. 

Then:
d u1

d τ
=

d2 x

d τ
2=−Γ 00

1 u0 u0
=−

a

c2 (1+ a x

c2 )γ2c2
=−γ

2 a(1+ a x

c2 )
We find the classical limit: ẍ=−a.

Rotating frame :

→ Mechanics of Newton :  a⃗r=−a⃗e−a⃗c

a⃗=ω
2 H⃗M−2ω⃗∧v⃗=−ω

2
ρ u⃗ρ−2ω u⃗z∧(ρ̇ u⃗ρ+ρθ̇ u⃗θ)

a⃗=(ρ̈−ρ θ̇
2
)u⃗ρ+(ρθ̈+2ρ̇ θ̇) u⃗θ=ω

2
ρ u⃗ρ−2ωρ̇ u⃗θ+2ωρ θ̇u⃗ρ

→ Special relativity :  ~u=γ(c , ρ̇ , θ̇ , ż)

Only non-zero connections :

Γ 00
1 =−

ρω2

c2       Γ 02
1

=Γ 20
1

=−
ρω

c       Γ 22
1 =−ρ
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Γ 10
2 =Γ 01

2 = ω
ρ c       Γ 12

2
=Γ 21

2
=

1
ρ

Then :

d u1

d τ
~e1+

d u2

d τ
~e2

=(−Γ 00
1 u0 u0

−2Γ 02
1 u0 u2

−Γ 22
1 u2u2

)~e1

+(−2Γ 10
2 u1 u0

−2Γ 12
2 u1 u2

)~e2

d γ ρ̇

d τ
~eρ+

d γ θ̇

d τ
~eθ

=(−ρω
2
γ

2
+2ρω γ

2 vθ
+ρ γ

2
(vθ

)
2
)~eρ

+(−2ωγ
2 vρ

−2γ2vρ vθ
)~eθ /ρ

We find the classical limit :

ρ̈ u⃗ρ+θ̈ρ u⃗θ=(−ρω
2
+2ρωθ̇+ρθ̇

2
)u⃗ρ+(−2ωρ̇−2ρ̇ θ̇)u⃗θ

We now understand how particles move in a non-
inertial frame of reference. Special relativity gives us 
a  new  interpretative  and  experimental  framework 
where metric effects take the place of the  inertial 
forces of the old Newtonian framework. 

In  a  flat  space-time  and  a  non-inertial  frame  of 
reference, a free particle maximizes its proper time 
by following a curved trajectory.

This  is  not  simply  a  new  point  of  view,  but  a 
generalization  to  massless  particles,  and,  as  a 
correction,  with  modified  experimental  measure-
ments.
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The classical notion of force is abandoned in favor 
of  a  relativistic  description  in  terms  of  space-time 
geometry. Here, it is the concept of force of inertia 
that becomes useless,  we follow the same kind of 
approach  in  general  relativity,  where  geometry 
makes the concept of gravitational force disappear.

◦  Lagrangian approach

The  geodesic  equations  are  found  with  the 
Lagrange equations.  The approach is  explained in 
the  exercise  on  page  160.  We  are  looking  for 
geodesics that extremes proper time :

c2
τ=∫ gμ νu

μ uνd τ, L=gμνuμuν  and ∂L
∂ xμ−

d
d τ

∂L
∂uμ=0

∂L
∂ xμ=gαβ ,μu

α
u
β    and   ∂ L

∂uμ=gαμu
α
+gμβu

β

d
d τ

∂L
∂uμ=gαμ , νu

νuα
+gαμ

d uα

d τ
+gμβ ,ρuρuβ

+gμβ
duβ

d τ

gαβ ,μ uαuβ
−gαμ , νu

νuα
−gμβ , ρu

ρuβ
−2 gμβ

duβ

d τ
=0

Hence the geodesic equation : Γ αβ

μ
u
α
u
β
+

duμ

d τ
=0
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Conclusion and synthesis

Let's  come back to the notion of  inertial  frame of 
reference. 
We have a circular definition: the postulates are true 
in  inertial  frames  of  reference,  and  a  reference 
frame is inertial if the postulates are verified.  
If  a  particle  in  a  reference  frame  has  a  curved 
trajectory, is  it due to a force or to the non-inertial 
nature of the frame? 

In  Newtonian  mechanics,  if  we  know  beforehand 
the nature of the forces, we can determine whether 
a  reference  frame  is  Galilean.  Let's  take  the 
electromagnetic  and  gravitational  forces:  if  there 
are  no  charges  and  masses  present,  and  the 
trajectory is  nevertheless curved, you can deduce 
that the reference frame is non-Galilean. You have 
to  imagine  such  a  region  of  empty  space,  far 
enough away from all matter that the remote action 
of the forces is negligible.

Do you know the Olbers' paradox? 
In  cosmology,  the  universe  is  like  a  fluid  homoge-
neous and isotropic of galaxies. You see the stars in 
the  dark  night,  the  resulting  brightness  is  low,  but 
logically  the  night  should  be  white.  Indeed,  the 
further  away  you  look,  the  weaker  is  the  light 
received  by  the  observer  from  each  luminous 
object, but at the same time their number increases 
in  the  same  proportions.  The  night  finally  is  dark 
because the Universe is expanding. 
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But back to the reference frames,  if  we apply the 
Olbers'  Paradox to gravitation,  we have the same 
result,  the  gravitational  field  would  tend  towards 
infinity at all points in the Universe... Here we want to 
illustrate how the foundations of classical mechanics 
are  not  trivial.  Moreover,  can  we  determine  the 
nature of forces without the help of Newton's laws?

In  relativity,  the  situation  is  much  simpler,  we  use 
geometry. The behavior of spacetime alone makes it 
possible  to  determine  if  the  frame  of  reference  is 
inertial  without using the notion of force.
Beforehand, it is sufficient to have a set of clocks at 
rest and synchronized on the region being studied. 
If, during the experiment, the clocks do not go out of 
sync, the reference frame is inertial. 
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 H. Exercises

Exercises
1. ▲△△    Change of basis

Let consider the basis ~e 'μ of the inertial frame.

1 - Determine  the  basis  ~eμ of  the  uniformly 
accelerated reference frame of  the rocket  as  the 
function of ~e 'μ.
Place some examples of vectors from this base on a 
Minkowski diagram. 

2 - Determine the basis  ~eμ of the uniformly rotating 
reference frame of the disk as the function of ~e 'μ.
Represent this base on a Minkowski diagram.

Answers p409

2. ▲▲▲    Riemann curvature tensor

We  give  here  the  curvature  tensor  without 
justification. We will apply the formulas to show that 
for the accelerated rocket, as for the rotating disk, 
we  are  in  flat  space-time  despite  the  non-inertial 
nature  of  the  reference  frames.  If  all  the  compo-
nents of the tensor are zero the spacetime is flat, if 
even  one  of  the  components  is  non-zero  the 
spacetime is curved. 
Riemann tensor as a function of the connections:
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R β γ δ
α

=Γ β δ, γ
α

−Γ β γ , δ
α

+Γ σ γ
α

Γ β δ
σ

−Γ σ δ
α

Γ β γ
σ

Connection coefficients36 :

Γ μ ν

α =
1
2

g α β(∂μ gβ ν+∂ν gβ μ−∂βgμ ν)

Notation:   ∂

∂ xμ=∂μ = ,μ   so  Γ β δ , γ
α

=∂γΓ β δ
α .

The curvature tensor is antisymmetric in the last two 
indices.  The connection coefficient  is  symmetric  in 
the last two indices.

1 - Rocket: uniformly accelerated reference frame.
 a- Determine gμν  and  gμ ν.
 b- Determine  all  the  connection  coefficients.  You 
must  identify  the  non-zero  coefficients  for  the 
calculation of the curvature.

Helps: you can set  g( x)=(1+ ax

c2 )
2

.

Help  yourself  as  much as  possible  with  the symmetries.  
Identify  the  non-zero  terms  of  gμ ν and  gμ ν. Are  they  
constant? Which coordinates do they depend on? Which  
terms ∂μ gβ ν  are non-zero?

 c- Show that all  the components of the curvature 
tensor are zero.
Help: what is the consequence of antisymmetry?

2 - Disk : uniformly rotating reference frame.
 a- Determine gμν  and  gμ ν.

36 Also called  Christoffel symbols.
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 b- Determine all the connection coefficients.

 c- Demonstrate  that  all  the  components  of  the 
curvature tensor are zero.

3 - Spherical  body:  reference  frame  studied  with 
Schwarzschild coordinate system. To compare with a 
situation where spacetime is curved.

We invite you to set  g=1−
rS

r
=ef .

 a- Determine gμν  and gμ ν.
 b- Determine  all  the  non-zero  connection 
components.

 c- To show that the spacetime is curved calculate 
the component R 10 1

0 .

Prove that R01 01=
rS

r3 .            Answers p412

3. ▲▲▲  A non-uniformly rotating Disk

In the previous exercise we demonstrated that the 
curvature  tensor  was  null  in  the  uniformly  rotating 
frame  of  the  disc.  We  will  continue  the  demons-
tration in the case of any rotational motion of the 
disk. We had for the inertial observer as a function of 
the coordinates of the observer at rest with respect 
to  the  disc:  θ '=θ+ω t .  We  now  take  the  general 
expression:  θ '=θ+λ (t), where λ (t) is any function of 
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time.  Thus  are  included  the  possible  phases  of 
acceleration, deceleration, oscillation, etc. 
1 - Determine the connection coefficients.
2 - Calculate the Riemann curvature tensor. 
3 - Was the result expected?

Answers p419

4. ▲▲▲     Spatial curvatures

The Riemann curvature tensor applies to any space, 
space-time and sub-space regardless of the number 
of dimensions. We have calculated the curvature of 
4-dimensional space-time and we will calculate the 
curvatures  for  the spatial  parts.  We take the three 
examples  of  the  uniformly  accelerated,  the 
Schwarzschild and the uniformly rotating frames. 
Let  us  detail  the method and explain  the general 
approach to measure times and distances37. 
For the time, we determine the proper time interval 
dτ by setting the dxi=0 (i=1, 2 or 3) :

d τ=
1
c √g00 dx

0      and     τ=1
c∫√g00dx

0      ( x0
=ct )

For the space, if the reference system is synchronous 
g0 i=0 and:  ds2=g00 c2dt 2−dl2

                        with   dl2=−gij dx i dx j=γij dxi dx j

The  curvature  tensor  is  then  calculated  with  the 
three-dimensional metric tensor  γij as before. Here, 
we run the indices from 1 to 3.

37 Landau / Lifchitz, The Classical Theory of Field, § Distances and 
time intervals.
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If  the  reference  system  is  not  synchronous,  the 
temporal coordinate is  not directly separated from 
the spatial coordinates, and, we show that:

γij=−gij+
g0 i g0 j

g00

      and      dl2
=γ ij dx i dx j

We can then calculate dl with the three-dimensional 
metric  tensor.  On  the  other  hand,  we  cannot,  in 
general,  determine  the  distance  between  two 
bodies. Also, the curvature tensor cannot be directly 
calculated  in  the  form  previously  given38.  Never-
theless, in the particular case where the  reference 
frame  is  stationary,  metric  coefficients  gμν 
independent of time, we can integrate the element 
dl and the curvature tensor is in the usual form :
 

Stationary frame:  ∂ gμν

∂ t
=0,   l=∫dl   and  R jk l

i .

1 - Rocket:  Is the reference system synchronous?
Is the space curved?

2 - Spherical body:
Is the reference system synchronous?

Is the space curved?

3 - Disk: 
a- Is the reference system synchronous?
b- Determine γij.
c- Is the reference frame stationary? What is 

the ratio of the perimeter of a circle to its diameter? 

38 Cattaneo's projection technique.
Rizzi / Ruggiero, Space geometry of rotating platforms, 2008.
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(circle centered on the axis of rotation) 
Does  the  observer  attached  to  the  rotating  disc 
experience a curvature?

d- Calculate R jk l
i .

e- It  is  shown  that,  for  a  two-dimensional 
space, there is only one independent component of 
the curvature tensor Rijkl (i=1, 2)39.

Calculate the Gaussian curvature K of the surface:

K=
1

R1 R2

=
R1212

γ11γ22−γ12
2

where R1 and R2 are the radii of curvature at a point 
of  the  disk.  You  can  compare  it  to  the  Gaussian 
curvature of a sphere.

Answers p419

5.╋ ▲△△    Pair production

A high-energy particle can under certain conditions 
create  a  particle-antiparticle  pair.  Let's  take  the 
example  of  the  collision of  two  protons.  In  the 
barycentric reference frame they arrive face to face 
with the same velocity. When their kinetic energy is 
just  sufficient,  we say at the  threshold,  they create 
four particles at rest:

p+ p→ p+ p+ p+ p̄

39 Landau, § Properties of the curvature tensor.
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Draw the Minkowski diagram at the threshold in the 
barycentric frame where ∑ p⃗i= 0⃗.

Answers p422.

6. ▲▲▲    Wave equation

The  wave  equation  describes  the  behavior  of  a 
multitude of waves: waves on water, sound waves, 
seismic  waves,  electromagnetic  waves,  etc.  These 
waves,  although  of  different  physical  natures,  all 
obey  the  same  equation.  The  amplitude  of  the 
wave  ϕ( r⃗ , t ) is  the  solution  to  the  following 
differential equation:

Δ ϕ−
1

c2

∂
2
ϕ

∂ t 2
=0     so     □ ϕ=0

c is the celerity of the wave which depends on the 
type of wave and the medium.

Definition of the Laplacian in Cartesian coordinates: 

Δ f=
∂

2 f

∂ x2+
∂

2 f

∂ y2 +
∂

2 f

∂ z2

d'Alembert operator : □=Δ−
1

c2
∂

2

∂ t2

1 - Demonstrate  that  the  wave  equation  is  not 
invariant under the Galilean transformation.
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Help: In classical mechanics, the amplitude of the wave is  
a  physical  quantity  that  should  not  depend  on  the  
chosen coordinate system. At a point M and at a given  
time:  ϕ ' (x ' , t ' )=ϕ(x , t).  Such  as,  for  example,  the 
wave  height,  or  the  sound  pressure.  By  identifying  d ϕ 
and  d ϕ '  deduce  the  relations  between  the  partial  
derivatives.

2 - Show that  the electromagnetic  wave equation 
in  vacuum  is  invariant  under  the  Lorentz 
transformation: □ E⃗=0 and □ B⃗=0. In this case the 
amplitude of the wave depends on the reference 
frame,  the  transformation  formulas  are  given  on 
page 427.

Answers p422.

7. ▲▲△    Schrödinger equation

In  quantum physics,  the  wave function  obeys  the 
following equation of evolution:

i ℏ ∂Ψ
∂ t

=−
ℏ2

2 m
ΔΨ+V Ψ

The probability density of presence of a particle is 
obtained  by  multiplying  the  wave  function  by  its 
complex conjugate:

 ρ=
d P
d V

=Ψ Ψ*  
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We  can  limit  the  study  to  the  motion  in  one 
dimension of a free particle of mass m :

iℏ ∂Ψ
∂ t

=−
ℏ

2

2 m
∂2Ψ

∂ x2 ,

and a standard Galilean transformation: v⃗R ' /R=v i⃗

1 - The  probability  of  presence  of  a  particle  in  a 
given volume should not depend on the reference 
frame. On the other hand, the wave function is not 
unique and the probability density is not modified if 
we  multiply  the  wave  function  by  a  complex 
number of modulus one. 
Show  that  the  Schrödinger  equation  is  invariant 
under a Galilean transformation with:

Ψ '=e
i
ℏ
(E t− p x )

Ψ    where   E=
1
2

m v
2   and   p=mv .

2 - Show why the Schrödinger equation cannot be 
invariant under the Lorentz transformation.

Answers p424.
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8. ▲▲▲    The electromagnetic field

Electric  and  magnetic  fields  are  not  written  as 
fourvectors but as components of a rank-2 tensor:

F=Fμν=(
0 −

E x

c
−

E y

c
−

E z

c
E x

c
0 −B z By

E y

c
B z 0 −B x

E z

c
−B y Bx 0

)
The  E⃗ and  B⃗ fields  are in fact  one and only  one 
physical  entity  and  their  components  depend  on 
the observational inertial frame of reference. We are 
here in the inertial frame R, and we will also consider 
the frame R' in uniform rectilinear translation along x: 

v⃗R ' /R= v⃗=v u⃗x.
The  tensor  of  the  electromagnetic  field  is 
antisymmetric:  Fμν=−Fνμ. 

1 - Like mass, electric charge is an attribute of the 
particle  that  does  not  depend  on  the  reference 
frame.  We  can  simply  build  a  four-vector  for  the 
charge and its motion:

                          ~j=q~u           (4-vector current)
We  will  demonstrate  that  the  4-vector  F~

j  is 
identified with the electromagnetic 4-force:
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d~p
d τ

=F~j    and for the components   d pμ

d τ
=Fμν jν

By  developing  the  components,  temporal  then 
spatial,  show  that  we  find  the  electromagnetic 
power, as well as the expression of the Lorentz force.

2 - Give  the  expression  of  the  components  of  E⃗ '  

and  B⃗ '  in R' as a function of those of E⃗ and B⃗ in R.

3 - Determine the components of the tensor Fμν.

4 - Find the expressions of the two Lorentz invariants 
of electromagnetic fields. They are scalar invariants 
functions of  E⃗ and  B⃗.  The first  one is  obtained by 
contracting all components of the electromagnetic 
tensor  with  itself:  Fμν Fμν.  The  second  use  the 
completely  antisymmetric unit tensor of fourth rank: 
ϵμ ναβFμν Fαβ.  ϵμ ναβ components  are  zero  if  two 
indices  are  the  same  and  ±1  else.  The  tensor 
alternates  sign  under  interchange  of  any  pair  of 
indices. We set: ϵ0 123

=1.

5 - In  the reference frame of  the laboratory  R,  we 
have  two  planar  metallic  plates  separated  by  a 
distance e and respective plate charge densities  σ 
and  -σ.  The  capacitor plates  are  assumed  to  be 
infinite and we will take the z-axis from the negative 
plate to the positive plate.

We will use the Gauss's and Ampère's circuital laws:
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∯S
E⃗⋅d⃗S=

Qin
ϵ0

     ∮Γ
B⃗⋅d⃗l=μ0 Ienc     (ϵ0μ0 c2

=1)

The use of these tools is not explained here. A book 
in itself on this subject would be necessary. Refer to 
a undergraduate level course on electrostatics and 
magnetostatics.
 a- Determine the electric field at any point  in the 
space. Write the matrix Fμν in R.
 b- We  are  now  in  the  frame  of  reference  R' in 
uniform rectilinear translation along the x-axis at the 
velocity  v⃗.  For a classical observer of this frame of 
reference the charge density remains the same on 
the plates and the electric field E⃗ '=E⃗. On the other 
hand,  as  the  charges  are  in  motion,  a  surface 
current  density  appears:  determine  the  magnetic 
field at any point. Write the matrix F ' μν in R'.
 c- Starting from the tensor Fμν do you find F ' μν with 
the change of basis lambda matrices? Do we well 
have the invariance of the two Lorentz invariants? 

6 - In  the reference frame of  the laboratory  R,  we 
have a homokinetic beam of protons of velocity  v⃗, 
radius  r and  density  n.  We  call  R' the  proper 
referential of protons.
 a- Determine the electric field outside the beam in 
R'.
 b- By  general  considerations,  determine the struc-
ture of this same field in R with few calculations.

        

                                         Answers on page 425.
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9. ▲▲▲    Maxwell's equations

James Clerk Maxwell established in 1864 the theory 
of  electromagnetism  which  unifies  Michael 
Faraday's  theory  of  electricity  and  André-Marie 
Ampère's theory of magnetism through the following 
equations:

In vacuum:

 ∇⃗∧E⃗=−
∂ B⃗
∂ t

                         ∇⃗⋅B⃗=0

With sources:

                 ∇⃗⋅E⃗=
ρ
ϵ0

       ∇⃗∧B⃗=μ0 j⃗+μ0ϵ0

∂ E⃗
∂ t

The  fields  are  derived  from  a  potential  V  and  a 
vector potential A⃗ according to:

E⃗=−∇⃗V −
∂ A⃗
∂ t

     and     B⃗=∇⃗∧ A⃗

Lorentz gauge condition:     1

c2

∂V
∂ t

+∇⃗⋅A⃗=0

Charge conservation:    ∇⃗⋅⃗j+
∂ρ

∂ t
=0
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Definition of operators in the Cartesian coordinate
system:

Gradient of f : ∇⃗ f=
∂ f
∂ x

i⃗ +
∂ f
∂ y

j⃗+
∂ f
∂ z

k⃗

Divergence of C⃗ : ∇⃗⋅C⃗=
∂C x

∂ x
+
∂C y

∂ y
+
∂C z

∂ z

Curl of C⃗ : 

∇⃗∧V⃗=(∂V z

∂ y
−
∂V y

∂ z ) i⃗ +(∂V x

∂ z
−
∂V z

∂ x ) j⃗+(∂V y

∂ x
−
∂V x

∂ y ) k⃗

1 - Galilean transformation:

 a- Show that Newton's second law is invariant under 
the Galilean transformation.

 b- Lorentz's  force is considered invariant under this 
same transformation. From this, deduce the Galilean 
transformation  laws  of  E⃗ and  B⃗ as  a  function  of 
v⃗e= v⃗R '/ R.  Check  that  they  well  correspond to  the 
non-relativistic limit of the Lorentz transformation of 
these same fields.

 c- Show  that  the  first  two  Maxwell's  equations 

∇⃗⋅B⃗=0 and  ∇⃗∧ E⃗=−
∂ B⃗
∂ t

 remain invariant under a 

Galilean transformation.

Help to do the calculations in vector form:

Partial derivatives:   ∇⃗=∇⃗ '     and    ∂
∂ t

=
∂

∂ t '
− v⃗e⋅⃗∇ '
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Useful formula:

 ∇⃗∧( A⃗∧B⃗)= A⃗ (∇⃗⋅B⃗)−B⃗(∇⃗⋅A⃗)+( B⃗⋅⃗∇) A⃗−( A⃗⋅⃗∇) B⃗.

 d- Show that the following two Maxwell's equations 
are not invariant under a Galilean transformation (to 
simplify the calculations, we can consider the case 
without the sources ρ and j⃗).

Useful formula:   ∇⃗⋅( A⃗∧B⃗)=B⃗⋅(∇⃗∧ A⃗)−A⃗⋅(∇⃗∧B⃗).

2 - Lorentz transformation: Let us show that from 1905 
the  Maxwell  equations  could  incorporate  their 
natural relativistic framework.

 a- Show  that  Maxwell's  equations  are  invariant 
under the Lorentz transformation. 

 b-  We  introduce  the  4-vector  current  density
~
j=ρp

~u  where ρp is the charge volume density in the 

proper frame of reference. Show that by using the 4-

vector  gradient  ∂μ=
~
∇=( ∂∂ct

, ∇⃗ ) we  obtain  a 

charge conservation equation in covariant form.

 c- We propose to introduce the potential  4-vector 
~
A=(V /c , A⃗). Show that the Lorentz gauge condition 
is  simply  written in tensor  form with  Aμ and the 4-
vector  gradient  ∂μ.  Show  that  by  judiciously 
combining  the  four-vectors  Aα and  ∂β,  we  obtain 
the tensor Fμ ν.

 d- Show that  the  covariant  equation  ∂μ Fμν=μ0 jν 
gives back the Maxwell equations with sources.
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 e- Show that the equation ∂α Fμ ν+∂μ Fνα+∂ν Fαμ=0 
gives back the first two Maxwell equations.

 f- Find  the  expression  of  the  propagation  wave 
equations of V  and A⃗.

3 - Show  that  the  fields  are  not  modified  by  the 
following gauge change:

∀ f {V '=V−
∂ f
∂ t

A⃗ '= A⃗+∇⃗ f

This is called  gauge invariance. The Lorentz gauge 
condition corresponds to a particular gauge choice 
that  gives  the  potential  propagation  equations  a 
simpler form. Above all,  Aμ then behaves like a 4-
vector,  and the  invariance of  Maxwell's  equations 
becomes immediate.                                  

Answers p431.
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Voyager 1 and 2 probes
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 IX. Interstellar travel and antimatter

INTERSTELLAR TRAVEL 
AND ANTIMATTER

 A. INTRODUCTION

⚭    INTRODUCTION

Who says  travel,  says  to leave his  place of  life  for 
several reasons:

• by necessity, for reasons of survival
• in the spirit of adventure and discovery
• to conquer and colonize

For all these reasons, we have for centuries:
• explored our planet Earth
• we are right now exploring our solar system
• and, one day, surely, we will leave our system 

to explore other stars

Our planet is fragile, and even if we managed to live 
on it in harmony, it may seem risky to stay in only one 
place.
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A representation of a picture of our galaxy, the Milky Way.  
At  night  on a beautiful  starry  night  without clouds and  
without Moon, we clearly see a milky band arching the  
celestial vault, the cross section of our galaxy. Our Sun is  
at the center of the small circle, and most of the stars we  
see at night are our neighbors and are contained in this  
zone. 
Of course, this is not a real picture, we have never placed  
a camera in a place outside our  own galaxy.  This  is  a  
computer-generated reconstruction from real photos. 
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For example, it is very likely that a meteorite, like the 
one  responsible  for  the  disappearance  of  the 
dinosaurs, will hit the Earth again one day, in a few 
years, or, millions of years, we don't know. Hence the 
idea of a multi-planetary humanity, with as a starting 
point the establishment of autonomous colonies and 
extraterrestrial bases.

Some, such as Elon Musk are targeting the planet 
Mars with a manned mission planned for the near 
future,  and  subsequently  the  establishment  of  a 
Martian base and the terraforming of the planet. This 
project  is  exciting,  but  before  a  group of  humans 
can  live  on  Mars  without  being  dependent  on 
freight  arrivals  from  Earth,  it  may  take  several 
centuries.

The  planet  Mars  is  perhaps  the  best  candidate 
among  the  eight  planets  that  orbit  our  Sun.  But 
probably  not  among the thousands  of  exoplanets 
already discovered that orbit other stars! 

The idea is to join an exoplanet that has a greater 
similarity to Earth than Mars, a twin planet of Earth, 
so,  despite  a  longer  journey,  the  colony  could 
establish itself much faster. 

Some will tell you that the other stars are far too far 
away and that interstellar travel is unrealistic, when 
in fact we are already making interstellar travel with 
Voyager probes.
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They were built with the technologies of the 70s. They 
have already crossed the heliopause, the limit of our 
solar  system,  and  are  now  traveling  through  the 
interstellar medium. These probes were designed to 
explore  only  the  solar  system,  but,  simply,  with 
current  technologies,  they  could  be  adapted  to 
reach  other  stars.  For  example,  the  radioisotope 
thermoelectric generator  will  stop in 2025 and the 
transmission  with.  They  can  easily  be  replaced by 
batteries with an isotope with a much longer lifetime. 
The Voyager probes travel at about 61,000 km/h and 
would  reach  the  closest  star  to  our  Sun,  Proxima 
Centauri located  4  light-years  away,  in  70,000 
years48.

This  is  a  lot  compared  to  the  life  span  of  an 
individual,  but  very  little  compared to  the age of 
mankind. As we will see, the spaceship can be large 
and reach this speed on the same principle. We can 
then  design,  still  with  currently  accessible  techno-
logies, a seedship.

A  manned  journey  over  such  a  length  of  time  is 
difficult to conceive, people would be born and die 
in  the vessel  over  several  generations,  this  type of 
vessel is called a generation ship.

On  the  other  hand,  the  seedship  contains  only 

48 In fact, over such periods of time we can no longer consider the 
stars  motionless  from one another.  Nevertheless,  in  order  not  to 
complicate the presentation unnecessarily and to get to the point, 
we will consider the star Proxima Centauri fixed at 4 light-years.
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frozen ovocytes and spermatozoa (no risk of  them 
hitting  each  other!).  Once  close  to  Earth's  twin 
planet, an automated process starts the incubators 
and the first generation of children will be raised by 
robots with artificial intelligence.

At this rate, an extraterrestrial human civilization can 
establish  itself  and  re-launch  a  new  interstellar 
seeding  ark in 100,000 years.  Thus, step by step, in 
small leaps of 10 light-years, humanity can colonize 
the  entire  galaxy  in  less  than  a  billion  years. 
Reasonable duration, compared to the age of our 
Sun, 4.5 billion years, and the appearance of the first 
cells 3.8 billion years ago.

We will first talk about the Voyager probes and then 
detail  other  technologies  that  would  allow  us  to 
reach the other stars much faster.

 B. VOYAGER PROBES

⚭    VOYAGER PROBES

The two Voyager 1 and Voyager 2 probes were built 
identically  and were launched in 1977.  They each 
have a mass of 820 kg including 90 kg of propellants.
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In  astronautics,  the  term  propellant,  refers  to  the 
chemical  substance  that  allows  the  propulsion  of 
the rocket. For your car to work you must regularly 
take your vehicle to the pump to fill the fuel tank. But 
your  car  would not  be  able  to  run  on the  Moon, 
because for the combustion of the fuel it also needs 
the  oxygen  naturally  present  in  the  Earth's  atmo-
sphere. A rocket operates in vacuum and therefore 
has to carry both the fuel (the reductant), and the 
oxidant,  the  combination  of  the  two  is  called 
propellant. 

From  the  ground  the  probes  left  the  terrestrial 
attraction on board Titan rockets containing tons of 
propellants. In addition to the speed thus gained, is 
added the speed of the Earth in its orbit around the 
Sun.  But  even  so  the  speed  of  the  probes  was 
insufficient to break away from the solar attraction. 
And it is not the few kg of propellants carried by the 
probe  that  would  allow  it,  they  are  used  for 
trajectory corrections.  The  Voyager probes cleverly 
used the gravity assist of the planets to escape from 
the Sun's gravitational well. 
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 C. Sling effect

⚭    SLING EFFECT

We  use  the  speed  of  revolution  of  the  planets 
around  the  Sun.  For  example,  Jupiter  orbits  at 
13 km/s  around  the  Sun  and  the  Voyager 1 
spacecraft  after  its  deflection  by  the  planet  has 
gained more than 12 km/s.

The black line represents  the speed of  the probe as  a  
function of the distance to the Sun (multiplicative scale).  
By flying over Jupiter, the probe escapes its orbit around  
the  Sun.  The  shaded  line  crossed  corresponds  to  the  
speed necessary to escape from our stellar system. The  
astronomical unit corresponds to the distance Earth-Sun,  
one light-year is about 60,000 au.
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The  Voyager 2 probe even took advantage of the 
slingshot effect of four planets: Jupiter, Saturn, Uranus 
and Neptune.

We have a small drawing, that follows, which allows 
us  to  understand  simply  the  sling  effect.  A  train 
moves towards you at 50 km/h and you throw a ball 
at  30 km/h to make it  bounce on the front of the 
locomotive. Let's now put ourselves in the position of 
the train driver, he sees by additivity of velocities the 
ball arriving faster, at 80 km/h, the sum of the velo-
cities, with respect to the ground, of the train and 
the ball.  If  the collision is  perfectly  elastic,  the ball 
starts again, with respect to the train, with the same 
speed  and  in  the  opposite  direction.  So  the  ball 
thrower sees the ball bounce back with a speed of 
130 km/h with respect to the ground. By throwing the 
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ball  frontally,  the  speed  of  the  ball  increases  by 
twice the speed of the train. 

If  now you throw the  ball  at  a  certain  angle,  the 
effect will  be weaker but the principle remains the 
same. The same happens with the probe and the 
planets.

Jupiter in the center and the hyperbolic trajectory of the  
probe  in  the  frame  of  reference  which  has  for  origin  
Jupiter. The velocity of the spacecraft  v⃗ S /J  with respect  
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to Jupiter changes in direction but not in magnitude. The  
velocity of Jupiter with respect to the Sun must be added 
v⃗ J  to obtain the velocity of the probe v⃗ S /S  with respect  

to the Sun. We see in our figure that this speed increases,  
this  is  the  slingshot  effect.  In  the  example  of  the  train,  
there was a half-turn of the ball and the deviation D was  
180°. For the passage of the Voyager 1 probe in March  
1979, the deviation was 80° and the heliocentric speed of  
the  probe  increased  by  12.5 km/s49.  The  object  which  
benefits  from the gravitational  assistance can have an  
important  mass  without  modifying  the  effect  (its  mass  
must remain small in front of the mass of Jupiter...).

 D. VOYAGER 3  PROJECT

⚭    VOYAGER 3  PROJECT

The  Voyager probes  were  not  designed  for  inter-
stellar travel, but to explore the solar system. For the 
Voyager 3 project,  we are optimizing the slingshots 
to gain speed and reach nearby stars. For example, 
we  could  take  advantage  of  an  opportunity:  in 
25,000 years, Proxima will be as close as possible to 
the Sun, 3 light-years away instead of 4. 
This is  a great project for mankind that also allows 
humanity to project itself into the future.

Next page, a numerical simulation of the trajectory of the  
spacecraft with the successive deviations at the flyby of  
Jupiter, Saturn, Uranus and Neptune.

49 Document: La fronde gravitationnelle, Pierre MAGNIEN, 2019.
Real time position of the Voyager probes: voyager.jpl.nasa.gov.
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Voyager 3:  the  probe  is  propelled  at  the  level  of  the  
Earth's orbit and it then chains four slings around the gas  
giants.  The final  speed is  140,000 km/h.  Two differences  
compared  to  the  historical  Voyager  probes:  additional  
propellant is used and the effect of the slings is optimized.  

The mass of the whole, the probe and the propellant, is  
very reasonable: only about ten tons, which can be sent  
into space with the current rockets.

Below is the speed profile of the probe. We see an initial  
velocity surplus of 5 km/s given by the propellants. Each  
slingshot borders the upper atmospheres of the gaseous  
planets for maximum speed gain.
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 E. ROCKET EQUATION

⚭    ROCKET EQUATION

We would like to go even faster towards the stars by 
thrusting the probe with propellants. The propellants 
burn and the resulting gases are ejected backwards 
and allow the rocket to gain speed by reaction. The 
law of astronautics gives the speed increase  Δv of 
the rocket as a function of the initial mass mi of the 
rocket,  of  its  final  mass  mf and  of  the  speed  of 
ejection ve of the gases.

We  can  begin  by  illustrating  this  law  with  the 
example of a small boat on which a person throws 
stones  backwards  as  far  as  possible  with  all  his 
strength:

The boat is at first immobile with all its reserve of stones.  
The person on the boat throws a first  stone backwards.  
The  boat  then  starts  to  move  slightly.  This  is  the  
conservation of momentum. The friction with the water is  
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neglected: the acquired speed is preserved. The person  
throws  the  stones  until  the  stock  is  consumed and the  
speed of  the boat  increases  with  each throw.  The last  
stone increases the speed much more than the first one  
because  at  the end the  boat  is  much lighter.  The  first  
stones are not very effective because the boat is initially  
very  heavy and they  are  used above all  to  move the  
stock of stones in waiting.

The initial mass of the rocket is that of the probe and the  
propellants,  the  final  mass  corresponds  to  the  probe  
alone. The speed variation Δv is the difference between 
the  final  speed  and  the  initial  speed.  The  mass  of  
propellant  required  increases  very  quickly,  much  faster  
than the speed reached.

Rocket equation:

The crocodile illustrates that in spite of a mass ratio made  
important by the increase in the quantity of propellants,  
this ratio is massively crushed by the need to also increase  
the  speed  of  these  same  propellants  before  their  
combustion.
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For a conventional chemical propellant we have an 
ejection speed of  approximately  4 km/s.  Let's  ima-
gine  that  we  want  to  go  twice  as  fast  to  reach 
Proxima  with  a  Voyager-type  probe.  How  much 
propellant would we have to take on board?
We then have Δv=60,000 km/h, or 16 km/s. The mass 
of fuel to be embarked increases exponentially and 
it would take 40 tons of propellants to get to Proxima 
in 35,000 years... To get there in 50 years, we would 
far exceed the mass of the Universe!

Duration  of  a  trip  to  4  light-years  (current  Sun-Proxima  
distance)  with  a  Voyager  type  probe  using  traditional  
propellants  (chemical  energy  /  probe  with  a  mass  of  
800 kg):

Duration of 
the trip

Mass of propellants 
required

mi

mf

ln( mi

mf
)

70 000 yrs 0 ton 1 0

35 000 yrs 40 tons 50 4

1 000 yrs Mass greater than that of 
the observable Universe

∞ 140

50 yrs ∞ 2800

Once the star system is reached we can slow down the  
probe by sling effect. For the journey twice as fast, if we  
don't want to simply fly over the distant star system, the  
gravity assistance will not be sufficient to put ourselves in  
orbit around the star and we must also bring fuel to slow  
down the probe. As we have a factor of 50,  we need  
2000 tons of propellants at the departure from Earth to be  
able to be in orbit at the level of the exoplanet at the  
arrival!
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To get around this monstrous increase in mass, the 
ejection speed would have to be increased instead. 
We would then have to use other technologies. We 
can use nuclear energy or mass energy. 
For  one  kilogram  of  propellant,  which  substance 
allows the maximum release of energy?

Let's  compare  energy  efficiencies.  It  is  the  energy  
released compared to  mass  energy.  For  example,  one  
gram  of  antimatter  releases  more  energy  than  a  
thousand tons of chemical propellants:

Propellant Efficiency Details

Chemical 1 / 6 billions 0.00000002 % Oxygen-Hydrogen

Fission 1 / 1000 0.1 % Uranium 235

Fusion 1 / 250 0.4 % Deuterium-Tritium

Antimatter 1 100 % E=mc2

In  the  current  state  of  scientific  knowledge, 
antimatter appears to be the ideal fuel. The entire 
mass is  then converted into energy and motion of 
the rocket.

Duration  of  a  one-way  trip  for  Proxima  Centauri  for  a  
Voyager-type  probe  using  an  antimatter  reactor  (10%  
efficiency):
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Travel time to Proxima Antimatter mass required

70 000 yrs 0

35 000 yrs 230 grams50

10 000 yrs 1.4 kg

1 000 yrs 16 kg

50 yrs 333 kg

Calculations  for  a  distance  of  4  light-years.  In  fact,  
Proxima Centauri will be closest to the Sun at 3 ly in 25,000  
years. For an equivalent quantity of propellants, we gain  
10,000 years.

We see that the problem of the mass of propellants 
to carry has disappeared. We will therefore focus on 
antimatter: its nature, its collection and its storage.

 F. ANTIMATTER

⚭    ANTIMATTER

Paul  Dirac  in  1928  constructed  a  theory  to  unify 
special  relativity and  quantum physics. It was then 
that antimatter imposed itself in the equations, it was 
later discovered experimentally as early as 1932 with 
the  positron.  Theoretical  prediction  appears  as 
symmetry in the Dirac equation. In nature, to each 
elementary particle corresponds a "twin" particle, a 
particle  with  exactly  the  same  mass  but  with  an 
opposite electric charge. 

50 One gram of antimatter releases as much energy as an atomic 
bomb.
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For example, to the electron corresponds the anti-
electron  commonly  called  positron,  or  positon.  In 
1955,  the  antiproton was discovered by creating it 
with a particle accelerator. In 1995, the first atom of 
antimatter was created, the atom of anti-hydrogen. 
When  a  matter  particle  meets  its  antimatter 
counterpart, the two disappear and annihilate each 
other  in  pure  energy.  Hence  perhaps  the  name 
antimatter,  but,  to  avoid  any  confusion  related to 
this name, let us specify that antimatter is matter. 

We  can  produce  antimatter  artificially  with  a 
particle accelerator,  but it  also exists  -  although in 
much smaller quantities than matter - in nature. 
The  production  of  antimatter  in  the  laboratory 
requires a lot of  time and energy.  For  example, to 
create  antiprotons,  protons  are  accelerated  and 
when  they  collide  at  high  energy,  they  create 
proton/antiproton pairs:

p+ p → p+ p + p+ p̄

You create a proton for nothing and the productivity 
is  low.  It  is  very  interesting  and  precious  to 
understand the secrets of matter on a small  scale, 
but,  to  produce  the  propellant  for  a  rocket,  it  is 
perhaps not the most judicious51.

51 In  2020,  world  energy  production  corresponds  to  the  energy 
released by the annihilation of 3.5 tons of antimatter, however, with 
the  existing  current  means,  even  to  produce  just  one  gram  of 
antimatter would be prohibitively expensive.

294



It  would  be  simpler  to  collect  it  in  the  nature. 
Positrons are released by beta-positive radioactivity, 
by cosmic rays or even storms. Antiprotons are a fuel 
of choice because they have a mass energy much 
higher than positrons.  However, unlike positrons, anti-
protons are not directly produced in our solar system. 
The Sun, the most powerful source of energy in our 
star system, only rises in energy to the level of fusion 
and the solar wind does not contain antiprotons. 

We must, therefore, look for a source of antimatter 
outside our system. This  source exists,  it  was  disco-
vered in 1912, it is the cosmic rays. It is made up of 
particles  of  very  high energy capable of  creating 
antiprotons. The precise sources of this radiation are 
not yet known, but it is now believed that they are 
mainly located in our galaxy. This galactic radiation 
is constantly passing through the solar system, and it 
is estimated that 200,000 tons of antimatter crosses 
the heliosphere every year52.

The density of antiprotons is higher in the planetary 
magnetospheres.  For  example,  around  the  Earth, 
there is an antimatter belt with a zone a thousand 
times  denser  than  the  surrounding  cosmic  rays53. 
Cosmic  antiprotons  are  trapped,  and  moreover, 

52 A lot of data is taken from a very comprehensive article from the 
Draper Laboratory: Extraction of antiparticles concentrated in 
planetary magnetic fields, 77 pages, 2006.

53 Analysis of results from the PAMELA detector installed on a 
satellite in Earth orbit: The discovery of geomagnetically trapped 
cosmic ray antiprotons, 2011.
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others  are  directly  created  by  the  interaction  of 
cosmic  rays  with  the  upper  layer  of  the  Earth's 
atmosphere.  The  Earth's  antiproton  belt  is  located 
several  hundred kilometers  above sea level  in  the 
Van Allen radiation belt.

 G. JUPITER: THE SOLAR SYSTEM GAS PUMP

⚭    JUPITER: THE SOLAR SYSTEM GAS PUMP

The  Earth  generates  a  magnetic  field  that  traps 
charged  particles  at  altitude,  such  as  electrons 
contained  in  the  solar  wind.  Sometimes  during  a 
destabilization of  the magnetosphere,  for  example 
following a solar flare, electric particles are released 
at the poles and create beautiful polar auroras. The 
magnetosphere  acts  as  a  giant  magnetic  bottle 
that stores all kinds of charged particles. The Earth's 
magnetosphere  is  subjected  to  a  flux  of  about  4 
grams  of  antiprotons  per  year.  But  it  is  mainly  the 
large gas giant planets, and, without a doubt, the 
gigantic  magnetosphere  of  Jupiter  that  could 
contain the largest amount of antimatter with a flux 
estimated at 9 kg per year. 
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A picture of the antiproton belt around the Earth. Here,  
an antiproton moving at 70% of the speed of light. The  
Earth's  magnetic  field  curves  its  trajectory  and  traps  it  
using  three  types  of  combined  motions:  the  fastest,  a  
cyclotron rotation that makes it make small circles, then,  
an oscillation between the poles, and finally, a slower drift  
that makes it go around the Earth.

Satellites could collect and store this antimatter. The 
ships would then refuel at Jupiter before leaving for 
the stars.

 H. ANTIMATTER STORAGE
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⚭    ANTIMATTER STORAGE

We currently know how to store antiprotons for more 
than a year. The temperature is  maintained below 
one Kelvin  and the measurements  of  the charac-
teristics of the antiproton are extremely accurate54. 
Nevertheless, the quantities are very small  and the 
mass of the trap is very large compared to the mass 
of antimatter stored.

Penning  trap.  By  combining  a  magnetic  field  and  an  
electric  field,  charged particles  can be trapped in the  
laboratory.

The  ideal  would  be  to  store  antimatter  on  a 
microscopic scale. The antimatter thus trapped and 

54 BASE experiment: A parts-per-billion measurement of the 
antiproton magnetic moment, review Nature, 2017.
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confined at  the  atomic  or  molecular  scale  could 
then be stored like matter. We would have a flexible 
and versatile  use  of  this  new fuel,  both  for  space 
travel and in our daily lives. For example, a car could 
travel  around the Earth on a single tank of  a few 
milligrams of antimatter.
Let's  call  Proximium this  hypothetical  fuel  of  the 
future. A luminal fuel that would allow us to reach 
the stars and bring us into a new energy era. Could 
this  dream  come  true?  Only  experimentation  will 
allow us to make progress on this question. Let's start 
by letting our imagination consider different options.

1 - Exotic  atoms  where  an  electron  would  be 
replaced by an antiproton:

Examples  of  helium  and  carbon  atoms  where  one  or  
more e- have been substituted by a p. Antimatter density  
of  the  structures:  20%  and  14%.  The  first  compound,  
sometimes  called  antiprotonic  helium and noted  pHe+,  
was  discovered  by  serendipity at  the  Japanese  CEC 
laboratory  in  1991,  and  then  studied  at  the  CERN  
antiproton decelerator. Normally an antiproton is stopped  
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by matter and annihilates on a nucleus in a time of the  
order of a picosecond. In this experiment, where a beam  
of slow antiprotons encounters a liquid helium target, we  
naturally obtain the metastable  pHe+ state in which the  
trapped  antiproton  can  be  stored  for  several  
microseconds55.

2 - An antihydrogen atom ionized with an additional 
positron  ,  could  replace  the  nucleus  of  a 
hydrogen  atom.  Two  such  exotic  atoms  would 
constitute a Proximium molecule:

The storage density in this  case would be almost 100%.  
Experimental research can first focus on the synthesis of  
an  anti-proximium  molecule.  Experiment  easier  to  
implement for a molecule that has the same stability.

55 Article of HAYANO Spectroscopy of antiprotonic helium atoms and its  
contribution to the fundamental physical constants, Japon, 2010.
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3 - A  cage  molecule.  There  are  many  cage 
molecules in chemistry that allow the encapsulation 
of molecules. We can imagine such a molecule that 
contains an antiproton as in a microscopic Penning 
trap.  We  have,  for  example,  fullerene-type 
molecules and nanotubes:

Different carbon-based structures. In the top left corner,  
we represented the C60 fullerene. Different types of atoms  
have already been trapped in these structures. Fullerene  
can easily  be  negatively  ionized and could  thus  be a  
good antiproton  trap.  Bottom right,  the  same structure  
using  a  model  showing  the  electrostatic  spheres  of  
influence of electronic clouds. Diagonal, a nanotube with  
4 confined antiprotons.

301



And so on... We can start by measuring the life span 
of such structures, and maybe one day we will have 
the  pleasant  surprise  of  finding  a  stable  one. 
Scientific research makes it possible to test multiple 
combinations.  It's  worth the effort because even if 
we  don't  find  what  we're  looking  for,  we'll  have 
learned a lot about matter. 
Scientists  have  already  studied  different  exotic 
atoms. We have created and studied anti-hydrogen 
atoms  that  have  proven  to  be  stable.  Another 
hydrogen derivative,  positronium, which consists  of 
an  electron  and  a  positron  that  revolve  around 
each other, has a stability of 100 nanoseconds. The 
muonium, on the other hand, replaces the nucleus 
of  a  hydrogen atom by  a  muon,  the  stability  is  2 
microseconds.

Stability  can  also  depend  on  the  context.  For 
example,  a  neutron in  the  nucleus  of  an  atom  is 
stable, whereas in its free, isolated state, the neutron 
has a lifetime of only 10 minutes.

302



 I. CONCLUSION

⚭    CONCLUSION

By learning to master antimatter we could reach the 
first stars in 50 years and explore the entire galaxy in 
a  few  million  years.  This  type  of  vessel  could  be 
manned and would quickly overtake the previously 
sent  seed  ships.  Both  scenarios  deserve  to  be 
developed in parallel over the next decades. 

Elon Musk projects a colony on Mars of one million 
humans by 2050 and a progressive empowerment. 
Also planned are microprobes for Proxima propelled 
by giant lasers placed on Earth. 

Often for  interstellar  travel,  nuclear  fission or  fusion 
are proposed as a source of energy and antimatter 
is little considered. The aim of this conference is to 
show the important potential of antimatter as a key 
element for the future.
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Exercises
1. ▲△△ Figures

Find the numerical values of the conference:

• A probe goes at 61,000 km/h to a 4 ly star.
Do you find 70,000 years of travel?

• World  energy  consumption  is  estimated  at 
15,000 Mtoe  in  2020.  The  toe  (ton  of  oil 
equivalent)  is  worth  42 GJ.  Show  that  this 
energy is  equivalent to the energy released 
by the annihilation of 3.5 tons of antimatter. 

• Using the data in the table on page 34 of the 
article  Extraction  of  antiparticles  concen-
trated in  planetary  magnetic fields,  find the 
200,000 tonnes of antimatter that crosses the 
heliosphere  each  year.  For  example,  for 
Jupiter  the  flux  is  9.1 kg  of  antiprotons  for  a 
cross section of 45 RJ radius (zone of influence 
of  the  Jovian  magnetosphere  with  RJ the 
radius of Jupiter).  The effective radius of the 
Sun  is  taken  at  heliopause,  limit  of  the 
influence zone of the solar magnetic field. If 
we  now  take  the  interstellar  flux  of  cosmic 
radiation,  external  to  the  heliosphere,  eva-
luate how much the antimatter flux is by using 
the following curve.          

    Answers on page 441.
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Over significant periods of time, several thousand years,  
the  stars  can  no  longer  be  considered  fixed  to  one  
another. The three stars of the Alpha Centauri system will  
be closest to the Sun in 25,000 years at three light years.
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2. ▲△△   The distances of stars over time

In the conference the distance Sun-Proxima is set to 
4  light-years.  For  fast  journeys  the  stars  can  be 
considered fixed, but for slow journeys of more than 
10,000 years the variations in distance are no longer 
negligible.  We  have  placed  the  curve  in  the 
previous  pages.  Show  that  the  Voyager 1 and  2 
probes  could  not  reach  Proxima  Centauri.  What 
should be the minimum speed of the probes? How 
fast does a probe have to go to reach the Alpha 
Centauri system when it is closest? 

Answers p442.

3. ▲▲▲   Sling effect

We consider the flyby of  Voyager 1 at  the level of 
Jupiter.

a - With an initial  probe speed of 12.6 km/s and a 
Jovian speed of 12.8 km/s, find the speed variation 
of  Voyager 1 (heliocentric  velocities).  The  motions 
are assumed to be coplanar and the trajectory of 
Jupiter in the heliocentric reference frame circular. 
You will estimate the required angles using the curve 
on the previous page.

Help: it is not easy to visualize the asymptotes, trajectories  
at a great distance from the probe, the view is too close.  
Two  indications:  the  inner  angle  between  the  two  
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asymptotes  of  the  hyperbola  is  82°  and  the  impact  
parameter b is 13 RJ (b: distance between the barycenter  
of Jupiter and the asymptotes  RJ: radius of Jupiter).
Definition of angles :  α i=(̂ v⃗J ,−v⃗ i)  and  α f=(̂ v⃗ f , v⃗ J).

b - Evaluate  on  the  NASA  graph  the  maximum 
speed of the probe at the periastron. Does the result 
correspond to the peak on the graph page 283 ?
Estimate the speed of the probe 38 hours  after  its 
passage at the periastron. Deduce, by calculation, 
the  speed  of  the  probe  to  infinity.  Evaluate  the 
minimum  approach  distance  of  Voyager,  and 
deduce by calculation the  impact parameter b of 
the probe.
Help:  For  an  isolated  system,  in  a  Galilean  frame  of  
reference,  there  is  conservation  of  mechanical  energy  
and angular momentum.

c - Conic parameters.
Find the semi-latus rectum p, the eccentricity e and 
the deviation D.

Aids: The general solution of the Kepler problem provides  
the polar equation of a conic (hyperbola, parabola and 
ellipse):

Origin of the reference system: center of mass of Jupiter.  
Angles origin: main axis of the hyperbola. 
p : semi-latus rectum of the conic. 
e : eccentricity. L : angular momentum of the probe. 
M=MJ=1.90×1027 kg. m : mass of the probe. 
Distance Sun-Jupiter: 800×106 km. MS=2×1030 kg.
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d - We want to increase the sling effect.

• All  else being equal, for what value of αf do we 
get a maximum vf? Determine the corresponding Δv. 
If the probe then left the solar system directly, what 
would be its interstellar speed?

• The  trajectory  of  the  probe  from  the  Earth  is 
considered  to  correspond  to  an  orbit  of  the 
Hohmann transfer elliptic orbit type. 
What is the semi-major axis a of this ellipse?

We can also find again the angle of approach. How 
could  we  increase  the  interstellar  speed  of  the 
probe? We must  not  get  too close to  Jupiter.  The 
equatorial  radius  of  Jupiter  is  71,492 km  and  an 
altitude of  1,000 km places  the  probe as  close as 
possible,  in an atmosphere sufficiently  tight that its 
influence can be neglected.
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Aids: Mechanical energy for a conic:

Em=
α

2 p
(e2

−1).      Ellipse:   Em=−
α
2a

   and   p=
b2

a

• Explain  why  Mars  does  not  allow  to  have  a 
consequent  slingshot  effect  despite  its  high  orbital 
speed.

• Retrieve the characteristics of the speed profile of 
Voyager 1 by  considering the two slings  one after 
the other (Jupiter then Saturn). A spreadsheet can 
be  used  for  a  systematic  calculation  for  n slings. 
Conservation  of  the  angular  momentum  and 
mechanical energy between the slings, properties of 
the hyperbola during a sling.

• Model  the  succession  of  the  four  fronds  from 
Jupiter to Neptune. Show that it is possible to obtain, 
by  optimizing the successive effects,  an interstellar 
speed of 100,000 km/h (on the principle of Voyager 
probes  and  using  only  gravitational  assistance). 
Show that by giving, at the level of the Earth's orbit, 
a  speed  surplus  of  4.8 km/s  using  propellants,  the 
probe reaches  an  interstellar  speed of  more  than 
137,000 km/h. 

• Globally, all the planets revolve around the Sun in 
the same plane, called the ecliptic. In our model for 
the succession of the fronds, the probe leaves the 
solar system in this plane. However, most of the stars 
are out of the ecliptic. For example, at the closest, in 
25,000  years,  the  star  Proxima  will  be  located 39° 
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below the ecliptic plane56. The velocity given by the 
gravity  assist  has  a  value  but  also  a  specific 
direction.  The  direction  of  the  velocity  is  just  as 
important  as  its  magnitude:  what's  the  point  of 
going fast if it's not to the right place? Do you have 
a  proposal  to  have  a  correctly  directed  velocity 
without using huge quantities of propellants?

• The probe at the end of its 25,000-year journey flies 
over the Alpha Centauri star system. How should we 
proceed to slow down the probe in order to trap it in 
the  star  system?  Should  additional  propellant 
reserves be provided for this purpose? 

Answers p442.

  ▲▲▲▲  Numerical simulations of the slings

The simulations make it possible to recover the results 
established  in  the  previous  exercise,  which  used 
Kepler's formulas. Also, simulations give a great deal 
of  freedom  and  help  to  envisage  a  number  of 
situations. The counterpart is the necessary compu-
ting power. We will use that of a personal computer. 
This  will  be  sufficient  for  a  first  approach  and  to 
explain the basic principles.

56 Calculations in the exercise Motion of the stars on page 322. 
Current ecliptic coordinates of the stars: heasarc.gsfc.nasa.gov/cgi-
bin/Tools/convcoord/convcoord.pl. Often only equatorial 
coordinates are given, all conversions on this site.
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We will  study  the problem of  N bodies  in  gravita-
tional  interaction.  The  modeling  is  very  ambitious 
and the computation  time can be very  long:  the 
number  of  interactions  evolves  in  N  factorial  and 
from N=3 we can have chaotic regimes. Each body 
has 6 degrees of freedom, three for the position and 
three for the velocity components. We will, therefore, 
simplify with a set of reasonable hypotheses.

For  the  Voyager probes  the motions  will  be consi-
dered  in  the  same  plane:  indeed,  it  is  a  reality, 
basically  all  the  planets  orbit  in  the  plane  of  the 
ecliptic,  moreover,  it  is  shown  that  the  two-body 
motion is done in one plane.

We will  assume that the Sun is motionless. This way 
we have one less body to consider. The heliocentric 
reference  frame  is  then  Galilean.  No  need  to 
consider the center of mass of the solar system and 
the  Copernican  frame  of  reference,  because  the 
mass of the Sun is very large in front of those of the 
other bodies.

We will not consider the forces between the planets. 
Always to simplify the equations, reduce the number 
of relations, and the computation time. Only the Sun 
exerts its force on a planet. Only the probe remains 
connected to all the bodies.

Newton's  equations  of  motion  give  a  system  of 
coupled differential equations:
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d O⃗ M i

dt
= v⃗i      and     

d v⃗i

dt
=∑

j≠i

Gm j

M⃗ i M j

rij
3

For  each  body,  we have two vectorial  differential 
equations of order one. For a 2D motion, we have 
four variables per body:  xi,  yi,  vxi and  vyi.  Finally, for 
the  probe  and  the  four  gas  giants  we  have  20 
equations. It is already a lot.

The principle of digital resolution is simple, it is a step-
by-step method.  We have the  initial  conditions  at 
t=0,  positions  and  velocities  of  all  bodies.  After  a 
small  interval  of  time  Δt,  we  evaluate  the  new 
velocities and positions using differential equations. 
We thus pass, step by step, from tn to tn+1:

xi ,n+1=x i , n+vx , i , nΔ t , ... ,

 v x ,i ,n+1=vx ,i ,n+F x ,i (x j ,n , y j , n)Δ t , ... .

This is the Euler method. We will then study the much 
more precise Runge-Kutta method.

Mechanically, as in a line of dominoes that fall one 
after the other, we move causally from one stage to 
the next. At each step, we make a small local error 
that accumulates to the one of the previous step. 
We  will  take  a  step  small  enough  to  be  able  to 
properly  linearize  each segment and minimize the 
global error. Since we are not mathematicians, in this 
initiation exercise we will  be content to control,  as 
good  physicists,  the  conservation  of  mechanical 
energy and angular momentum. 

315



We  will  use  a  spreadsheet  program.  No  need  to 
download  any  special  programming  software,  a 
worksheet will be enough.
Let's start by practicing on simple models for which 
the analytical solutions are known.

1 - Revolution of the Earth around the Sun:
Let  us  take  as  initial  conditions  the  Earth  at  its 
perihelion:  rmin=147,098,074 km and vmax=30,287 m/s.
Sun mass:  MS=1.9891×1030 kg.
Gravitational constant:  G=6.6743×10-11 N.m2/kg2.

a- Kepler law's: The previous data comes from 
Wikipedia.  Determine,  from  them,  the  semi-latus 
rectum  p of the conic, the eccentricity  e,  rmax,  vmin, 
the semi-major axis a and the period T.

b- First simulation with a step h=1 day. 
Do you get a satisfactory simulation on a revolution? 
What is the percentage of error on the radius after 
one revolution? How does this percentage change 
for h/2, h/4 and h/8? 
Do  you  find  the  right  values  for  the  period  of 
revolution and the values at aphelion ? 
Even already on the first step from t=0 to t=h, do you 
notice an anomaly ? 
How to explain it?
We have calculated the values at tn+1 from those at 
tn. For example, the velocity vx, n+1 is calculated with 
vx, n, x n, and y n  . On the same principle, the position 
xn+1 is calculated with vx, n and x n. But it would also be 
quite possible to determine the positions xn+1 and y n+1 
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with the velocities at rank n+1. Indeed, it is no more 
false to take the velocity at the end of the interval 
than at the beginning. Run the simulation again for 
h=1 day with this modification for the calculation of 
the positions. Do you now find better estimates for 
the  period  and  the  aphelion?  What  is  then  the 
global error for the radius after one revolution? What 
is the value of the variation of mechanical energy 
over 365 days? Conclusion. 

2 - Runge-Kutta method of order 4 (RK4):
The global  error with the Euler method was of the 
order of h, with the midpoint method (for example, 
the modified Euler method seen previously)  accor-
ding to h2, and with RK4 in h4. Although the calcu-
lation  for  one step will  be a little  longer,  the total 
calculation  time for  the  same global  error  will  be 
immensely shorter. Rather than using only one slope, 
the one at the beginning of the interval, as for the 
Euler  method,  we  will  use  four  slopes  judiciously 
distributed and weighted over the interval.
We give the general  Runge-Kutta  scheme for  two 
degrees  of  freedom,  and  let  you  generalize.  The 
degrees  of  freedom  are  named  X  and  Y.  For 
example, in physics, for a one-body motion in one 
direction, we would have X=x and Y=vx.
X(t) and Y(t) obey the following differential   equa-
tions:

d X
dt

=A (X ,Y )      and     d Y
dt

=B(X ,Y )

With the initial conditions  X(0) and Y(0) known.
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We determine the values Xn+1 and Yn+1 from those of 
the  previous  rank  Xn and  Yn over  the  interval 
[nh, (n+1)h] with the following iterative method. For 
each  degree  of  freedom  we  have  four  slopes  to 
calculate. For example, for X, A1 corresponds to the 
slope at the beginning of the interval, A2 and A3 are 
estimates of the slope in the middle of the interval, 
and A4 is an estimate at the end of the interval:

A1=A(Xn , Y n)          B1=B(Xn ,Y n)

A2=A(Xn+
h
2

A1,Y n+
h
2

B1)

B2=B(Xn+
h
2

A1,Y n+
h
2

B1)

A3=A(Xn+
h
2

A2,Y n+
h
2

B2)

B3=B(Xn+
h
2

A2,Y n+
h
2

B2)

A4=A (Xn+h A 3,Y n+h B3)

B4=B(Xn+h A3,Y n+h B3)

Xn+1=X n+
h
6
(A1+2 A2+2 A3+A4)

Y n+1=Y n+
h
6
(B1+2 B2+2 B3+B4)

We  take  again  the  case  of  the  revolution  of  the 
Earth around the Sun with this method.
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a- Establish  the  RK4  scheme  to  solve  this 
problem: define the variables,  write the differential 
equations of order 1 while naming the functions and 
the slopes.

b- Start the numerical calculation for a step 
of  one  day  and  compare  the  precision  of  the 
method with the previous simulations. 
The RK4 method will now be the preferred method. 

3 - Voyager  1:  Establish  the  Runge-Kutta  scheme 
(here  we  have  48  slopes  to  calculate  for  each 
iteration).  Find  the  characteristics  of  the  speed 
profile,  the  approach  distances  and  check  the 
values and the conservation of mechanical energy 
and angular momentum between two slings. 
It will be necessary to adapt the step at the moment 
of  the  slings  because  the  curvature  is  then 
important.  The motion is  plane and on each step 
you  can  calculate  the  angular  variation  on  the 
osculating circle to check a good tracking of  the 
trajectory.

4 - Voyager 3  Project:  retrieve  the  speed  profile. 
Adjusting the initial conditions to perfectly chain the 
four  slings  can  be  tedious.  It  can  be  judicious  to 
proceed as in reality, with, for example, the use of a 
bit  of  propellant  for  a  trajectory  correction  at  the 
Uranus  periastron  (minimum  energy  consumption: 
powered flyby and Oberth effect).

                               Answers p458.
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5. ▲▲△   Calculation of propellant masses

The aim is to retrieve all the values given during the 
conference.

1 - You are out for some repairs outside your space 
station.  But  a  small  loss  of  attention  and  you  are 
detached from your rope drifting freely in space with 
your  adjustable  wrench  in  your  hand.  You  slowly 
move  away  from the  station.  How could  you  get 
back?
By  throwing  the  one  kilo  wrench  with  all  your 
strength,  it  can  reach  a  speed  of  36  km/h.  Your 
mass, including your suit, is 100 kg. What will be your 
speed after the throw? What quantity is conserved 
before  and  after?  Is  energy  a  quantity  that  is 
conserved?  Is  the  kinetic  energy  acquired  by  the 
key the same as yours?

2 - Resume the calculation for a rocket. In this case 
the mass varies over time and must be integrated. 
The  gas  ejection  speed  is  considered  constant. 
Show how the formula fits for antimatter.

3 - In  the  relativistic  case  of  Voyage  to  Proxima, 
calculate, for an ideal photon rocket, the antimatter 
masses for a round trip.
Duration of the outward journey: 3 years of proper 
time. Constant acceleration: 1 g.

4 - Calculate the mass of propellants required for the 
Voyager 3  Project.

Answers p473.
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6. ▲△△ Planetary alignments

For  the  slings,  the  planets  must  have  particular 
relative  positions.  We  can  use  the  alignments  as 
markers. For example, for a slingshot around Jupiter 
after a departure from Earth, we start by looking for 
the  Sun-Earth-Jupiter  alignment  dates.  The  align-
ments  searched  are  approximate.  Perfect  align-
ments are very rare or do not exist. For example, the 
global  alignment of  the Earth with  the Moon and 
the Sun happens twice a lunar month. On the other 
hand, exact alignments occur only at eclipse times.
We  consider  circular  and  coplanar  trajectories. 
Periods of revolution of gas giants:

T Jupiter≃11.86 yrs            T Saturn≃29.44 yrs

  TUranus≃84.05 yrs            T Neptune≃164.86 yrs

1 -  Show  that  two  planets  A  and  B  are  aligned 
according to the period:

T AB=
T A T B

T B−T A

where  B  is  further  from  the  Sun  than  A.  TAB is  the 
synodic period.

2 -  Determine the Jupiter-Earth synodic period and 
the  next  alignment  date  with  the  help  of 
ephemerides57.

57 Institut de Mécanique Céleste et de Calcul des Éphémérides de 
l'Obs. de Paris / CNRS : vo.imcce.fr/webservices/miriade/?forms

Form. : p:Earth, p:Jupiter / heliocenter / Ecliptic.
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3 - Set a date for the Earth-Jupiter-Saturn alignment.

4 - How often does  the  alignment  of  the  four  gas 
giants with the Earth take place? 

Answers p477.

7. ▲△△ Motion of the stars

For a quick trip to the nearby stars we can consider 
them fixed.  In  the case  of  slow travel  over  25,000 
years, we must anticipate the motion of the star to 
launch the probe in the direction it  will  be at  the 
time of arrival. The velocity of a star is divided into its 
transverse and radial  parts.  The transverse compo-
nents are known with good resolution thanks to the 
Hipparcos satellite,  and  now  with  the  even  more 
precise  Gaia satellite, which took over in 2013. The 
Gaia  spectrometer allows,  by  Doppler  method,  to 
improve the accuracy on the radial part. 

1 -  Determination of the velocity of a star:

The databases give the current distance  d0 of  the 
star, the proper motion μ, and, the radial velocity vr. 
The proper motion indicates the angular  displace-
ment per unit time. This angular change is itself split 
into  two orthogonal  components,  along longitude 
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and latitude in equatorial coordinates: μα and μδ.
α : right ascension / δ : declination

units: milliarcseconds per year

Proxima Centauri :

d0

(ly)
vr 0

(km/s)
μα 0

(mas/yr)
μδ 0

(mas/yr)
α 0 δ 0

4.244 -22.2 -3781.3 769.8 14h29m43s -62°40'46''

Determine μ, the tangential velocities vtα, vtδ, vt, and 
the velocity v of the star Proxima Centauri.
What will be the equatorial coordinates of Proxima in 
a century?

2 - ▲▲ Linear motion approximation:
We  neglect  the  Sun  gravity  and  the  galactic 
gravitational  potential58.  At  first  order,  the  velocity 
vector  of  the star can be considered as constant. 
The motion of the star is then rectilinear and uniform:

58 The Close Approach of Stars in the Solar Neighbourhood, Matthews, 
1993. Close encounters of the stellar kind, Bailer-Jones, 2014.
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   a- Determine the distance  d of  the star from the 
Sun as a function of time.

   b- Determine the  minimum approach distance dm 

and the corresponding date tm.

   c- What  are  the  coordinates  of  the  star  at  the 
closest approach distance?

Distance of stars over time:

Three stars that can be reached in less than 50,000 years  
by a probe that uses gravitational assistance.
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Radial and tangentials velocities
of Proxima Centauri

The  motion  of  a  star  is  rectilinear  and  its  speed  v  is  
constant. However, its three components, normal to each  
other,  vary  with time.  At  the perihelion time,  the radial  
velocity is  zero and the tangential  velocity is maximum: 
vt=√ vα

2
+vδ

2. At infinite times, the velocity becomes purely  
radial and the tangential components tend towards zero.
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Proper motions of Proxima Centauri

Proper motion of a star for a terrestrial observer. We have  
the annual angular variations on the celestial sphere in  
equatorial  coordinates  of  the  position  of  a  star.  These  
proper  motions  are  not  constant  and  vary  over  the  
millennia. The distant stars can be considered fixed and  
the closer they are to our Sun, the more apparent their  
motion becomes. 
One second of arc = one 3600th of a degree.
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The position of the stars in ecliptic coordinates at the  
time  when  the  spacecraft  will  have  joined  the  
distant star system. 13 stars at less than 100 000 years  
and 40 km/s.

Answers p478.
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8. ▲▲△ Can a pair of primordial black holes be 
used as a stargate?

Researchers  explain  in  a  2019  paper59 how  the 
existence  of  primordial  black  holes  beyond 
Neptune's orbit would explain, both, the anomalous 
orbits observed for transneptunian objects, and, an 
excess in gravitational microlensing events observed 
by  the  OGLE  experiment60.  The  primordial  black 
holes  (PBH)  would  have  been  created  in  the  first 
moments  of  the  Big Bang.  They could explain  the 
origin  of  gamma-ray  bursts  and  part  of  the  dark 
matter. These small black holes have not yet been 
observed, they would be the size of a fist and a few 
earth masses. 
In  this  exercise  we  assume  the  existence  of  such 
black holes beyond Neptune, and we imagine that 
they sometimes form pairs in rapid rotation around 
their barycenter.
Characteristic data for PBHs: Radius R=4.5 cm.
Mass M=5 MT. Distance from Sun D=300 au.

1 -  Show how such a pair of primordial black holes 
could help to reach dizzying speeds by gravity assist. 
Could we, from there, reach Proxima in less than 50 
years?

2 -  As we get closer to primordial black holes, the 
tidal  forces increase.  Would a manned mission be 
viable?                                                   Answers p485.

59 What if Planet 9 is a Primordial Black Hole?  J. Scholtz, J. Unwin.
60 Optical Gravitational Lensing Experiment is a Polish astronomy 

project based at the University of Warsaw.
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9. ▲▲△   Antiproton-proton collision

1 - In  a  particle  accelerator,  what  must  be  the 
minimum  speed  of  protons  incident  on  a  hydro-
genated target to create a pair p p ?
Mass of a proton: 938 MeV/c2.

2 - The same thing can happen when an antiproton 
collides with a proton. Do the antiprotons of cosmic 
rays have sufficient kinetic energies to create pairs? 
The quantity of cosmic protons is much greater than 
that of antiprotons. Could we obtain a consequent 
flux of p using energetic p?

Data  on  page  7  of  "The  discovery  of  geomagne-
tically..." and on page 13 of "Extraction of particles...":  
there  are  about  10,000  times  more  protons  than  
antiprotons in this energy range.

Answers p488.

10. ▲▲△   Helical motion

This  kinematic  and  geometric  study  will  help  us  to  
interpret  the  dynamics  of  the  antiproton  in  the  Earth's  
magnetic field.

Parametric equations of the trajectory in Cartesian 
coordinates for uniform helical motion:

{
x (t )=r cosω t
y ( t )=r sinω t
z ( t )=v zt

          r=cst>0 ω=cst v z=cst
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1 - Write the equations in cylindrical coordinates.

2 - Determine the components of the velocity v⃗ and 
the acceleration a⃗.
3 - Calculation  of  v,  a,  dv /dt  and  the  radius  of 
curvature R.
4 - Relation between R, the 
radius  r=HM of  the  helix 
and  the  pitch  p (|Δ z| for 
one complete helix turn).

5 - Calculation  of  the  arc 
length  l traveled  by  the 
particle  on  one  turn  as  a 
function of:  r and  p,  then 
of,  v and  v┴,  and  even-
tually,  of  R and  α (angle  between  v⃗ and  the 
horizontal).

Answers p489.

11.  ▲▲▲   The magnetosphere

The  field  lines  of  the  Earth's  magnetosphere  are 
similar to that of a giant bar  magnet with its south 
magnetic pole close to the geographic north pole.

1 - Show that  in  a  magnetic  field  the  speed of  a 
particle is constant.

Help:  In  relativistic  mechanics  f⃗ = d p⃗
dt

=
d mγ v⃗

dt
 and  we 

have, here, for the Lorentz force  f⃗ =q( E⃗+ v⃗∧B⃗).

For the energy aspect  f⃗⋅⃗v=
d E
dt

  with  E=T+mc2.
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2 - Give  the  trajectory  of  a  charged particle  in  a 
uniform magnetic field.

3 - Give the shape of the field lines of a  magnetic 
dipole.  Characteristics  and  components  of  the 
magnetic field of a dipole in spherical coordinates.

4 - Show  the  mirror  effect  on  the  example  of  a 
narrowing field tube.

5 - Show the drift phenomenon in the simple case of 
two areas with uniform magnetic fields of different 
intensities.

6 - Trapped antiproton: We will carry out a numerical 
simulation with the Runge-Kutta method of order 4 
(method described page 313).

a- Establish the expression of the components 
of  the  magnetic  field  of  a  dipole  in  Cartesian 
coordinates.

b- Give the equations of motion of a charged 
particle in a magnetic field.

c- Write the RK4 scheme.

d- Carry out the numerical  simulation.  On a 
spreadsheet it can be too computationally intensive. 
In this case we preferred to program in php and to 
make the calculations on server.

Answers p490.
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12. ▲▲▲   Penning trap  

This charged particle trap, designed in 1936, uses a 
quadrupole  electric  field and a uniform magnetic 
field. Penning traps are commonly used at CERN to 
store antiprotons. The electric field is created by a set 
of  electrodes  that  follow  the  hyperboloidal  equi-
potentials  of  the quadrupole.  The globally  uniform 
magnetic  field  in  the  storage  area  is  the  one 
created inside a solenoid.

1 -  Expression of the electric field:

E⃗=
U 0

r0
2 (−x i⃗− y j⃗+2 z k⃗ )

Show that  E⃗ derives  from a potential  that  we will 
determine.

2 -  Show that the origin O is an equilibrium position. 
Discuss the stability along the (Oz) axis and then in 
the plane (Oxy). Calculate the pulsation  ωz of the 
oscillations along Oz.

3 -  To  stabilize  the trajectory  of  the  antiproton we 
add a uniform magnetic field:

B⃗=B0 k⃗

a -  Is the motion along (Oz) modified?

b -  According  to  (xOy):  show  that  the 
antiproton is  trapped if  B0 is  greater than a critical 
value Bc to be determined (to do this, establish the 
differential  equation verified by  ρ=x+ j y ,  j2

=−1, 
with ωc=e B0 /m).
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c -  Solve  and  highlight  two  angular 
frequencies ωc' and ωm (magnetron frequency).
Numerical Applications: U0=9.3 V, r0=29.1 cm, B0=0.55 T,  
e=1.6×10-19C,   mp=1.67×10-27kg.

d -  Plot the trajectory.

4 -  M  icroscopic cage: Could we create a  Penning 
trap at  the  microscopic  scale?  We  are  going  to 
propose  a  model  to  try  to  give  elements  of  an 
answer. For the quadrupole electric field we can use 
cations and anions. For the magnetic field we have 
paramagnetic  atoms  which  have  a  permanent 
magnetic moment (iron is an example among many 
others). Let's take six atoms arranged in a bipyramid 
with a square base. The two atoms at the vertices 
have  a  charge  2⊝ and  an  elementary  magnetic 
moment μB. The four atoms at the base are cations 
of elemental charge ⊕. 

Data (usual order of magnitude):
Edges of the regular octahedron equal to: a=100 pm.
Elementary charge: e=1.6×10-19 C. ε0=8.85×10 -12 C2.m-2.N-1.
Elementary  magnetic  moment:  that  created  by  a  
classical  electron  orbiting  in  a  hydrogen  atom,  called  
Bohr magneton:  μB=9.27×10-24A.m2.  All  atomic magnetic  
moments are equivalent to a few elementary magnetons  
(orbital and spin moments combined).
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Representation  of  a  hypothetical  microscopic  Penning  
trap  within  a  crystal  lattice  or  molecular  structure.  The  
paramagnetic  atoms  placed  at  the  top  and  bottom  
create  a  globally  uniform  magnetic  field  around  the  
center O.  These atoms at  the apexes of  the bipyramid  
correspond  to  the  upper  and  lower  caps  of  a  
macroscopic Penning trap, and the cations at the square  
base, to the ring electrode. 
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a -  Show that this atomic structure is not a monopole, nor 
an electric dipole.

b -  Evaluate the magnetic field B0 created at the center 
of the bipyramid. You can use the expressions on page 
491.
 

c -  Estimate the factor U0 /r0
2.

You can consider the Oz axis to identify the expressions.

 

d -  Is the magnetic field sufficient to trap an antiproton? 
Conclusions. 

 Answers p507.

 X. Corrections
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Answers

2. One-way ticket for Sirius with an old β6
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