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Foreword

Special relativity, presented in the article published
by Albert Einstein in June 1905, has deeply changed
our physical concepts. The well-established theories
of the fime, Newton's old mechanics and Maxwell's
brand new theory of electromagnetism, were
fundamentally incompatible. In the first, there is an
addition law for velocities, while in the second, an
invariant speed is required: the speed of light in
vacuum. In Newton's theory, in line with the relativity
of motion infroduced by Galileo, the speed of an
object depends on the observational reference
frame, so how could the speed of light in vacuum
be a fixed fundamental constant? For inertial
frames, special relativity reconciles mechanics and
electromagnetism, at the cost of cadling info
question the absolute nature of space and time.
Space and time are now relative and form a new
absolute: the space-time. The theories of matter and
light are thus unified in their natural spatiotemporal
framework. Albert Einstein's historical approach is
based on the constancy of the speed of light in a
vacuum. The modern approach, which made it
possible to build the Standard Model, is based on
another logic: symmetries. This new approach is
deeper and breaks free from the historical bias of
the early 20th century. The structure of space-time
imposes a speed Ilimit. This maximum speed is



specific to space-time and is not linked to a material
object. This new constant is specific to the container,
the space-fime, and not to the content, for
example, light rays. This new vision is conceptually
very different and sheds light on the true nature of
physical laws. In this book, we focus on visual and
graphical methods that help develop understanding
without the systematic use of equations. This
geometrical approach will be highlighted and will
dllow the reader to make sense of the equations
that will follow. The path followed is not academic,
but pragmatic and utilitarian. From the first pages
you will master the tools that will allow you to apply
special relativity independently. We are not studying
general relativity here. We specify this because
confusion is frequent between the two theories. That
said, for those who want to understand general
relativity, you must first have understood the special.
General relativity deals with gravitation and is based
on its own principles. Small notable exception, we
will sometimes make analogies with the black hole
to help delimit the two theories.
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TIME DILATION AND
LENGTH CONTRACTION

In this chapter, we intfroduce special relativity and
we present the first geometrical tool: the triangle of
times

a0 UNiTs OF TIME AND DISTANCE

These two physical quantifies, time and distance,
are of different natures. Impossible, for example, to
say if a second is greater or less than a meter, that
makes No sense.

We can use a speed 1o link a distance to a time, but
the speed depends on the observer; this link would
therefore be perfectly arbitrary. It is always frue in
classical mechanics, but in special relativity we have
a novelty, we have an invariant speed: the
maximum speed. This fundamental constant makes
it possible to unambiguously associate a distance
with a time. This distance is called light-fime.

For example, the light-year corresponds to the
distance traveled in vacuum by light during a year.



The speed of light in vacuum is about a billion km/h,
it is named ¢ and is precisely fixed at:

C =299 792 458 m/s

It is the speed of any electromagnetic wave in
vacuum, whether it be radio, infrared, visible,
ultraviolet, X-rays or gamma rays.

We specify well, in vacuum, because in a
fransparent material, such as air, water or glass, the
speed is lower and depends on the wavelength.

A light-year, denoted l.y., is worth about 10,000 billion
km. The star closest to our Sun, Proxima Centauri, is
located about 4 ly. Our Sun is 8 light-minutes from
Earth, the Moon is one light-second, and an adult
human measures between 5 and 6 light-
nanoseconds:

11.ns. =33 cm

We can now freely compare distances and tfimes,
expressing the distances in units of light-time.



a FrAMES

Any measurement of a physical quantity is carried
out in a given frame of reference.

The quantity can be a time, a distance, a velocity,
an acceleration, a force, etc.

The reference frame, as in Newtonian mechanics, is
defined by a reference solid considered fixed.

For example, a train can be taken as a reference.
More precisely, a wagon of this train makes it
possible to locate any object. We consider, arbi-
trarily, a point of the wagon as the origin. Then, from
this point, we count how many times we have to
move, end to end, a rigid ruler of one meter in the
direction front-back, right-left and up-down to reach
this object. We get a set of three numbers that
uniquely defines the position of the object. If the
object is fixed this will be sufficient, but if it moves, it
will also be necessary to define a date. We then
have a set of four numbers called event:

E vy .z 1.

For the date, we must proceed more precisely than
in classical mechanics. Time is no longer absolute,
and instead of a single clock we must have a set of
synchronized clocks over the whole space.

Depending on the case, we can use the ferrestrial
reference frame, the heliocentric reference frame,
the galactic reference frame, etc.



These frames of reference are in motion with respect
to each other and for the same event we will have
different sets of coordinates.

a EINSTEIN'S POSTULATES

Albert Einstein postulates in his article of June 1905'
that the laws of physics are the same in all inertial
frames of reference (1st postulate), and that in these
same frames the speed of light in vacuum is
invariant (2nd postulate) .

In Newtonian mechanics, for the statement of
Newton's three laws, we did not speak of inertial
frames but of Galilean frames, which amounts to the
same thing. For example, in classical mechanics, in
a frame rotating with respect to a Galilean frame,
Newtfon's second law is no longer verified and new
forces, called inertial, appear. A rotating frame with
respect to an inertial frame is therefore not inertial.

How to define an inertial frame? A frame is inertial if
the postulates are verified. The simplest is to have a
inerfial frame of reference, then all the frames in
uniform rectilinear translation with respect to this first
frame of reference are also of inertia.

1 “On the Electrodynamics of Moving Bodies”, June 30 1905, English
Translation.



The farther away we aim at an object, such as a
distant star, the more its motion can be neglected.
For example, extremely massive and very distant
quasars, several billion light-years away, are taken as
fixed points and make it possible to define the
cosmological reference frame. Fossil radiation,
emitted 380,000 years after the Big Bang, 13.8 billion
years ago, is homogeneous and isofropic in this
frame of reference.

To come back to our train, if it runs in a straight line
and at constant velocity in the terrestrial frame of
reference, the reference frame of the train can be
considered as inerfial for an experiment of a few
minutes. This duration is small compared to that of
the rotation of the Earth on itself. This is a good
approximation, and the fterrestrial frame can be
considered here as inertial. The more precise the
measurements, the shorter the durafion of the
experiment for the approximation to remain valid.

For a satellite, the terrestrial frame of reference is no
longer inerfial. A low-Earth-orbiting satellite goes
around in 1 hour 30 minutes, a not insignificant time
compared to the Earth's rotation which lasts about
24 hours. We then consider the geocentric frame of
reference, with the origin at the center of the Earth,
and in which the Earth is in rotation around its own
axis relative to distant stars assumed to be fixed.

In an inertial frame of reference,
an object keep moving in a
straight line at a constant speed
when no forces act upon it.

5
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Cosmological Frame of Reference

Galactocentric Frame

Galactic Frame

Copernic Frame

Heliocentric Frame

Geocentric Frame

Terrestrial
Center Frame
of Three
the Solid: distant
Earth thC EaI‘th Stars

Center of the Sun. Three fixed stars.
Center of Mass of the Solar System. Three fixed stars.
Solid: the Milky Way

Catalog of distant Quasars.

Center of Mass of the Milky Way. Three fixed galaxies.

with respect to the Fossil Radiation Directions:

Unable to position and date an event without landmarks.
If you hide a treasure you will indicate its position relative
to a point of origin: for example, "from the hundred-year-
old oak tree, 22 steps west, 47 steps south and dig at
three feet." If | say that | was born in 1992, it is in reference
to an origin dafe, placed arbitrarily as a common
reference point.

A reference frame is associated with a solid to which a
chronology is added. A minimum of four fixed objects
relative to each other is required. For chronology, in
special relativity a single clock is no longer sufficient: one
can imagine a solid made up of rigid bars of unit length,
all placed perpendicular fo each other in order to form a
three-dimensional network, and at each node of this
network we place a clock; all the clocks are synchro-
nized, and the whole forms what is called a crystal of
clocks.



The largest object in the Universe is the Universe itself. Let's
use it as a reference solid. In cosmology, the Universe can
be seen as a fluid of galaxies which extends everywhere:
any point of the Universe can be considered as the
center. But, two remarks: first of all the Universe cannot be
observed as a whole, because the further one looks far,
the more one goes back in time. The oldest visible object
is fossil radiation emitted 13.4 billion years ago when the
Universe became transparent. Secondly, if we fake a
point where this fossil radiation is uniform, everything leads
us to think that this point is motionless in the Universe.
Image opposite, the data
collected by the COBE
safellite on the cosmic
diffuse background.

On the first image we
visualize the anisofropy due
to the displacement of the
Earth in relation fo the
cosmological  frame  of
reference, this is due fo the
Doppler effect and we thus
evaluate a speed of 350
km/s.

In the second image, we
have stray light from our own
galaxy.

Finally, at the very bottom,
we get an image of the
Universe at its beginnings: it is
homogeneous in the cosmo-
logical frame of reference
and we can use quasars for
the directions.




Thus the frames of reference nest one in the other:
for the Voyager probe we consider the Copernic
frame of reference, which has for origin the center of
mass of the solar system and the directions of distant
stars. For an interstellar journey to Proxima Centauri
we will consider the galactic frame of reference.
Indeed, over a journey of a few years or decades,
the Milky Way and its stars can be assumed fo be
fixed; for example, our galaxy turns on itself in some
250 million years, much longer than our journey to
the stars®.

@ THE TRIANGLE OF TIMES

There is not an absolute, unique and universal time.
Times are multiple and relative. Each observer, or
object, lives his own time. Times are plural, each time
follows its course, and, when we compare them, we
see that they evolve at different rates. These rhythms
will be all the more different the greater the relative
velocity between two inertial frames of reference.
For each inertial frame we can define a unique time
for a set of objects which are motionless with respect
to each other.

Let us name R such an inertial frame of reference.

Consider a fixed point M(x;, y;, z1) in R. At this point,

2 Continuation of the reflection on inertial frames of reference in the
conclusion of the course on four-vectors.

8



two events occur af the date t; and 13
E:0GLvh,zi, 1) and  Ex(=Xq, Yo=Yy, 22=25, 12).

For example, a lamp that turns on and off. Second
example, in the case of an interstellar journey, let us
take for R the reference frame of a rocket, t
corresponds to the date of departure from the solar
system, and t, indicates the date of arrival near
Proxima Centauri. Dates measured on a clock fixed
relative to the rocket.

The duration between the two eventsis At =1, - 1.

If we now measure the four coordinates of these two
events from a second inerfial frame R', in uniform
rectilinear translational motion at the velocity v with
respect to R, we measure a second duration At' = 1
-ty

From the point of view of R', the events E; and E,
have space-time coordinates (x4, y'y, 1, t) and X'z,
Y2, Zb, t2), and now occur at two distinct points
M'(X'y, v, Z') and M'a (X2, V', Z'9). The first duration At
is called proper time, because the events are at rest
in R; the second duration At' is called relafive time,
because the events are moving with respect to R
The reference frame R' wil have traveled, with
respect to R, the distance Ax' = x', - X, during At'
(case where the x-axes are oriented along v).

We then have the triangle of fimes which allows us
to answer many of our questions:



At

AX'/C

We use fthis triangle as a starfing point to build
special relativity. Later we can demonstrate its
validity using Einstein's postulates or symmetries.

Each side of the triangle corresponds to a distinct
time:

Elapsed
fime
in R
from

E,t0E,

Time taken by the light
to go from M'; fTo M5 in R

We can memoirize it in the following form:

w| @

The 2| £

Triangle ol 5

a2 a

of =l ©

[ D Q
T/mes UNITS OF LIGHT-TIME |_

distance traveled
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The friangle of times is easy to remember and apply.
Take the case of an interstellar journey Sun - Proxima
Centauri and use a card game to solve the
problem.

The base of the right triangle is the distance in light-
years. We place one card per light-year, so, here
horizontally, four cards. Then we vertically place the
numiber of cards that correspond to the travel time
for the astronauts, one card per year.

We decide to complete the trip in three years,
measured with a clock at rest in the frame of
reference of the vessel.

How long will the journey measured from the
galactic frame of reference last? It's simple we
count the number of cards needed for the
hypotenuse:

Relative time is 5 years and proper time 3 years. The
triangle of times allows you to directly visualize the
time dilation: y=At"'/ At.

Here, the gamma factor is 5/3. The speed of the

11



vessel is in R v=Ax'/At'. Here, the speed is 4/5 of
the limit speed so 80% of ¢. As the hypotenuse is the
longest side, fime can only expand, and the speed
of light in vacuum cannot be exceeded.

The first two exercises on page 25 adllow you to
familiarize yourself with these concepfs.

@ LENGTH CONTRACTION

We previously envisioned a ftrip from the Sun to
Proxima that lasts 3 years for astronauts. We could
ask ourselves: «The ship takes three years while light
takes four years, so we go faster than light!?»
Question that comes up regularly among students
at the time of the introduction to special relativity.

This is of course not the case. Rather, it should be
reformulated as follows: if a terrestrial observer sends
a light pulse with a laser, he will have to wait for his
clock to indicate four years elapsed before the ray
reaches Proxima Centauri; while an observer
tfraveling at 80% ¢ will have to wait for his clock to
indicate three years elapsed before joining Proxima.
And the terrestrial observer will observe well the
vessel arriving after the ray, just as the astronaut
leaving at the same time as the ray will never
exceed it. To be logical, all reasoning must be
carried out in a fixed frame of reference. If we
change the frame of reference, we change our

12



point of view, and we have to rethink the situation.
First of all, to measure a velocity in a given frame of
reference, it is necessary to divide a distance by a
time, faking care fthat the two quantities are
measured in this same frame of reference.

In the question asked by the student., he divides a
distance measured in the gadlactic frame of
reference by a time measured in the frame of
reference of the vessel. It does not make sense®, the
quantity obtfained does not cormrespeond to the
speed of an object.

The answer. to this apparent paradox, is that the Sun
-Proxima distance measured frem the frame of the
vessel is not 4 ly, the length is contracted and is less
than 3 ly.

The length contfraction factor is equal to the fime
dilation factor.

Do we have the equivalent of the triangle of times?
Not really, because, if we are frying to consfruct a
friangle of lengths, one of the sides does nof
correspond to a physical quantity, directly measu-
rable. On the other hand, we can add @

fourth fime in the triangle of times
which corresponds to the .
fime taken by the O
, @ <
light measured Y 5,
. . P
in the reference 23 5
frame R:

Light-time in R

3 The discussion will be prolonged and deepened when studying four-
vectors and four-velocity.

13
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All the triangles are in the same proportions, and the
light-fime measured in R is the shortest.

The Sun-Proxima distance measured from the vessel
is2.41y.

QD  SPATIOTEMPORAL PERSPECTIVE EFFECT

Suppose the astronaut's heart beats at 60 beats per
minute. If the time dilation is two, from the point of
view of observers on Earth, his heart beats more
slowly, once every two seconds. And if for another
observer the gamma is equal to three, there will be
a beat every three seconds according to the latter.
But it goes without saying that for the astronaut, from
his point of view, his heart beats quite normally, once
a second. Its frame of reference is inertial as for the
other two observers.

Also, by the relativity of the motion, the astronaut
who observes the inhabitants of the Earth will have
the impression of a symnmetrical slowing down.

It should be noted that this slowing down of the
clocks is the same whether one moves away or that
one approaches. This phenomenon is different in
nature from the Doppler effect, where, when a
source approaches, the received signal is of higher
frequency, and when the source moves away, it is
lower.

A classic confusion consists in confusing what we
see with what is. When you look at a star, you see

14



the light that it emitted many years ago, possibly not
there anymore, or even not existing. Yet sponta-
neously when we look at the starry sky we feel
united to the cosmos, here and now. This illusion
stems from our daily habits in a world where
maximum speed is very high compared to our
routine motions. We can assume the instantaneous
propagation of light, we see what is. If the speed
limit were 10 km/h, we would be used to these
differences. Often we imagine ourselves watching,
with the naked eye or with a terrestrial telescope,
the astronaut in his vessel moving away and
performing his maotions in slow maotion, but this
thought experiment is false, it is not about that.,

We do not «see», we measure with the crystal of
clocks. The first fime you apprehend it, the approach
may seem somewhat conceptual, but with practice
it becomes natural, and you stop saying that you
see the clocks slowing down. It is necessary to have
in mind the two reference frames of inertia such as
meshes, one immobile, and the other in motion, and
imagine the fwo successive events and the dates
recorded locally by each of the synchronized clock
crystals.

However, we can make analogies with spatial
perspective effects. When you look at someone in
the distance, he is very small, you can look at him
fromm head to toe between two fingers. He can do
the same, it's symmetrical. There is a contraction of
the lengths, and nobody imagines the phenomenon

15



as real, the other is not small like a smurf.

The contraction takes place in all directions.

Another perspective effect that produces a
contraction of the lengths: the rotation. When | show
you a book from the front, then | turn it 90° on a
vertical axis, you only see its edge, and the cover
has reduced in size to zero during the rofation. The
apparent contraction occurred horizontally only.

In special relativity, the two observers are in motion
with respect to each other, and it is this motion that
simultaneously creates the contraction of lengths
and the dilation of time. The lengths are only
contfracted in the direction of the relative velocity.
We recall that, unlike previous analogies, it is not
what we see but what we measure.

Contrary to what we sometimes hear, it is not a
spatiotemporal rotation. We will see the transfor-
mation to be performed between the coordinates
X, v.z, D of Rand (X, vy, z., t) of R"in the chapter
Changing reference frame, this is not a rotation.

16



@ TWIN EXPERIMENT

This is a thought experiment proposed by Paul
Langevin in 1911. We hope that one day we will
have a space-time ship to make it happen!
Although not performed with real twins, it has, for the
moment, been performed with atomic clocks. We
sometimes talk about the twin paradox, but it is a
reality, not a paradox; this misleading name comes
froom misunderstandings. Langevin, the main
defender of relativity in France at the beginning of
the 20th century, did not speak, at the Bologna
Philosophy Congress in 1911, of paradox, or of twins...
but of a Jules Verne-style voyage by cannonball! It is
the mathematiciaon and physicist Hermann Weyl
who speaks of twins in 1918. It is the philosopher
Henri Bergson who devotes an enfire book,
published in 1922, on special relativity, which speaks
of paradox and gives an erroneous interpretation of
the experience.

Now let's explain this experiment. We take two twins
as they celebrate their 20th birthday on Earth. Right
after the birthday, they leave each other, one stays
on Earth and the other leaves for Proxima at 80% c.
According to the friangle of times, we have 5 years
elapsed for the twin who remained on Earth and 3
years for the one who travels to Proxima. Then the
fraveling twin returns to Earth, which doubles the
times. The twin on Earth is now 30 years old and the

17



one who has made the round trip 26 years. Our twins
are no longer the same age.

The image is striking because the two twins can
directly compare their two clocks with a difference
of four years. It is less abstract than a measurement
via a crystal of clocks. The postulates of special
relativity consider inertial frames of reference. We
can at some point have the clocks of two different
frames coinciding, but then they just move away
from each other at constant speed. Thus, the twin
experiment cannot be understood on the basis of
Einstein's first two postulates alone.

We see a cumulative effect of time dilation on the
round ftrip, why not also a cumulative effect of
contractions: a younger and flattened astronaut...!?
Time and space do not have equivalent natures: a
left-right motion can be compensated by a right-left
motion, for time it is impossible, there is the principle
of causality and one can only go from the past to
the future, one can only move forward in time and
the proper times are added.

Before concluding on the twins' experiment one last
point. Doesn't it seem absurd to you that the traveler
leaves just like that at 800 milion km/h, implied
instantaneously? It is of course impossible, a physicist
is only inferested in physically acceptable situations,
it would require infinite energy and the force due to
the accelerafion exerted would also be infinite. In
short, even if the acceleration phase lasted a few
seconds, it is not conceivable that such a powerful
reactor could exist, and the occupants would simply

18



be crushed... The spaceship actually sees its speed
increase continuously, which can be modeled by a
succession of inerfial reference frames of increasing
velocities.

A new postulate completes special relativity, it is the
clock hypothesis which has been verified experi-
mentally:
Two clocks of the same instantaneous speed v, one
being accelerated and the other not, undergo the
same time dilation factor .
The clock measures the proper time and we add the
times of the traveler over the whole of his space-
time round trip:

dt’

r=fdr= 3

The proper time is the fime measured by a clock at
rest in relation to the phenomenon to be studied.
We had called it At, but often to emphasize its
peculiarity we use the Greek letter £. On the other
hand, measuring a relafive time requires two
different clocks previously synchronized.

It is thus possible, without ambiguity, to calculate the
actual fime taken by the traveler for the round trip.
Calculation made from the galactic inertial frame
R'. Note that if we do the calculation fromn another
inertial frame of reference R" we would find the
same proper durafion T.

19



On the other hand, a direct calculation is impossible
from the reference frame of the vessel because this
one is not of inertia®.

Joseph Hafele and Richard Keating, in 1971, experi-
mentally verify the «clock hypothesis», the third posfulafte
of special relativity. With few resources and a lot of
perseverance, they went around the world twice, one fo
the east and the other to the west. They were in
commercial planes with atfomic clocks and many
passengers. On the way back, they compare with a
clock that has remained on the ground’.

Photo: Time Magazine, October 18, 1971.

Training: exercises 3, 4 & 5 on page 26.

4 The calculation can be done from the point of view of the
accelerated reference frame using the non-Minkonskian metric
given on page 143.

5 L'expérience cruciale de Hafele et Keating by Pierre Spagnou, pdf,
27 pages, March 2018.
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a Use OF EQUATIONS

The friangle of times, page 10, gives by application
of the Pythagorean theorem :

2 r T

besides yzAA—tt and vzm,

Ax'

(At')=(At )+

2

1
oand y=—F—

then (yAt)=(At)+ -
1_

ZyAt
c

v
c

we also note beta : B:% which expresses the speed

with respect to ¢,

So, we have the following relation for gamma:

1
1-p°

y:

Knowing this expression of the gamma factor by
heart makes it possible to do without the tfriangle of
times.

Training: exercises 6 to 9 on page 28.

21



o Transformation of volumes and angles

e Volumes : Only the lengths along the direction of
the relative velocity between the two frames of
reference are contracted. Let us take the case of a
rectangular parallelepiped along the axes (Oxyz) at
rest in R, then if v=vi: Ax'=Ax/y, Ay'=Ay and
Az'=Az,

from where : V’z% )

True relationship whatever the shape of the object.
Indeed, any object can be decomposed info
infinitesimal parallelepipedal volumes each con-
fracted by the same factor y, the integral, sum of
infinitesimails, is therefore also.

A cube in R flattens in R' while keeping the same
section perpendicular to v. A sphere in R flattens in
the direction of vin R,

nE Bl

The distance measurement protocol ensures that
each position of the object is measured at the same
fime f'in R..

This is of course only a perspective effect, nothing
physical here, if for example the cube is a box which
contains a gas, this one is not compressed and no
risk that this one liquefies!

Concerning what is seen by an observer, there is a
new deformation due to the propagation of light

22



rays to the point of observation. The distance from a
point of the object to the observation point varies
and the object photographed on a sensor consists
of light points which correspond to different instants
t' at the level of the object, the measurements are
not then simultaneous in R". This more subtle aspect is
discussed in the chapter The Appearance of Things.

e Angles : Consider a right triangle. A side of length
Ax along v, and a second perpendicular along y
and of length Ay. We measure the angle 6 between
the side of length Ax and the hypotenuse. The
friangle is at rest in R and tanO=Ay/Ax. In R:
tan0'=Ay'/Ax'.Ax'=Ax/y and Ay'=Ay then:

Ay tan0O'=ytan0
H\ AX |—

When you see a star in the sky, you measure ifs
position using angles. These angles are modified by
the motion of the Earth in its orbit in the galactic
frame of reference. The apparent angle 6, under
which we see a star is not simply the angle 6
because we must also fake into account the
propagation of light rays to our telescope. The color
of a star is also modified, see the chapter The
Appearance of Things for more details.
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Exercises

Methods of resolution:

v (card game)
N (ruler, triangle, profractor and compasses)
N (equations)

Difficulty : AAA (simple) / AAA /| AAA (complex)

Data :

Speed of light (vacuum) =~ 300 000 km/s
Distance Sun-Proxima = 4 light-years
Distance Sun-Barnard =~ 6 light-years
Distance Sun-Sirius = 9 light-years
Radius of the Earth =~ 6 400 km

1.9 AAA The Crystals of the Pop exomoon

In the galactic year 2110, you undertake the Sun-
Barnard voyage to study the crystals of the Pop
exomoon. Affer eight years in your rocket, you land
on Pop. In what galactic year are we then, and
what was the speed of your rocket?

Answers page 337.
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2.9 AN/ One-way ticket for Sirius

It is decided, in 2154, for your 30 years, you will leave
for Sirius with the antique ship B6é6 of your friend Zu.
Too eager to change air and make a new start. The
ship is not very fast, but spacious and comfortable.
At what age will you arrive, and will you be able to
attend the festival of the two suns of 2168, or will you
have to wait for the one of 21787

Dream Series p6: model 2110-2124 / Speed 60% of c.
Answers page 337.

3.9 AAA Parcel delivery

Your job? The delivery of parcels throughout the
galaxy. And you are the first on the market because
you have the fastest SpaceTruck!
"... fo frade between the Sun and Proxima, | only
need 4 years of travel time for the round ftrip. And a
profit of 5 million Blings, imagine how much money |
make "
How long does it take to deliver, what is the speed of
the ship and the fime dilation?

Answers p338.

4.9 AA/ Twin on his way to Sirius

Twins are 20 years old in 2132, the most intrepid
leaves for Sirius and returns in 2156.
How old are the twins then?
What was the speed of the rocket?
Answers page 338.
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5.\ AAA Cruel dilemma?

We are in 3021. Denys lives in the galactic center. He
has just received terrible news: during his stay in the
spiral arm of Perseus, he caught a virus, he will die in
exactly 32 years, and there is no cure ...
In addition to that, he has just received a very
precise mission order: to defuse a gamma ray bomb
located at 26 ly before it destroys the whole galaxy,
explosion planned in 3052.
And most important of all, to be there, at the center
of the galaxy, for the great secular galactic
celebration of 3082!
Denys has a ship with a gamma equal 1o two.
What can you offer Denys?

Answers p339.

Vv The use of equations is the most complete and
general method. Nevertheless, we believe that its
systematic use, from the very beginning of learning,
makes it difficult to understand phenomena
infuitively. Moreover, the mathematical language to
be mastered unnecessarily blocks many people who
are passionate about physics.

The equations are very practical in the two cases
where the triangle of times is very stretched: for slow
motions where the speed is very low in front of that
of light, or, on the contrary, for fast motions where
the speed is very close to the maximum speed
(ultra-relativistic cases).
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6./ AA/A Muons

Cosmic rays are made up of high-energy particles.
Many of those that hit the Earth's atmosphere are
protons. They come from the Sun, our galaxy and
beyond. Fortunately for life on Earth, many of these
particles are destroyed in the upper atmosphere
and create showers of other, less energetic parficles.
We are interested here in the case of muons created
in this way. When you are by the sea, an average of
170 muons reach the ground per square meter per
second. Every second that you take to read the
statement of this exercise dozens of muons pass
through you.

Muons have a half-life t,,, of 1.5 microseconds. This
means that if you take a large number of muons at
rest, only half of them will remain after 1.5 us, and
since they do not age, only a quarter will remain
affter 3 us, and so on.

Let's take the example of a muon created at an
alfitude of 10km and which moves vertically
towards the ground with a speed of 99.9% c.

What do you think about the probability of this muon
reaching the ground (sea level)?

Answers page 340.
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7.4 AAA High-speed train journey

In 2012, the longest high-speed train line is in China
and connects Beijing to Guangzhou. Its length is
2300 km and the journey time is eight hours.

You have two atomic clocks. You synchronize them,
then, you leave one of them at the station in Beijing,
and, the other one accompanies you for your round
trip Beijing-Guangzhou.

On the return trip, what will be the time difference
between the two clocks?

o Accuracy of on-board atomic clocks: 10 s/s.

o The trip is considered af constant speed, which will give
a good approximation.

o A necessary mathematical tool here, a series expan-
sions: if epsilon is very small compared fo one, e K1, then

(1+e)*~1+0ae. Here 1/\/1—7ﬁ2:(1_[32)—1’211+%[32'

Answers page 341.

8.V AAA Satellite

Let's consider a low alfitude satellite, such as, the
International Space Station. The satellite is placed at
an altitude of 500 km and travels at 27,000 km/h in
the geocentric reference frame. This frame of
reference is considered to be inertial in this exercise.

One clock is placed in the International Space
Station and a second is kept motionless in the
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geocentric frame of reference. Synchronization and
fime comparison protocols are perfectly respected.
What is the time difference after a revolution?

o The satellite's frame of reference is not inertial and we
apply the clock hypothesis.

o Unlike Hafele and Keating's experience, the clocks
remain at a constant alfitude, so we don't have to take
info account the effects of gravity.

Answers page 342,

9.V AAAA Hdfele-Keating experiment

Here we will try to find the results of Hafele and
Keating established in 1971.

For a round-the-world trip to the east, they found
that the onboard clock aged less than about 60 ns
compared to the clock on the ground, on the other
hand, for a round-the-world trip to the west, the
onboard clock aged more by about 300 ns.

We simplify the problem, only one plane is enough
to go around the world. The flight is equatorial at an
altitude of 10 km. The plane has a speed of 1000
km/h from the ground. At the equator, the ground is
moving at 1674 km/h relative to the geocentric
reference frame, here considered Galilean. The
takeoff and landing phases are considered fast
enough to be neglected.
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Concerning gravitation, time slows down when
gravitation increases:

h

1+g—2
c

At ' is the fime spent in alfitude, At on the ground.

(general relativity in the weak-field limit)

At'= At, h:altitude, g=9.81 m/s’

You can imagine three clocks, the first stationary in
the geocentric reference frame, the second at rest
in the plane and the third on the ground.

Are your results in agreement with those of the
experiment carried out in 19717

Answers page 342,
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SPACETIME DIAGRAM

After the triangle of times, we present here a second
geometrical fool, a diagram, which broadens our
vision of space-time, gives a synthetic representation
of situations and makes it possible to answer a very
large set of questions.

a WORLDLINES

The triangle of times is enough to study the motion of
a single moving object with constant velocity. When
the velocity of the object varies, or we have several
moving objects, we prefer space-time diagrams. For
example, for the twin experiment, the fraveling fwin's
direction of velocity changes between the outward
and return journey.

The world-line of an object contains all of its physical
information: all of its positions through time, and
therefore the evolution of its velocity, acceleration
and force exerted on the particle.

A worldline represents the set of events experienced
by an object.
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a MiNKOWsKI DIAGRAM

The spacetime diagram is offen called a Minkowski
diagram in the context of special relativity. In the
case of a rectilinear motion, a spatial axis is sufficient
and the diagram will be represented in a plane. The
horizontal axis represents the x-coordinate of the
object and the vertical axis the tfime t. Each point in
the diagram corresponds to an event. Point O
corresponds to the origin event — both temporal
and spatial.

L R

Let's start by considering the motion of a photon
which "passes” by O and which goes to the right. The
successive events ‘experienced" by the photon
create its worldline. We graduate the axes in natural
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space-time units and we choose the year as the unit
of time.

A year ago the photon was located one light-year
to the left, it is now here, it will be one light-year to
the right in a year, etc.

In addition, we consider a second photon, which
also passes through the origin, but which moves in
the other direction, from right to left. The two photon
worldlines are shown in dotted lines and are often
present to aid the reading of Minkowski diagrams.
In the case of an immobile particle in the
observational frame of reference, the worldline is a
vertical line oriented upwards.

On the following diagram we have the world line of
an object at rest in the observational frame of
reference and located one light year to the right of
the origin of the frame.
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\Ze

We now consider the general case of a particle
which passes through O and moves to the right with
a constant velocity v. As a particle cannot go faster
than light, the worldline is represented by a straight
line of inclination intermediate between the vertical
line (time axis) and the dofted line of the corres-
ponding light ray.

On this example,

the object moves at
50% of c, it travels
one light-year in two
years.
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We now know that there is dilafion, the time for a
moving object is not the same as for an object at
rest. We take the example of a trip at 80% c. With
the triangle of times we obtain the proper time ©
which we add on the worldline of the moving
object. The dilation of time appears clearly.
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For the twin experiment we visualize the two world-
lines of each on the same diagram:

DS

The worldlines are represented in the frame of refe-
rence of the twin who remained on Earth, more
precisely the galactic frame of reference which is an
excellent inertial frame of reference. We cannot
directly reason from the reference frame of the
tfraveler, the latter is not inertial because his velocity
varies.
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a Use OF EQUATIONS

Equation of worldlines

These straight line equations are used to determine
dates and positions, appointments and reception of
spatial messages.

Ship passing through O and heading to the right at

speed v:

with B=%

o x

|~

X
v:? then t=

Ship passing through A and heading left at speed V"

S € R
C C

B’
Photon passing through O and heading to the right:

X
t==
C

Photon which passes At

by B and goes to the \
left: B

t=—"+t,

Vose
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Angles

The more the speed increases, the more the world-
line of the spaceship, initially vertical, inclines at an
angle 6 which tends towards 45° when the speed
approaches the maximum speed c.

tan6=$=[3

|1 O] 01 02505 06|08 |09 094 1
0° | 6° 14° | 27° | 31° | 39° | 42° |43.3° 45°

y| 1[1005|1.03]1.15]1.25 167 23 3 | 4o
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Scale factor

On the worldline of the ship, the proper time axis,
fime passes more slowly and the graduations are
more spaced.

oJ=1
t
M ' _ B
P I/_;  or=\1+p*0s
v OJ'=yOL
PRL L
=17 ; 0J '=yV1+p’0J
' , 2
i > X ﬂ: 1+—BZ: yz—l
0 B ¢ OJ V1-8

v%ofc| 50 | 60 | 75 | 80 | 87 | 95 | 99 | 995

Y 1.15 | 1.25 | 1.51 | 5/3 321 7 10
OJ(=1) | 1 1 1 1
OF(=1)/ 129|146 | 1.89 | 2.13 | 2.6 | 44 | 10 | 14

\S]

—_
—
—_
—
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Exercises

—+ : resolution by Minkowski diagrams.

1.4+ AAA Draw the Minkowski diagrams of

chapter 1 exercises 1 to 5.
Answers p344.

2.4+ AAA Interstellar communications

In the Twins Experiment page 17, when the fraveling
twin lands on the planet Proxima b, it takes a photo
and sends it to Earth as an electromagnetic wave.
When will the twin on Earth receive the photo?
Throughout the journey, the twin on Earth follows his
brother's journey using a very powerful felescope.
When will he see his brother land on the planet in his
telescope?

If the twin on Earth looks through his telescope the
moment his brother lands on Proxima b, 5 years after
his departure, what does he see?

To send a birthday message to his brother when he
londs on the exoplanet, when should he send it?
Make a Minkowski diagram that represents the
worldlines of the twins and those of the photons that
fransmit the photo, the telescope images and the
message.

Answers p347.
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3V AAN Call for help

A cruise ship with more than 10,000 people on board
undertakes the Proxima - Earth crossing at the speed
of 60% of light.

Halfway through the journey, the ship calls for help.
An emergency rescue shuttle leaves Earth at 90% ¢
as soon as the electromagnetic distress message is
received.

How long will the passengers have to wait before the
arrival of the help ?

Answers p349.
4. ANN Tim, Tam, Tom

We are in a slow universe where the maximum
speed inherent to space-time is 20 km/h.

Tom, Tim and Tam are in the living room, the clock
indicates 10 o'clock. They decide to meet there at
11 o'clock. Tom stays there. Tim leaves to run at 10
km/h. Tam goes to work at his office 10 light-minutes
away with a bicycle that tfravels at 15 km/h

Tim has to be back by what time indicated on his
watch?

How much work time will Tam have at his office?
What time will his watch show when he returns?

Answers p350.
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CHANGING REFERENCE FRAME

We will consider a second inertial reference frame.
The first observational reference frame was the
reference frame R of axes (x, y, z, 1), a frame often
associated with the galactic frame of reference in
the context of interstellar journeys.

The second frame of reference R'is in motion with
respect to R, moved at a constant velocity. We say
that R is in uniform rectilinear translational motion
with respect to R. For R' the origin is denoted O' and
the axes (x, y, z', 1 ).

R'is then also a reference frame of inertia, where the
principles of special relativity apply. This frame of
reference R' will often be associated with the
spaceship.

GD  SPACETIME DIAGRAM

We will build step by step the
axes of R' in the Minkowski
diagram of R. The proper fime
T on board the space-time
vessel corresponds to the time
t. The axis O't'is thus identified

with the ship's worldline. 70
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The speed limit is the same in R and R'. This invariant
shows that the axis Ox' is necessarily symmetrical
with respect to the worldline of a light flash that
moves to the right and passes through O. We thus
have the reference frame R'seen from the reference
frame R :

Let's show on an example how the coordinates are
read. From Earth, we record, 3 years after the depar-
fure of the spacecraft, a huge stellar eruption
produced by the star Proxima Centauri located 4
light-years away. The spacecraft is moving at 60% of
c. In the reference frame of the spaceship where
and when does the eruption occur?

In the galactic frame of reference R the event E has
coordinates (x=4, t=3).

In the vessel frame of reference R' we read on the
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Minkowski diagram that the event E has coordinates
x'=2.75, 1t'=0.75). The occupants of the ship will
determine that the eruption occurred 9 months after
their departure at a distance of 2.75 light-years.

At

Nevertheless, the astronauts will see the flare in their
telescope well after 9 months. Indeed, following the
eruption, it is also necessary to allow time for the
light o propagate to the telescope and to the eye
of the observers. To complete this we have drawn in
gray the worldline of a light beam emitted by the
flare. It will first be observed in the spaceship after
about 3 and a half years of fravel, and it will then be
observed on Earth 7 years after departure.

In Minkowski's diagrams, the coordinates indicated
for an event are taken from local recordings made
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using the reference solid and the associated clock
crystal. Propagation times are not included.

All inertial frames of reference are equivalent in spe-
cial relativity and we can also represent R from R"

a> RELATIVITY OF SIMULTANEITY

In the case of the ship heading towards Proxima at
80% ¢ we had a 3-4-5 triangle of times. When the
ship is at the level of Proxima 4 light-years away,
before reducing its speed, 3 years have elapsed in

52



the starship and 5 years on Earth.

Consider these two events, E;, the ship is ot the level
of Proxima at 80% c¢. and, £, the clock on Earth
indicates 5 years since departure. An earthling can
say to himself: "there, now that 5 years have elapsed
for me, the ship is at this very moment at the level of
Proxima. If | cannot see it directly with a telesceope it
is for fechnique reasons of finite speed information
propagdafion fime", he can then have the emotion
of the moment shared with the astronauts. If we look
ot these two events in o space-time diagram they
are effectively at the same time ft they are
simultaneous events in R.

For this to be true,

this emotion of a t A ¢
common moment 3./E,
must be shared, but £ *e=0:275) 704,

for the observers on B -7 r,%
board the ship it is bl

not. For them in R’
the simultaneous
event on Earth is E;,
a much earlier
event, less than two

W=

years cafter depar-
ture.

Simultaneity is relative to the frame of reference
considered. In Newtonian mechanics, simultaneous
events remained so in all frames of reference, in
special relativity simultaneity is not an absolute
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nofion. In R, E; and E, are simultaneous, in R, E; is
earlier than E..

a CAusauTy

We can only go from the past to the future. It is pure
logic, the cause produces an effect and not the
opposite! The world is One, and this is only an
obvious principle of consistency. If you could go
back in time and travel in the past, you would
destroy the present...

For example, you go 50 years in the past and during
this fime travel you die in a car accident, or just your
actions do that your parents don't actually meet,
etc. If you want to travel to the past at all costs, then
you would need several presents and suppose
parallel worlds which realize all possibilities.

In physics, we choose the simplest theory to explain
the facts, there is only one world, One reality, the
past cannot be changed, the future does not pre-
exist, we cannot go back and the arrow of fime is
constantly advancing from the present to the future.

Special relativity of course respects the principle of
causality. Not as simply as in the old mechanics, but
just as rigorously. The fact that there are several
fimes, the possibility of fraveling in the future, a
relative simultaneity, can create a confusion that we
will clarify immediately.
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Let us take any two events E; and E,. If there is a
causal link between them we can determine which
event is prior, and this temporal ordering must be
independent of the observation frame of reference.
Two different cases can occur, let us represent the
events on a diagram in an arbitrary observation
frame R.

First case: there is a possible causal link between E;
and E,. The two events have a constant temporal
order whatever the observational reference frame.

In R, E, is subsequent to E; because t,>1;.
We then consider R', a frame that is immobile with
respect to R but with a new origin O’ = E;.
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We note a possible causal link between the two
events, for example a ship can connect the two
points (its speed would not have to exceed the
maximum speed), or a succession of events which
propagate step by step like in a line of dominoes
that fall and establish a causal chain.
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We can then place ourselves in the ship's proper
frame R", the chronological order is not changed
and we always have E; later than E; and 1,"> 1"

I"

Events E; and E, occur at the same place in R". It is in
this proper frame of reference that the time interval
between events is minimal: 1,"-1;" = At" =1 < At' = AL

Second case: there is no possible causal link
between E; and E,. The femporal order is not
defined, E; is prior to E, in one frame of reference,
the reverse in another, and the events are
simultaneous in a third. This does not call into
question the principle of causality, because there is
Nno possible cause and effect link between these two
events.
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Possible fufures for E;

E X'

Possible pdsts of E;

No material object or luminous object passing
through E; can join E,, and vice versa. No object
can go faster than light. These two events are
independent and cannot interact. Looking for a
fimeline between them does not make sense. There
is Nno proper frame where these two events are at
rest.

a COoMPOSITION OF VELOCITIES

Two ships hurtle towards each other at 75% of
maximum speed. If you get intfo one of the ships,
how fast will you see the other ship coming towards
you?

If we had the additivity of the speeds as in classical
mechanics we would find 150% of ¢, speed above
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the limit, which is, in fact, impossible.

We are going to represent on a diagram the
worldlines of the two vessels in the galactic
reference frame R. The two vessels approach, cross
in O, then move away.

From the frame of reference R' of one of the fwo
vessels, we measure the coordinates of the second
and we will simply have its speed in R".

¢ Mt

The distance OG corresponds to ' and measures
4.8 cm on the drawing. The distance EG corresponds
fo x' and measures 4.6 cm on the drawing. By
dividing EG by OG we get the relative speed of the
vessels:

v'=96% of ¢
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Let us now take a second case where the vessels
move in the same direction, one at 50% and the
other at 75% of ¢:
We divide £G by EF and we find a relative speed
between the two vessels
24 t t’ of 40% c.
Clearly, for relativistic
speeds, the speeds do
not add or subtract.
The law of composition of
the speeds is different in
special relativity and
ensures that the speeds
of the objects are indeed
subluminic.

a Use oF EQUATIONS

o Lorentz transformation

For an event E, we want
to express its coordinates
x.t) in R in relation to
that .1 in R.
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0G
yV1+p°

We have applied the scaling factor to go from R to
R', a factor established in the previous chapter.

Fort. t'=

The coordinates of point G are given by the inter-
section of the two following lines:
1x x Xg
=5 t—t,=p(=——
(=52 and =B R )
(t' axis and straight line parallel to the x' axis which
passes through E with a slope inverse to that of the '

axis)
After solving this system of equations :

X X
=y BE) and E=peg

Xc

So: OG={t, + -

=y* 1+BZ(tE—ﬁ%)

Xg

And finally : t’zy(tE—B?)

Proceeding in a similar way for x', we find :

X' (X
C_Y(C BtE)

We obtain what is called the Lorentz transformation
of the coordinates of an event. For a motion of R’
with respect to Ox and the setting to zero of clocks
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and spatial coordinates when they coincide in
O=0', we can, without losing generality, write :

x' X
X _ (X _p¢
—=Y(Z Bt
Lorentz a
transformation Yy =y
z7'=z
X
t'=y(t—BR=
y( BC)
y R vy R
(_
.f\ll i}-
t {t
0 N %

U O &

At =0 and t'=0, O and O’ coincide, then O’ moves
away to the right as time passes. On a Minkowski
diagram, in full agreement with the one above, O
and O' are no longer points but worldlines, the axis
of t and the axis of 1. The origins O and O'indicated
are the spatio-temporal positions at t=t'=0.
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To get the coordinates in R from
those in R, simply change the y=y
sign of the speed and thus f :

Within the limits of low speeds we find the classical
fransformation of coordinates. Spatial and fime
coordinates are then disconnected to let space and
fime both absolute:

X'=x—vt
Gadlilean '
transformation y =y
z'=z
t'=t

In this book we made the pedagogical choice 1o
start from the friangle of times to construct the
special relativity. We could also start from the Lorentz
fransformation. In what follows we find the time
dilation, the length contraction and the existence of
a relativistic invariant using this fransformation.
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e Time dilation: we have events that occur at the
same location in R, sO x,=x; and Ax=x,-x;=0,
separated by a time interval At=f,-t;, What happens
to this time inferval in R'? Af'=(yAt-pAx/c) then
At'=yAt. QED

e Length contraction: we can imagine a ruler at rest
in R placed on the x-axis, L=Ax=x,-x;. The protocol for
measuring a length in a given frame of reference
requires to determine the positions of the ends at the
same time in this frame. Measurement of the relative
length L'in R': Ax=y(AX'+pcAt) and t'=t'; then L=yL’,
aond L'=L/y. QED

e Lorentz invariant: In classical mechanics we had
two invariant quantities: length L=vAx’*+Ay*+Az’
and duration Af. Whatever the observational frame
of reference, we had the Euclidean distance and
the duration unchanged. This is no longer the case
in special relativity. But we have another quantity
that verifies this property: As’=c*At’—=Ax*—Ay*—AZ",
As is the spacetime inferval between any two events,
it corresponds to a sort of Minkowskian distance.

Its property of invariance is verified by carrying out
the calculation of 4s in a second inertial reference

frame R':
As?=c*At?—Ax"—Ay*—Az"”
As?=y*(cAt—BAx)—y (Ax—PBcAt)—A Yy’ —AZ’=As’

We can write 4s? as a function of the speed v of an
object which joins the two events along a rectilinear
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and uniform frajectory:

As’=C’ AL

VZ
1=
c

As® can be of different signs, if there is a possible
causal link between the events, v§c, As® is positive or
null and the interval is said to be timelike or lightlike
(null vecton), if it is negative, v>c, As’ is spacelike.
When A s* is not spacelike, we can link the interval A's
fo the proper time T :

rzﬁ:At 1_v_§

c c

Proper time is the fundamental notion on which

special and general relativity is built. This measure of

the aging of a partficle is invariant and absolute,

unlike the space-time coordinates (ct, x, y, z) which

are relative and have no physical meaning in
themselves.

o Composition of velocities

We use the notatfions in the

figure on page 61. B, and B, t:%%

are the speeds in R of starships

1 and 2 expressed as a per- X Xg
centage of c. B' is the speed t_thﬁl(g_?)
of vessel 2in R".

The first equation is for the tE:iﬁ
world line of ship 1 in R, the B,
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second for the line (EG) and the third the
relationship between the coordinates of a point £ on
the worldline of ship 2.

The first equation applied to point G gives:

OG:\/ to+

2
:\/1+6i to

Xg
c
Besides :

te—te=Pi(Bitc—Pats) and  to(1—PB1)=tx(1—P,B,)

After some calculus, we have EG as a function of p;,
B. and fs. We calculate the relative speed:

B'=EG/OG.
Then:
B ':—Bz_ by (vessels in the same direction),
1- B1 Bz
+
B'= Bit B, (vessels in opposite directions).
1+4,p,

We find the good results for the two examples of the
course:

. 0.75+0.75 _ ,_ 0.75-05 _
B'=Tr075x075 %6 and B'=1"g5%075 0%
r v1+v2
In terms of speeds we have: |v =———
ViV
1+ >
c

If the speeds are small compared to c, the
denominator tends towards 1 and v'=v,+v,, we find
the classical additivity of the velocities again.
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Second method : We reasoned with objects which
move at constant velocities. We can do a more
general calculation using the Lorentz transformation.
Definition of the instantfaneous velocities with
respect to (x,f) and (x',1)in Rand R':
v=lim ﬂzﬂ and v':M
atso At dt dt'
these quantities should be noted v, and v, we will
write v and v' for ease of reading.
From Lorentz's transformation:

x'=y(x—Bct) and ct'=y(ct—px) with B=ulc

hence for infinitesimal variations:
dx'=y(dx—Bcdt) and cdt'=y(cdt—pdx)

And by dividing the two equations:

—B
dx":dx—Bcdt oy _c and v'=_Y—"Y
cdt' cdt—pdx c 1-p¥ 1_u_;/
c c

u is the speed of R compared to R.

y|R y'| R

&
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We can easily obtain the two other components of
the velocity for y and z ¢, but we limit ourselves here
to the rectilinear motion.

o Transformation of accelerations

d dv,.'
With respect to x and x': =—> and a,.'=—=
P 9 dt 9 dt'
Simply noted a and a' thereafter.
uv u
all——)+lv—u)—a
,_dv' dt _ ( cz) ( )CZ 1
Cdte dt' 2 uv
(1-4Y) y(1-=)

(quotient rule)

1
Then: a'=—————a

(1-%) y’
C

In the case where M is initially at rest in R’ the initial

velocity viszeroand a'=—;|

6 Done in exercise on page 101 (composition of velocities and
accelerations in 3D).
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Exercises

1. AAA Composition of velocities

a - Two vessels are heading towards each other at
50% of c. What is their relative speed?

b - Two vessels are moving in the same direction,
one at 80% of ¢ and the other at 50% of ¢. What is

their relative speed?
Answers p351.

2. AAN Two vessels

Two spaceships A and B produce the following
events in the galactic frame R :

E,.(x,=0,y,=0,2,=0,t,=0)
Ep . (x5=2,y5=2,25=2,t,=0)
E,,(2,0,0,t,=4) Eg,(4,4,4,t,=4)
E,;(4,0,0,8) E;5(5,5,5,8)

Distances and times in light-years and years.
R considered of inertia.

a- What are the average velocities of the ships
between t=0 and t=4 ?
Same question between t=4 and t=8.

b - What are the average accelerations of the ves-
sels between t=0 and t=8 ?
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c- Vessel A has a translational, rectilinear and
uniform motion. We call R' the reference frame of
vessel A. Is the frame of reference R'inertial?
Determine the coordinates of the events of vessel B
as seen from vessel A.

Can the trajectory of vessel B in R be rectilinear? Is it
the same for the trajectory of B seen from R'?

d- In R, determine the average velocity of vessel B
between t'; and t';, then between t'; and t's.

e- In R, determine the average acceleration of
vessel B.

f- Could you determine the average acceleration
felt by the passengers of vessel B?

g - Accelerations are calculated here in ly/yr?, how
to convert them intfo m/s??
Deduce the acceleration to which the astronauts
are subjected as a percentage of the Earth's gravity
field at sea level: g=9.81 m/s>.

Answers p351.

3.7/ AAA Low speeds limit

Two cars drive face to face at 90 km/h. What is their
relative speed? Determine the difference with the
classical limit.

Answers p356.
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THE APPEARANCE OF THINGS

Sometimes we naively forget to take into account
the duration of the propagation of the signals to our
eye, as if we were spontaneously seeing spacetime
as a whole.

We will begin by studying the Doppler effect where,
due to relafive motfion, the color of objects is
modified. The color of light depends on the period
of the light wave. This quantity is a time, and we
could think that it is sufficient fo take info account
the time dilation. The perceived period would simply
be mulfiplied by y as the travel time in the twin
experiment. Except that the twins end up in the
same place and there is no delay due to the
propagation of a signal at finite speed. For the
Doppler effect the frequency will not simply be
divided by y, and moreover, it will differ depending
on whether the vessel is moving closer or further
away.

After studying the Doppler effect, we wil take
pictures of a relativistic ruler, followed by a
contemplation of the starry sky in a starship each
time faster.
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a DoPPLER EFFECT

The Doppler effect can be experimented with all
kinds of waves: sound waves, electromagnetic
waves, waves on water, etc... In all cases, we have a
wave propagating at a finite speed, and a scurce
and a receiver in relative motion. For example, for a
sound wave that propagates in the air, if you get
closer to the source the frequency is heard higher,
and if the source moves away the sound is, on the
contrary, perceived deeper.

Here we will focus
onan
electromagnetic
wave that
propagates in
vacuum, or more
precisely in
spacetime.

In this case, in
addition to the
delays or advances
due fo the
propagation of the
wave towards o
moving object, the
effect of spacetime
perspective is
added.

Let's take the
example of a yellow

B=60%



light, with a wavelength of 600 nm, emitted by a
vessel moving at 60% c. To simplify, let's imagine that
the vessel emits regular flashes of light at the
frequency of the wave. We have drawn the world-
lines of these flashes on a Minkowski diagram. We
see on Earth the flashes closer when the ship is
approaching and further apart when the ship is
moving away. The time between the reception of
two flashes corresponds to the period of the signal,
we measure on the diagram, when the ship is
approaching the Earth:

T=T'/2 so f=2f' and A=A'/2 then A=300 nm,

the light received is in the ultra-violet.

When the ship moves away:

T=2T"so f=f'/2 and A=2)\' then A=1200 nm,

the light received is in the infrared.

o Use of equations
t A
- A periodic signal is emifted in R
B '/ with a period T, and, is received
" in Rwith a period 1. We ccll r the
ratio between these two
periods: r=T/T".
In the event that the source and

receiver move away:

o/ | })f r.=OB,/OA,,

4 For OA=1 on the axis of ' we
have OH =y on the axis of 1.
In (. ) : OA=y\1+p’ (scale factor).
The triangle BHA is right isosceles in H: AH=BH.
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Pythagorean theorem in OHA :

r,=OB=OH +HB=y+\y(1+p*)—y’

When moving away : r+=y(1+B)=\/

1+p
1-f

1—
When geftting closer : r_:y(l_ﬁ):\/;[f;

In terms of frequencies, f=1/T:

_ |1£B _ 1B,
f'= 11[5]‘ and T_\/liﬁT

Interval : 0<r<2y

In the example of the course, p=0.6, y=1.25 and the
numerical application gives correctly 7=2f' when
tfransmitter and receiver are approaching, and f=f/2
when they are moving away.

The Doppler effect shows that the color of a photon
is not an absolute quantity. A photon is neither red,
blue, nor yellow, it all depends from where you look
at it. s wavelength depends on the observational
inertial frame of reference and there is no privileged
observer.

A photon has other characteristics, such as chirality,
which is intrinsic. A photon is either left or right and,
unlike its color, it does not depend on the point of
view.
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@ PHOTOGRAPH OF A MOVING RULER

A ruler moves at the velocity v in the observational
reference frame R. A graduated opfical bench,
fixed in R, makes it possible 1o locate the position of
the two ends of the ruler. The proper length of the
ruler, in the frame of reference R’ where it is af rest, is
denoted L. The length in the Ilaboratory is the
contracted length L/y. We take different pictures of
the ruler as it passes. On each photograph, we note
the apparent length L, the difference between the
abscissas of the two ends marked on the bench.

- o ‘—L’
G ________ ’—|F DI ZE Al:lc
i —

L=20cm

D=0OM=50 cm
Scale: y=2
L =5cm v=87% of c

The contracted length corresponds to measure-
ments at the same instant t of the position of the
ends, while the image of the ruler which appears on
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the photographic plate is formed by photons which
reach the sensor at the same instant and which, due
fo time of different routes, were not emitted at the
same time at the object level.

We do not yet know how to make a camera with
such sensitivity and such a short shutter time, but it is
not out of reach given current advances in opto-
electronics. Second challenge, to animate a
macroscopic object at a relativistic speed. The
thinking exercise is excellent anyway, as it allows us
to deepen our understanding of the theory.

Let us think in the laboratory reference frame R. The
ruler of length L/y comes from the right. The light rays
emitted at the same time from the A and B ends will
not reach the eye at the same time and will
therefore not be in the same image. The ray emitted
by B will arrive late.,

There is an earlier moment when the ray emitted by
this end compensates this delay, it is the case of
point C on the diagram. The apparent length is then
greater than the contracted length.

When at t=0, the ruler is centered on O, the rays are
emitted symmetrically and the apparent length is
equal to the contracted length. This occurs for a
photo taken at t~1.7 ns (light travel time from D, or E,
to M).

For t positive, when the ruler moves away, the
apparent length is instead smaller than the
contracted length.
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Apparent length (cm)

Below we have the curve of the apparent length
versus time t:

Apparent Length of a Mobile Ruler

Time (ns)

We can easily find the extreme values. When the
ruler is still far away, the delay of the light beam from
C is about AC/c. Moreover the ruler moves at the
speed v, so, to catch up, BC is worth v times the
delay.

L L,

Then : La=AB+BC:7+v—
C

L 1+

© y(1-p) “V1-p

~75cm

On the contrary, when the ruler moves away, to the
limit of t—+o00,
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=B
, and L“_L\/1+|3_5cm'

We finally find the same kind of formula as for the
Doppler effect with inverted effects :

HF L, Lly—-L,

c c Pc

_ . [1FB
atssm=L 156

L

When an object gefts closer, the perceived period is
shorter and its length seen, in the direction of
motion, is greater, on the contrary, when it moves
away the perceived period is greater and its length
seen smaller.

We also had an inversion of behavior between time
and space with time dilation and length
confraction.

We just did the long-distance calculations. To find
the complete curve of the length on the photo-
graph as a function of time, we consider a three-
dimensional Minkowski diagram (x, y, ct).

The camera is represented by a vertical world line
0, D, ct). The optical bench by the world plane y=0.
The ruler by an inclined world strip. The resolution of
the problem is in principle simple: find the inter-
section between the past light cone from the eye at
tfime f with the world strip of the mobile ruler.

The intersection gives the position of the two ends in
R: Ei(x;, O, ct)) and Ex(x., O, cty). We then have the
apparent length Le=x.- x;. Except at O, we have well
t#t.
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ct (light-nanoseconds)

The detailed calculation is left in exercise. The
explicit expression L(1) is then given. The compu-
tfation, although it only uses nofions of space
geometry as seen in high school, is a bit long.
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@D THE STARRY SKY SEEN FROM THE SHIP

Let's determine the change in the perception of the
starry sky as a function of the speed of the ship. In
addition to the change in the perceived color of the
stars by Doppler effect, their position in the sky is
modified, this is called the aberration of light. When
we are at rest in the galactic frame of reference, the
stars are, as a whole, motionless. To simplify, we will
consider yellow and homogeneously distributed
stars.

_,_‘.\. s . . =
\ vELLow S YELLOW J
4 50\ 300
s YELLOW | '

N | veLow 37
[ YELLOW v
-120° ?J;;.-_________vf’-x-* -60
W 90 J

Let's take the case of a star seen at rest in the
galactic frame of reference perpendicular fo the
direction of motion of the spacecraft, Under which

angle B4 is this same star seen from the ship's frame
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of reference?

We can make an analogy with the rain that falls,
seen through the windshield of a car it looks like the
rain comes from the front, even if from the road it
falls vertically. The demonstration in  classic
mechanics is quite simple, just apply the addition of
the velocities. You can imagine that here the result
will be, at least quantitatively, different.

We have to think again in a three-dimensional
Minkowski diagram (x, y, ct). As soon as we measure
an angle, there are at least two dimensions of
space. However, there is no need to use the third
dimension of space, because there is invariance by
rotation according to the direction of the vessel,
otherwise, in addition to colatitude 6, we would
have had to use longitude ¢ and we would have
had fo work in a four-dimensional Minkowski
diagram (x, y, z, ct).

We consider the galactic frame of reference and
we start by studying the case 0=90°. The ship is
moving in the direction of increasing x and the star is
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located on the y axis at a distance D. We have
three world lines, one for the spacecraft in the (x, ¢t
plane, one for the star, vertical, and one for the light
ray in the (y, ¢t plane.

ct -

o (0,D,0)
-

)
&
Q) .
>
Star

|M(0,D,ct)

We define a straight line by the intersection of two
planes defined in Cartesian coordinates.

x=0

Light ray worldline :
y+ct=0

We then use the Lorentz transformation to obtain this
equation in the ship's reference frame R':

x'=y(x—Ppct) x'=yBy’
y'=y and Yy +et'=0
ct'=y(ct—Ppx)
y' 1
also tan(0,)=== then tan0,=—x
X yp
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In the case of a starship moving at 87% ¢, we find for
0=90°, 6,=30°. We notice that the result does not
depend on the distance D. The effect is
accentuated with respect to the Newtonian formula
where tan(B,)=1/p and 0,~49°,

Now let's look for any angle 6 between 0° and 180°.

M

A unit vector parallel to OH has for coordinates
(cos0,sin0,0). The vector i, orthogonal to the OHM
plane has the coordinates i, (sin0, —cos0,0).

As collinear vector to the light beam we can choose
fi,(cos6,sin0,—1). We verify that ii,(cos,sin8,1) is
orthogonal to i, and 1,.
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Hence the world line of the light ray:
sin@x—cosOy=0
cosOx+sin0 y+ct=0
Using the same Lorentz transformation as the one

used in the previous case, we obtain, affer a
somewhat long but simple calculation:

sin 6

r— [

Y _y([3+c058)x

Thus the expression for tan(B,), or, simpler to use,
after somme mathematical manipulations, detailed in
exercise, the expression of tan(0./2) :

_ [1=B
= 1+B tan

For the color of the star, we give the expression of
the wavelength perceived in the vessel which takes
into account the transverse Doppler effect :

1—Bcos0,
h,=—F7—NA\
V1-p°
For example, for f=0.3 and A=600 nm, we have the

results in the following table which we then reported
in a circular diagram.

0

2

—a

2

tan

Angles in degrees and wavelengths in nm:

180 | 165 | 150 | 135 | 120 | 105 | 90 | 75 | 60 | 45 [ 30 | 15 O

180 | 160 | 140 | 121 | 104 | 87 | 73 | 39 | 46 | 34 |22 |11 | O

818 | 806 | 773 | 726 | 673 | 621 | 572 | 531 | 498 | 472 | 454 | 444 | 440

As the ship gains speed, the stars in the front turn

88




blue and those in the back red. Laterally we have all
the spectral shades with an zone where the stars
remain yellow. The forward hemisphere, under which
we saw the stars at rest, is narrowing. Some stars
present in the rear hemisphere appear in the front of
the vessel, for example for 06=105°>90°, we have
0,=87°<90°.

| 46°

(1509 . ORANGE |veLLow/ (60"

| /GREEN .~
RED

180°¢ (1807 IR
|

. BLUE _

| % GREEN ™.
/' ORANGE | YELLOW

B=0.3
y=1.05

v=30%
of ¢

For even higher speeds, the stars fade in the front by
passing in the UV, and in the back as they pass in
the infrared. At 87% of ¢, only a visible ring is left in
the front around 50°. However, new objects will
appear, celestial objects in the infrared in the
galactic frame of reference will be visible at the bow
of the ship and objects in the UV will become visible
at the stern.
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= (1209 7
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\ RED  YELLOW
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BLUE \

///PU RPLE

P UV (30% \

37°

"\ PURPLE ...

UE .
F . GREEN-
/ RED YELLOW
ORANGE

From the galactic frame of reference, the light
intensity received from the different parts of the sky is
homogeneous. On the other hand, in the frame of
the vessel, the overall energy received is greater and
the luminosity dominates forward.

The energy received from the starry sky depends on
the speed of the vessel according to two factors,
light aberration and the Doppler effect. A star sees
its position and ifs infensity change. The intensity of a
star varies according to the following formula:

2
Iazizl
(1—PBcosB,)
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The intensity corresponds o the energy received per
m? and per second.

The energy comes from photons, of individual
energy e=hv,=hc/A.. Due to the Doppler effect, the
photons see, on the one hand, individually, their
frequency, and thus their energy modified, and on
the other hand, taken as a whole, they arrive with a
different rhythm. The two effects have the same
Doppler factor \/Tﬁzl(l—ﬁ cos0,), hence the square
in the expression of I,. The photons shoot more
frequently and violently at the front, and more slowly
and softly at the back.

Now letf's look at a group of stars, they occupy a
certain area, also called a solid angle, on the
celestial vault. As the ship speeds up one group of
stars in the front fightens and another, in the rear,
stretches. To calculate the total energy received, we
must also take into account this density of stars
which varies.

To find the total energy received, we integrate the
light intensity on a spherical surface S of radius R,
centered on the vessel. We have the following
results, established in exercise:

E,= | 1,dQ,=y*(1+p*/3)E
0,=0

with E= [ IdQ=4nI=E($=0)

0=0

Q is the solid angle, it corresponds by definition o
the cut surface on a unit sphere, Q=S;, R=1.
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180°4 (180°) Short-IR

|

To illustrate, at 30% of ¢, the frontal solid angle, of
vertex angle 30° in R, reduces to 22° in R', thus the
apparent density of stars in this frontal part of the sky
becomes 80% greater’. In addition, the photons
received have a higher energy, from yellow they
become blue, and moreover they are received in
greater number.

At 50% of ¢, the stars become even more rare at the
back, and 91% of the light energy comes from the
front hemisphere.

At 95% of ¢, the sky is 13 times brighter.

Now what about the number of photons arriving on
the ship? We have N photons which arrive on the
ship during a proper fime interval. From the galactic

7 ratio of the surfaces seen under the solid angles Q=2 5t(1—cos0).
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frame of reference, we observe these same photons
arriving on the vessel during a relative dilated
inferval. Thus, the more the vessel gains speed, the
more the number of photons received per second
by the astronauts increases with the factor y.

At 50% c, the vessel receives 15% more photons, and
84% of the photons come from the front hemisphere.

At 95% of c, the vessel receives 3 times more
photons, the front celestial hemisphere is 26 times
brighter, and the back hemisphere 350 times less.
Now let's focus on a half-degree disk, which is the
apparent size of the Moon or Sun as seen from Earth.
This disc located at the zenith of the ship will have a
luminosity 1500 times greater than that of the sky at
rest. For comparison with what is observed from the
Earth's ground, this luminosity is 40,000 times less than
that of the Sun, and 12 times greater than that of
the full Moon®. But beware, this central disk emits in
the ultraviolet, the visible corona is located between
34 and 52°,

Of course the stars are not all the same color, the
Sun is yellow, but Rigel is blue and Betelgeuse red. In
addifion, a star does not emit only one wavelength
but a confinuous spectrum given by what is called
the spectrum of the black body:

8 Data: Starry sky 0.002 lux / Moon 0.25 / Sun 120,000 lux.
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i(A)

Curve for A,,,=500 nm and T=5796 K.
Corresponds to a G-type star,
yellow star like the Sun.

] I I I ]
500 1000 1500 2000 2500 A(nm)

Thus stars of the Sun type, such as Alpha Centauri A
or B, can be seen with the naked eye at the front of
the ship even at 50% of ¢, because they also emit in
the IR which shifts in the visible by Doppler effect,
and, although the emitted intensity is lower in the IR,
this is compensated by an increase in the perceived
infensity towards the front. So, no navigation
problem by finding your way in the starry sky to
reach Proxima Centauri. On the other hand, towards
the rear of the ship, the stars will fade much faster.
Regarding the energy and the number of total
photons received the results do not change
because they do not depend on the wavelength.
The Doppler factor does not depend on A and the
aberration displaces all the chromatic components
of a star's spectrum by the same angle. There is no
dispersion, as in the phenomenon of refraction of
light rays (through a prism the frequency
components are deflected differently and create an
irrdescence in the form of a rainlbow).
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Exercises

23 : resolution by numerical simulation.

1. AAA The suicidal physicist

A driver arrives at a crossroads and the traffic light is
red. The driver, who is going crazy after reading a
physics book, decides, instead of stopping, to
increase his speed so that by Doppler effect, the
light of the traffic light appears green to him.

What speed should his vehicle reach?

Mea=700 NM, Agreen=500 NM

Answers p357.

2. AAN Laser sail

A Tergjoule laser battery based on the ground
bombs photons for 10 minutes on a sail placed in
orbit. The sail reaches a speed of 20% of c.

a - What is the radiation pressure exerted on the sail
depending on the light power ® received?

b - For a constant luminous power incident on the
sail in the terrestrial reference frame, will the force
felt on the sail remain constant?

By what factor is it modified?
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C - By what factor is the radiation pressure modified
at the end of the acceleration phase?

Answers p357.

3. AAN Optical molasses

To slow down atoms and thus cool them we place
two identical lasers face to face. If an atom placed
between these two beams is stationary, it remains so,
because the radiation pressures are in equilibrium.

a - Show that, for an atom moving along the axis of
the lasers, a force appears that causes it to come 1o
a standstill.

This force is similar to viscous friction, hence the
name optical molasses for this phenomenon. Atomic
clocks use optical molasses to cool atoms.

b - Show that, for low speeds compared to c, this
force is analogous to the friction force of viscous
fluids in laminar regime: f=—a.v .

The radiation pressure can be explained at the
microscopic scale by the absorption then emission
of a photon by the atom. The momentum of the
atom is modified, in the direction of the laser during
absorption and in a statistically isotropic manner
during spontaneous emission. The atom is thus
slowed down and confined. The resonance
frequency of the atom is slightly higher than that of
lasers.
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c - As with viscous friction, we have an energy
dissipation phenomenon. Explain qualitatively how
the process of absorption/emission of a photon by
the atom allows it fo lose kinetic energy and thus to
cool down.

d-In the context of perfect gas, the mean kinetic
3
energy of an atom is given by the relation ezEkBT ,

where T is the temperature in Kelvin. Once slowed
down, the atom will have a minimum kinetic energy
of the order of the difference of energy between the
absorbed photon and the photon emitted during
de-excitation. The line width of the laser is very small
compared fo that of the atom, which predominates.
In the extreme case, at rest, the line width of the
atom is just below that of the laser. The distance
between the two lines then corresponds to the width
of the atomic line. The lifetime t of the excited level
of the atom is related to the energy difference by
the Heisenberg uncertainty relation. From this an
approximation of the temperature of the atom
obtained by Doppler cooling can be deduced.
Numerical application: t=27ns for a rubidium 87
atom.

e - Give the speed of an atom thus cooled.

Answers p358.
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4. ANN Detection of exoplanets
by Doppler effect

A large number of exoplanets have been detected
untii now and their known number continues to
increase. One method of detection, called Doppler
method, or radial-velocity method, consists in
observing the periodic variation of the wavelength
of a star. The motion of the star is due to the
presence of an exoplanet. When the star is moving
fowards us, and thus the planet backwards, the
characteristic lines of its spectrum move towards
blue, and when the star is moving away, towards
red.

We consider a two-body system consisting of a star
and a planet. The two masses are in a gravitational
bound state. Let's conduct a Newtonian study. Each
of the bodies revolves around the center of mass G
of the system. We can fictitiously return to a problem
with one body M of reduced mass w which orbits
around G, a fixed point of origin in the center-of-
masse frame:

98



m, m,

=——  Kepler's law for the ficti ficle M:
u m+m, epler's law for the fictive parficle
Cl3 o
_T2:4rc2u with  a=Gmm,

v

a: semi-major axis of the ellipse traveled by M.

T: period of revolution around G.

We then find the trajectories of the two bodies M,
and M, by applying the following homothetic
factors:

GM,=— GM and GM,= GM
m1+m2 m1+m2

We will consider the cases of a two-body system
with circular orbits and a plane of revolution that
contains the long-distance observation site of the
Doppler effect.

Let's take the example of a star slightly smaller than
the Sun around which a giant Jupiter orbits. The Sun
is a small star, a yellow dwarf, here we will take an
orange dwarf of 0.8 solar mass. We will have a
supermassive giant planet of 80 Jovian masses (this
planet may be similar to a brown dwarf, not very
luminous and not detectable by direct methods).
The star in this case has a mass ten fimes greater
than that of the planet. There are many stellar
systems of this type: HD 87883, HD 4747, Epsilon
Eridani, etfc.

a - Determine the speed of the star on its orbit
around the system's center of gravity. Show that this
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speed is indeed non-relativistic.
b - Give the classical Iimit of the Doppler effect
formula.

c - What will be the relative wavelength variation
AN/N of the light emitted by the orange dwarf
observed from the Earth in its plane of revolution?

Data: G=6.67x10""N.m?/kg®, Ms=2x10¥ kg,
MJ=MS/] 000, d@.p|0nef=540x ]Oé km

Answers p359.

5./7V AAA Calculations for the moving ruler

We detail the calculations that allow us to find the
exact expression of the apparent length of the
moving ruler on the photographic plate as a
function of fime. We rely on the notations given in
the course.

a - Determine the equations of the worldlines for the
E; and E, ends of the ruler.

b -We seek to express the equation of the past
cone of M@, D, ctw). We consider the vector
i=(a,b,1) with Vad®+b*’=1 and colinear with a
generatrix line of the cone. Let be C:(x,y,ct) a
point of the cone.

We have two constraints, MC collinear to i and
point C belongs to the ends of the worldsheet of the
ruler. Deduce the apparent length L, as a function
of 1.
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Answers p360.
6.7 AA/ Velocity transformation
and aberration of the light

a-From the Lorentz transformation determine the
three components of the velocity in R' as a function
of those in R.

v=(v,v,,v,), v'=(v,',v,",v,’) and B:%:%Y
From the transformation of velocities we can quickly
find the formula of the relativistic aberration of light

which gives 0, as a function of 0.
b - Give the components of the velocity of a photon
that arrives in O at an angle 0 with respect to Ox.
C - Give the expression of v' and check that we
have v'-v'=c’.
d - Express tanB, as a function of 0.

Answers p361.

7 AAN Composition of velocities
and accelerations. 3D generalization

a-Two vessels move at 560% ¢ and cross perpen-
dicularly in O in R.
What is their relative speed?

b - In the general case of two vessels animated by
velocities v, and V, , one does not lose in generality
by taking i co-directed with V,, j co-directed with
VAV, and k=1 A,

101



The angle between the velocities is 0=(V,,V,).
Express the relative velocity v' as a function of v;, v
and 6.

Numerical application for two vessels of y=2 and
trajectories that make an angle of 30°.

¢ - We continue the exercise Two vessels on page 71.

1 - Starting from the velocity v in R, find again,
with the velocity transformation laws, the velocity v’
of vessel B.

2 - Establish  the law of transformation of
accelerations in three dimensions. From the velocity
v and acceleration a in R, find again the
acceleration g’ of the starship B.

Answers on page 362,

8.V AAAN Starry sky at the halfway point

We start our journey to Proxima Centauri with an
acceleration of one g. As we will show in the next
chapter the speed is then 95% of ¢ at mid-course
(ofter 2 ly traveled in the galactic frame of
reference). We wonder if the Sun and Proxima
Centauri are at that moment visible to the naked
eye from the spacecraft. In astronomy we use the
apparent magnitude to determine the brightness of
a star. A star of magnitude greater than 6 is invisible
to the naked eye. The star Vega is taken as a
reference with a magnitude of zero. A star brighter
than Vega has a negative magnitude.

Magnitude formula: M=—2.5log(L/L,).
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L and L, are the luminosities of the star and Vega
perceived at the point of observation.

The luminosity Ly of Vega, which corresponds o the
total power emitted, is expressed as a multiple of the
luminosity Ls of the Sun: Ly= 37Ls.

Distance Vega-Sun: Dys=25 ly.

For Proxima Centauri: Le= 5x10°Ls.

The perceived luminosity of a star decreases with
distance, and is inversely proportional to the square
of the distance.

a - Determine the apparent magnitude of the star
Proxima Centauri from Earth. Is the star visible to the
naked eye?

b - Determine the apparent magnitude of Proxima
Centauri at midpoint if the spacecraft was
motionless with respect to the stars. Would the star
be visible to the naked eye?

c - Determine the apparent magnitude of Proxima
Centauri at mid-course when the spacecraft is at
95% of c. Will the star be visible to the naked eye?

d - Determine the apparent magnitude of the Sun at
mid-course if the spacecraft was stationary. Would
the Sun then be visible to the naked eye?

e - Determine the apparent magnitude of the Sun at
the halfway point when the spacecraft will be at
95% of c. Will the Sun then be visible to the naked
eye?

f - Here you are on the exoplanet Proxima b orbiting
the star Proxima Centauri. A well-deserved rest. Will
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you see the Sun in the night sky? Answers p366.
9.95 AAA Numerical simulation of the sky

In the analytical model of the course we have a
confinuous distribution of light energy to model the
starry sky. Here we will have a discrete distribution of
point stars. We will take N=10,000 stars, identical,
monochromatic, and, randomly and uniformly
distributed.

This numerical model allows us fo better understand
the perception of the sky from the moving vessel, to
befter understand the meaning of the integrals
calculations and to verify them.

a - Uniform spherical probability law: We place stars
on the celestial sphere using two angles 0, the
colatitude, and ¢, the longitude. These are the
spherical coordinates. The positioning is analogous
fo the one used to find our bearings on the surface
of the Earth. The colatitude is zero at the celestial
North Pole, 90° at the celestial equator and 180° at
the South Pole. The longitude is 0° at a meridian
taken for origin and returns to it after a full 360° furn.
Propose laws of probabilities ® and W which ensure
a uniform distribution on the celestial sphere as a
function of the continuous uniform law U(0,1)°.

b - We use a spreadsheet and the function that
generates a random number between 0 and 1. On
the first fwo columns we have N values for 6 and for
9 For the laws of probability and their simulation, see, for example,

the book Probability, Statistics and Estimation, by the same author,
on pages 109 and 118.
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. Then we calculate for the N stars 6, and |, with the
formulas of the course. You can thus find the values,
for a speed of 50% of ¢, of the energy and the tfotal
numiber of photons received with respect to rest.

Answers on p367.

10./v AAA A bit of math...

To do physics in higher education you have to be
comfortable with  math and | prefer to put
everything on the tfable in the same book to be
clear and avoid multiple tergiversations. Nature is
logical, logic is mathematical, so letf's indulge in a
little trigonometry.

According to the relafion between y' and x' given
page 88:

ino
0 belong to |0, [ and tanea:y( SN if the

B+cos0)
denominator is positive. 6, then belong to |0,
7t/2[ and in this case: P+cosf>0 so 0<6<0, with
0,=arcos(—p).

If the denominator is negative. 0, belong fo |mn/2,
ntl and in this case 0,<0<n then:

sinO

—y(B+cosH)

This is very complicated. The tangent function is
made up of an infinity of branches, and, therefore,
for one value of the fangent there are an infinity of
possible angles. A traditional calculator gives the

tan (m—0,)=
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value of the angle on the central branch on J-mt/2,
nt/2[. Our star observation angle is between -n and
1, and by symmetry we restrict to 0, [, We are then
on two branches of the tangent. To solve this thorny
and exciting (1) problem we prefer to have tan(6/2),
because 0/2 belongs to |0, t/2[. We stay on the
same central branch whose values are given by the
calculators.

a - After recalling the expressions of cos(a+b) and
sin(a+b) give the expression of tan(a+b) as a
function of tan(a) and tan(b).

b - Deduce tan(B) as a function of tan(8/2).

C - Solve a quadratic equation to show that

tan(@a/2)=\/11:§ tan(0/2).

Answers p368.

11./Y AAA Energy distribution

We establish here the formulas giving the energy
received from the starry sky in the reference frame of
the vessel as a function of 3.

a - Use the relationship between 6, and 8 to express
do as a function of dB, and 0,. Deduce how the
solid angle d Q=2 wsin0d0O transforms in the vessel's
frame of reference. You will be able to express d Q as
a function of d Q, and 6,. The factor gives us the star
density n as a function of 0. Express this density af
the stern and bow as a function of {3, then make a
numerical application for 3=0.5.
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b - Verify by integrating over the whole space that
the number of stars remains well constant when the
ship gains speed.

c - Find again the expression of E, as a function of
of the course.

d- Determine how the energy is distributed
between the front and back hemispheres of the
vessel. Expression as a function of 3, and numerical
application for 3=0.5.

Answers p369.

12./v AAA Number of photons

The number of photons reaching the vessel every
second is proportional to gamma. Within the
framework of the model of yellow photons uniformly
emitted in the galactic frame of reference, in the
moving frame of reference, the photons are more
numerous and of different frequencies. They are
each time less numerous and of low energy fowards
the rear and each fime more numerous and
energetic fowards the front.

a-By a complete integral calculation find the
factor: No/N=y. You can use symbolic computation
software.

b - What proportion of photons is received from the
front hemisphere? Calculation as a function of f3,

then numerical application for 3=0.5.
Answers p371.
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13./ AAA Power emitted by a star

To obtain the total power emitted, we infegrate the
luminance i on all wavelengths, solid angles and
surfaces:

P=[i(h)drdQdS

The expression of the luminance is given on page 93.
For a black body, an infinitesimal area dS emits
uniformly over a half-space, i.e. an integrated solid
angle of 2x.

a-In the case of the Sun, do you find the known
total emitted power of 4x10°W? The surface
temperature is taken equal to Ts=5000 K and the
solar radius Rs=700 000 km. You can estimate the
infegral by a numerical integration.

b - How is the power emitted by the Sun divided
between visible, infrared (>800 nm) and UV (<400
nm)?

c - For Proxima Centauri, we take T=3000K and
R=0.14Rs. We read on the Wikipedia page of
Proxima Centauri that "lfs fofal luminosity over all
wavelengths is 0.17% that of the Sun". Does your
calculation confirm this assertion?

Answers p372.
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ACCELERATED MOTION

We have so far studied vessels in uniform rectilinear
motion: an object animated at a constant speed
and which moves along a straight line. For realistic
interstellar travel the frajectory can remain recti-
linear, but, on the other hand, the speed necessarily
varies. We are going fo be interested in uniformly
accelerated recfilinear motion: the vessel has a
constant acceleration, the speed constantly varies
by the same amount. We can thus create an
artificial gravity in the rocket: we will consider the
case where the speed increases (or decreases) by
10 m/s every second.

GD STUDY OF AN ACCELERATED FRAME

The basic principles of special relativity are stated for
inertial frames of reference. Once we have a
starting inerfial frame of reference, all frames of
reference in uniform recfilinear translafion with
respect to it are also inertial frames of reference. A
frame of reference accelerated with respect to a
frame of inerfia does not belong to this set, which
does not prevent the application of special relafivity
indirectly if we know the motion of this reference
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frame with respect to an inertial reference frame,
which we will name R. We proceed in the same way
in Newtonian mechanics, the fundamental relation-
ship of dynamics F=mad is only valid in inertial
frames of reference and therefore Newton's laws are
used to study any type of motion in any type of
frame of reference.

Classical mechanics is used to construct special
relativity by using it as the limit of low speeds. In
addition, the principle of additivity of the proper
fimes on the particle worldline is added as a
construction element. With this principle, we are not
limited to inertial frames of reference: the particle
proper frame of reference can have any motion (it is
the clock hypothesis seen page 19).

Then rzf dr:f% where T is the proper fime in the

particle proper reference frame, t is the time in the
inertial frame of reference and vy is expressed as a
function of the insfantaneous speed v of the particle
in this same frame of reference.

At any time ¢t there is always an inertial frame of
reference named R’ which coincides with the proper
reference frame R,. The frame R' has a constant
velocity v with respect to R and, at the moment it
coincides with the proper frame R,, the parficle has
a zero velocity in R’ Its acceleration is @' and that in

T

a
R is then a=— (demonstrated page 69). This is
Y

where classical mechanics comes in, indeed, the
particle then has a low speed in R between ¢ and
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t+dt. It is like if an accelerated vessel passed a vessel
moving at constant velocity. If at the moment they
are at the same level their velocities are equal, their
relative velocity is zero. The vessel accelerated by
the thrust of its engines then moves away slowly with
respect to the speed of light and we can use
classical mechanics to study the mofion of the
accelerated vessel from the other vessel taken as a
reference.

Let's take the example of a car that first stands sfill at
a red ftraffic light and then accelerates to green.
From the reference frame of the road, the
acceleration of the mobile is d, but what is the
acceleration felt by the passenger in the proper
reference frame of his car?

According to the classical acceleration transfor-
mation formula: d=d,+d,+d. where we have the

absolute acceleration @ in R, relative acceleration cTr

10

in R,, coincident acceleration a, = and Coriolis

acceleration d,.

Let's write Newton's second law in R":
F=m(d+d,+d.) oand ma=F+F +F,.

In an accelerated, non-Galilean frame of reference,
we feel new forces, called inertfial forces. Here the

-

accelerations @ and d, are null because the
passenger is motionless in his car. The driver feels a

10 Advanced remark: @,=d,(C), C(t=t,)=M(t,) and VRP(C) =0
d QRP/R
dt
The coincident point C coincide instantaneously with M. For a non-

rotating frame @,= d(O"). For a uniformly rotating frame we

obtain the centrifugal acceleration. e for entrainement in French.

d’e:d’R(O')"' AO'M+§2R,,/RA(§RP/RAO,M)
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inertial force ﬁie:—mﬁe that pushes him to the
bottom of his seat when starting. This is due fo the
inertial acceleration which equals that of the car:
d=d,. For the same reason, the acceleration felt by
the partficle in its proper frame also worth a,
acceleration of the particle in R'.

@ ARTIFICIAL GRAVITY

When the car accelerates at the green fraffic light, it
is as if a force exerted at a distance pulls the driver
fowards the rear of the car Like a non-contact
force, analogous in these effects to a gravitational
force due to a mass placed at a distance at the
back of the car. When a spaceship starts at the
green ftraffic light at an interstellar crossroads, the
passengers first in weightlessness are then pressed
during the acceleration phase to the walls
perpendicular to the displacement. In our case the
acceleration is maintained and the vessel has a
uniformly accelerated rectilinear motion.

The acceleration is equal to the Earth's surface
gravity g, thus:

dv_ g y cr dp
= =< and dV—
dt ° f gfl [3
crl1/2 1/2 c 1+[3
then t= f(l ﬁ s B dp a T nj— 5

where v=fc is the speed reached in R after a
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proper duration T.

Let us express the distance x tfraveled in R as a
function of v:

dX y?; 2 ﬁ
v=— then x:deZIEvdvz f(_—z)mdﬁ

¢
g- (1

and after infegration: |x=

2 1 _1)
=

¢
g

Let's calculate the galactic time ¢ :
c
t-fdr—fy dv=_ ] P

We perform the change of variable
B=sinO and we find:
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We can now express the position, speed and
acceleration as a function of fime ¢ .

C2 2t2
x=5] 14951
g c
\% ¢ 2,2
- t
c’ and  y=(1+%2
1+— c
t
— g -9
a g2t2 3/2_¥
1+ )
c

We can also express the proper time t as a function
of galactic fime t .

2.2
t=£y[3 then rzgln \/1+%+g_t
g 9 c C
and rzgargsh gt
g c
2
tZESh ﬂ X:C— ch ﬂ _1]
C g C
212 2\2
(ctP—|x+& :(C_
g g
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The speed tends towards the maximum speed c. For
low speeds, the speed increases linearly with time,
we find the classic limit v=gt.

Next page, the variation of the temporal dilation
factor as a function of galactic time. We have a
horizontal tangent at low speeds. When the speed
increases, we tend tfowards the ultrarelativistic
asymptote y~gt/c, y then varies linearly with
galactic time.
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Previous page, the acceleration of the ship seen
from the starting frame of reference. Although the
acceleration remains constant in the proper frame,
observed from the Earth, the speed reaches a
ceiling and the acceleration decreases in gamma
cubed. We have a horizontal tangent at low speeds,
a zero infinity limit, and an inflection point at t=c/2g.
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Previous page, we see, affer 6 months, the position
move away from the forecasts of classical mecha-
nics. In Newton's theory we had a parabolic branch
while in the context of special relativity we have a
hyperbolic branch with an ultrarelativistic asymptote
x=ct—c’lg where the galactic distance traveled
increases linearly with time.

Below, the traveler's time accelerated according to
that of those who remained on Earth:

35 | T (months)
30
Proper time as a function of Galactic time
25 -
20 e =
T
2 [,
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P
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Horizon concept:

We get the Minkowski diagram by simply reversing
the x and t axes. We find that the asymptote
t=x/c+clg represents a horizon. For terrestrial
observers, it is impossible To communicate with the
vessel after a period of time t,. =c/g (approximately
11.4 months). Indeed, aftfer this period, a photon will
no longer be able to reach the vessel. On the other
hand, the occupants of the accelerated vessel will
be able to continue to send us messages throughout
their journey. They will also be able 1o permanently
receive messages from Earth, but they will be earlier
thant,,..

35+

t (months) Minkowski

30} Diagram

25+

X (light-months)

-15 -10 -5 0 5 10 15 20 25 30 35
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As the proper time t increases, the astronauts see
the inhabitants of the Earth slow down their motions
and freeze at the time limit ¢,

a Rounp 1rRIP

We want to join an exoplanet at a distance D from
our planet Earth. We will be under artificial gravity for
the entire round ftrip. We accelerate the first half of
the trip and then, after turning the ship around,
decelerate to the exoplanet. We repeat the reverse
procedure for the return.

2
First phase: %:C—

( for D=4 light-years, Bmux=95% and y=3)

Duration T for the round trip:

T ¢ max 4c gD
ond T=—4/[1+=—| —1
4" g\1— B2 g 2¢”

Proper time T for the round trip:
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Photon rocket:

A light beam, created by the rocket, propels it by
reaction. For example, matter and antimatter, in
equal parts, are placed at the focus of a parabolic
mirror, and, by annihilation, produce pure energy
projected backwards in a parallel beam.

Y

Yvyy

Consider the following case, a particle and its
antiparficle meet and create two photons which go
in opposite directions. One goes backwards and the
other forwards. The backward one does not
contribute to the propulsion, on the other hand, the
second one contributes doubly, because the
reflection on the mirror is supposed to be perfect. On
average, each photon transfers its impulse to the
rocket. Ultra-relativistic particles are just as efficient
as their mass energy converted into light.

More realistically, a photon is sometimes absorbed
by the gamma shield. The efficiency is then 50%.
Also, part of the energy of the absorbed gamma
rays can be reused to heat a gas to a very high
temperature. The thermal agitation generates a very
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important ejection speed'.

On the contrary, if a neutrino is created by the
reaction, it carries away energy that is lost for
propulsion.

The photon rocket is close to the perfect model, we
can otherwise talk about an antimatter rocket.

Annihilation reactions

e+et—s Y+Y Ey=s511kev
~10ns

e- Ve vu —> Y ¥

2.2;1,5/‘ +et

wovy,

26ns/ f

D+P —> 29% 7+ 29% T + 38% ° + 4% KYK KP...

26ns 9x10s

ut v, Y ¥ Ey=67.5 MeVv

2.2us +e"

et VeV, —> Y ¥ 5llkev

Proton-anfiproton annihilation is more complex and
creates cascades of particles. y photons, even more
energetic than for electron-posifron annihilation, are
created.

11 NASA proposes a rocket propelled by a positron reactor. These are
annihilated with electrons in gamma photons. The heat produced
heats liquid hydrogen. www.nasa.gov
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Technical dafa :

Travel To Proxima Cenfauri / Distance 4.2 ly.
Traveler duration 3.3 years - Galactic 5.5 years.

Astronauts: 6.
Pressurized module: 3 / 10t / 6mx10m
Main Module - Technical Module - Leisure Module

Total height 126m / Diameter 15m / Total mass 2420t /
Payload 20t / Antimatter mass 1200t.

Antimatter: Proximium / Density 0.2 / 200 kg/m?”.
Matter: Everything, except the payload, is progressively
annihilated with the Proximium (shields, motors, etc).

Acceleration max 3 g / Speed max 89 % of C / Ymax 2.2 /
Periods Acceleration: aq.g 2 g. sleep 2.8 g
Periods Speed: aa., 0.3 9. sleep zero g.

Interstellar shield: 140t / Protects from the intferstellar
medium 0.6 proton/cm® / vertex angle 38° / Trax 498°C.
This shield is used on the first half of the course. Affer
turning over, the mofors are forward, and the radiation
pressure pushes the interstellar medium away.

Gamma shield: 860t / Protects passengers and Proximium
from the rays y emitted by the motors / Armoring Pb of
20 cm, or concrete 1.2 m, reduces the flux by a factor 10°.

Rocket mofor: efficiency 50 % / 1st phase 7 M P-2 / Thrust
TIOMN / Dg1gmox 11 9/s Proximium /2nd 1 M P-2/ 3rd 1 M
P-1 Thrust 2 MIN / v.=150 000 km/s.

Comparison :

Saturn V / M=3038f / H=111m / D=10m / Mpopeiant=2829t /
Prax34 MN / 1st stage 5 Moftors F-1 ve=2.6 km/s D.=13.6 t/s
Kerosene~Ox() / 2nd 5MJ-2 / 3rd 1 M J-2 v.=4.1 km/s
Ho(D~O,() / Duration 11 min 30 s from O fo 164 km.
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Exercises

1. AAA Half-time

Leaving Earth, the ship reaches Proxima in a
uniformly accelerated motion in two steps: the
rocket cuts off its engines halfway through the
journey, giving it time to turn around, and then
arrives at Proxima at zero speed.

Compared to the stars considered fixed, what will be
the distance traveled at half the time elapsed
before the turning point? Is the result modified
according to whether one considers the time of a
fixed observer with respect to the stars, or that of a
fixed observer with respect to the rocket? What
about classical mechanics ?

We take, as usual, the following values :

D=4 al, a=g=10 m/s* and c=3x10°m/s.

Answers on page 374.

2. AA/ Redlity show

On January 1, 2100 at 12:00 noon, the crew of the
Galaxys spaceship leaves at constant acceleration
for the other end of the Milky Way.

Every day on Earth a reality show fells the
adventures of the astronauts. And conversely, the
astronauts also produce a daily program with the
information received from the Earth during a proper
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day on the spaceship. But due to time dilations,
during a day on Earth we don't receive the news of
a whole day lived on board the spacecraft, and
vice versa. Light signals are used to transmit
information.

a - Preamble: Determine the expression of position x
as a function of y, and that of y as a function of .

b - Reality TV programs on Earth :

1- Let L, e the instant when the message
corresponding to a proper time T is received (the
instant ¢ is simultaneous to T in the galactic
reference frame, but the reception of the message
due to the finite speed propagation of the wave is
of course later). lllustrate the situation on a Minkowski
diagram using the different worldlines (Earth / Ship /
Photons).

2- Express ., s a function of T, and t as a
function of .

3- Six months after their departure the
astronauts send a message to Earth. How long after
departure is the message received on Earth?

4- One year after departure, the daily reality
shows will correspond to how much fime spent in the
spacecraft? Same question ten vyears affer
departure.

C - Reality show in the vessel.

1- Let 1, e the instant when the message
corresponding to a terrestrial time ¢ is received.
lllustrate on a Minkowski diagram.
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2- Express T, s a function of £.

3- Six months after departure a message is
sent to the astronauts. How long after their
departure do they receive it?

4- One year affer departure, the daily reality
TV shows will correspond to how much time spent on
Earth? Same question ten years after departure.

d- Doppler effect for an accelerating frame :
Both from the Earth and from the spacecraft a blue
light signal is regularly emitted (A=400 nm).

1- Establish the relations between the emitted
frequency and the received frequency for the two
reference frames, the inerfial and the accelerated
one.

2- After how long will the signal emitted from
the Earth be perceived as red on board the vessel
(\=800 nm) ?

3- For the same time elapsed on Earth, what
will be the color of the light signal received?

4- |Is the Doppler effect symmetrical as in the
case of inertial reference frames?

Answers on page 375.

3. AA/ Head-to-head

Two vessels are fraveling in opposite directions, at
the same time and under the same conditions, the
routes from Earth to Proxima and Proxima to Earth.
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The rockets are animated with uniformly accele-
rated motions and complete the journey as
described in this chapter.

a - Halfway, at the equidistant point, two light-years
away, the ships shut down their engines to turn
around. What is the galactic speed of the ships?
What is their relative speed?

b - Same questions a quarter of the way.

C - Propose a technical means that would allow the
ships to measure their relative speed.

d - Express the galactic speed v as a function of the
proper time T.

e - Express the relative speed v, as a function of .

f- Determine the acceleration a, of the spacecraft
coming from Proxima from the point of view of the
reference frame of the spacecraft coming from
Earth as a function of .

Determine this relative acceleration at the start,
halfway and a quarfer of the fime of the
spacemen’'s outward journey.

Is the relative motion of the spacecrafts uniformly
accelerated?

What results would we find in Newtonian mecha-
nics?

Answers on page 379,
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METRIC

A metric is used to measure distances. In relativity,
the tool is generalized to space-time. We will give
the metrics of the inertial frame of reference, of the
uniformly accelerated frame in rectilinear translation,
and of the uniformly rotating frame. We will then be
able to determine the spacetime structure in our
spaceship on its way to Proxima. What will be the
geometric properties in the vessel? How does time
flow at the different stages of the rocket?

Finally, we will make a parallel with the black hole
metric and thus build a bridge to general relativity.
To answer these questions we will infroduce the
concept of metrics through various examples.

a EucLDEAN METRIC

We measure the distance between two points. The
metric can be expressed in different coordinate
systems to calculate a distance, which is invariant,
Let us take the case of two points M; and M, on a
plane. If the coordinates of the points are Cartesian,
M (X1, y1) and Ma(Xs, Y2), the distance is given by:
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L:dM Mv=\/<xz_xl)2+(y2_.)/1)2

1 2

di

We can also determine the length of a curved path
taken by a particle by integrating between the two
points:

M,
L=dyy=[dl with dP=d+dy’

M,
This element d I is our metric for this example.

In the case where our physical problem has a
central symmmetry (common case, as for the motion
of planets), the polar coordinates may be better
adapted. We will have the same final result, but, in
one case the computation can be very long, and in
the other, very short. In polar coordinates these
same points have the coordinates Mi(ry, 61), Ma(rs, 62)
and dI’=dr’+(rd6)’. With x=rcos® and y=rsinf,
we find the Cartesian metric, the steps are well
equivalent .
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Cartesian coordinates: y

M(x,y)
X € J-wo ; +oof
y € J-oo ; 4oo]

Polar coordinates: 0

M(r,8)
re[0; 4+mw[

0 e0:2n 0o X

In Euclidean geometry the length of an object (like
the duration of a phenomenon) is the same for all
observers. Whether one carries out a translation, a
rotation, or a Galilean transformation of the coordi-
nates, the length L is invariant (done in exercise on
page 159).

More generally, the laws of Newtfonian mechanics
are invariant according to these transformations.

This is not the case for a dilafion: if x'=kx, y'=ky
and z'=kz with k the dilation factor, then,
dl*=dx"“+dy *+dz"”, d1'=kdl and L'=kL. The laws
of physics depend on the scale, they are not the
same for the infinitely small and the infinitely large.

The straight line is the shorfest path between two
points. We can fake a rope and pull it fo get a
straight line. It is the path between M; and M, which
minimizes L.

The Euclidean metric corresponds to a flat space:
The sum of the angles of a triangle is equal to 180°,
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the ratio between the perimeter and the diameter
of a circle is equal to i, and every straight line has a
single parallel line passing through a point outside it.

@ METRIC ON THE SPHERE

To better illustrate our point, let us take the case of a
two-dimensional spherical space. You have to put
yourself in the place of two-dimensional beings (the
bidiz) who live on the surface of the sphere and are
unaware of the third dimension. Euclid's postulates
are no longer verified. We have simple counter-
examples:

o To draw a circle, we fix a point, we aftach a
rope to it, and, with a tight rope, we turn around to
tfrace it. The circle centered on the north pole and
perimeter of the equator has a perimeter/diameter
ratio equal to 2, a value much less than .

o Now let's construct a particular friangle: we
have a first point at the north pole, we get a second
point by joining along a straight line the equator, we
turn at right angles to the east and we then follow
the equator for a quarter furn, we turn at right
angles to the north, and we refurn to the north pole
to finish the triangle. We have an equilateral friangle
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and all three angles are right. The sum of the angles
of this friangle is 270°, a value much greater than
180°.

o Imagine yourself living on the surface of this
sphere. You want to go on an adventure and
discover unknown lands. You are unaware of the
curvature of your 2D space, you go in a straight line,
deviating neither to the right nor to the left, and
finally you end up reaching your starting point from
the opposite side! This is very disconcerting. The
straight lines of the sphere are circles of the same
radius as the sphere (the largest circles that can be
drawn). For example, the line of the equator, a
meridian, are straight lines for the sphere. You
cannot draw parallel straight lines because they
infersect. A latitude forms a circle with a radius less
than that of the sphere, it is not a straight line: an
airplane, to reach two cities at the same Iatitude,
does not follow a latitude because it is not the
shortest path .

We can clearly see, on these three examples, that
the space on the surface of a sphere is not
Euclidean. It is not a flat space but a curved space.
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Geometry of the Sphere

Circle centredon C:
Perimeter P.
Diameter D=AB.

P/D=2<m

Triangle NEF :

Sum of angles:
ox+B+y=270°

> 180°

Straight line D :

All straight lines D'
passing through P
intersect D,

There are no parallel
straight lines

Euclid's postulates are not verified.
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The curvature can also be seen on the metric that
bidizs would use, we give it for information':

dx’+dy’

2

dI’=
X2+y2

1+
4R?

x and y are the two Cartesian coordinates internal to
their two-dimensional space. Even if they don't "see”
the third dimension, they could deduce it concep-
fually. It's a useful analogy for the little three-
dimensional human beings that we are. Perhaps we
ourselves live on the "surface" of a four-dimensional
hypersphere, just as bidiz live on the surface of a
hypercircle (a sphere for us!).

Here is a nice way to solve the problem of the edge
of the Universe: if the Universe is not infinite, there
should be a wall to define its limit, but what is behind
the wall? If we live on the volume of a hypersphere,
we have a Universe of finite

volume, without border and A finite Universe
without center. without edge
An elegant vision allowed with without center.
a curved space.

12 Geometry, Relativity and the Fourth Dimension, Ruldolf v. B.
Rucker, 1977.

141



Geometries of Euclid and Minkowski

dl
dy

dx

dI>=dx’+dy’

dy
dz

dx

dt

dt

dx/c

dr’=d®-dx*/c?

dt

dI’=dx*+dy*+dz’

Spatiotemporal
Hypercube

dv’=dt*-dx*/c?-dy*/c*-dz*/c?

dr

dy/c
dx/c

dv’=dt*-dx*/c-dy?/c?

dz/c

\J
dt
A8

dr

dx/c

dy/c




a Minkowski METRIC

The time is now a coordinate intfegrated with the
other three of space. It is the metric of special
relativity. We have shown page 65 that the new
invariant is:

ds’=c*dt’—dx’—dy’*—dz’

We discern a temporal part and a spatial part, dt
and d I’=dx’+dy’+dz’, then T=] d¢ and L= | dl.

But this two quantities T'and L are not invariant.

Straight lines, also called geodesics, maximize the
proper time T, invariant quantity:

“C:f Jde—dPIc? (particle : ds*>0)

Minkowski metric is invariant by translation, rotation
and Lorentz transformation.

@ METRIC OF AN ACCELERATING FRAME

We give the metric of the frame of reference in
uniformly accelerated rectilinear translation studied
in the previous chapter. This frame is not inertial and
the metric is therefore necessarily different:

ds’=

2
1492 2 dt*—dx*—dy* —dz’

Cc

We recognize a Euclidean-type spatial part, so
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space is flat in the ship. Regarding the structure of
space-time as a whole, we prove that this metric
corresponds to a spacetime, also flat. For that it is
shown that the components of the Riemann
curvature tensor are all zero. This is very consistent
with what we say about general relativity: in the
absence of mass, spacetime is not curved®.

For an immobile object in the reference frame of the

rocket:
1+9%

2
c

dt= dt

We note, for observers motionless with respect to
each other in the accelerated frame of reference,
that fime does not flow at the same rhythm
according to where one stands in the vessel. It is a
phenomenon of time dilation very different from that
observed between two inertfial frames of reference
where the clocks are in motion relative to each
other. Here, the clocks are at rest in the reference
solid (the rocket), they are motionless with respect to
each other, and yet they do not work at the same
rate and cannot be synchronized. Let us consider, in
our rocket, three clocks which we will place at three
different levels spaced 120 meters apart. We start by
synchronizing them on the first level at the back of
the ship. We leave one clock at the stern, we place
the second 120 meters forward and the third at 240

13 It's more subtle than that. For example, gravitational waves
propagate a spacetime curvature that persists even in the absence of
mass.
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meters at the bow (we move them slowly so as not
to add another source of time dilation):

+ 1 day

QOO

+1ns

O >0

+2ns

0m 120m 240m

After a day we take them back down to the first
level to compare the elapsed times. First obser-
vation, they are no longer at the same date,
moreover the clock on the second level has turned
faster and is one nanosecond ahead, the third clock
has furned even faster and is two nanoseconds of
advance.

The advance, of the clocks placed "higher" in the
vessel, is calculated using the following expression
which derives directly from the metric :

av=9 A

Cc

with At=1day, H=120m and g=10m/s’,

We will now send photons fromm one floor to the
other. The result will be fun, and, in addition, we will
find the metric, in a simple and intuitive way, without
using a mathematical arsenal. You are on the
second level and you send a photon down. By the
tfime the photon moves to the bottom, the ship has
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gained speed. Speed measured in the inertial frame
of reference which coincides with the accelerated
frame of reference of the rocket at the time of the
emission of the photon.

Put yourself in the place of the one receiving the
photon at the bottom stage; it is now at a velocity v
with respect to the emitter at the moment the
photon was emitted. So we have a Doppler effect
and as we get closer to the source, the photon
‘blues’. The photon passes very quickly from one
stage to the other and the speed of the rocket
acquired over this time is very low; we will therefore
only use classical formulas.

Speed acquired by the rocket : v=gt

and t=§ for the photon, then V:%.

Frequency received: fr=(1+p)fz=

gx
1+
c

fe

We find the expected blueshift. Of course, if the
photon is now sent forward, its frequency decreases,
and there is a redshift:

X
fr and Te=|1+92
c

X
fR=(1—gC—2 T, (small variations)

This result is directly related to the metric, because
the clocks are motionless with respect to each other
in the rocket's frame of reference, and each
oscillation of the light wave can be considered as a
mini-flash emitted by the clocks. For example, for an
emission wavelength of 600 nm, the source clock
emits 500,000,000,000 mini-flashes every second, and
a clock placed 120 meters forward receives 7 less
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mini-flashes during one of its own seconds (by
Doppler effect the signal reddens as it rises and the
frequency decreases).

The observer placed higher up thus deduces that
the time flows slower on the floor below and faster
on the floor above.

And that's not all, we can sfill broaden our
understanding through an energetic approach. In
physics we have the conservation of energy, and
this fundamental law applies to special relativity by
including the mass energy given by the famous
formula E=mc’.
We are going to move an atom from one floor to
another. At the lower stage the atom is excited, we
take it up in this stafe fo the upper stage. Raising a
mMass requires energy from the operator. In a uniform
acceleration field the energy received by an object
of mass mis mg H. The energy of the atfom increases
by m,g H, where m; is the initial mass of the excited
atom.
Then, the atom returns to its ground state and emits
a photon of energy e.=hf.. We then go back down
the atom, so the operator receives an energy m,. g H
where my is the final mass of the de-excited atom.
And finally the photon of energy e,=hf, is
reabsorbed by the atom. The balance of this little
game must be null because the energy must not
vary:

-m,gH—hf_ +m.gH+hf,=0
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Afom baolance:

An excited afom A* is heavier than a de-excited afom.
The difference in mass gives the energy of the emitted
photon: A" A+y
Am c*=(m"—m)c’=E, E,=AE=E,~E=hf

By spontfaneous emission, the electron, linked fo the
atomic nucleus, passes from the upper level E, to the
fundamental level E; by emitting a photon of energy
equal fo the energy difference of the electronic levels.
More particles are linked, more binding energy is
important and more the mass of the edifice is low.
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The variation of the mass of the atom is due to the
emission of the photon:
1+£),

c
The received photon has a different energy than the
emitted photon and we find the same expression as
before. The photon gains energy when it goes down,
it turns blue, and loses energy when it goes up, it
reddens. The conservation of energy makes it
possible to find the Doppler effect, the time dilation
as a function of the position and the metric of the
uniformly accelerated frame.

so AE=hf, and fr=fs

We will study the Ilink between the uniformly
accelerated reference frame and the reference
frame of Schwarzschild, used for massive objects
with spherical symmetry (planets, stars, black holes,
etc.), in the following pages.

@ METRIC OF A ROTATING FRAME

We are now going to approach another textbook
case which can also be freated with special
relativity. A case whose study opens the doors of
practical applications, such as the ring laser
gyroscope' which allows orientation much more
precisely than with a mechanical gyroscope or a
magnetic compass. The ring laser gyro has been
used in ships, submarines, airplanes and satellites
since 1963.

14 Use of the Sagnac effect conceptualized in 1913.
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We have a disk of radius R rotating uniformly around
a fixed axis. The disc is a rigid solid'® whose speed
increases linearly with the distance from the axis..

R<c/ow

The speed is measured in an inertial reference frame
R where the axis is fixed. We now place ourselves in
the non-inertial frame of reference R’ of the disc. Let
us take a circle concentric with the axis of rotation,
we measure the radius p with a stick of unit length.
Then we begin to measure the circumference by
fransferring the stick as many times as necessary. For
each report we use the inertial frame of reference
coinciding at the location and given fime. There is
no contraction of the lengths radially, because the
speed is perpendicular to the measured length, on
the other hand in the orthoradial direction we are
colinear with the speed and the length is
confracted.

By dividing the perimeter of the circle by its
15 The rigidity criterion is verified for the disc in uniform rotation and

the uniformly accelerated rocket: L'espace-temps de Minkowski,
Nathalie Deruelle.
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diameter, the value is greater than m, the space is
curved',

Let's determine the metric by performing the
following change of coordinates'’:

t'=t
p'=p
0'=0—wt
z'=z

The metric in the inertial frame R is:
ds’=c*dt’—dx’—dy’—dz’

This standard expression given in Cartesian coordi-

nates is also written in cylindrical coordinates, a

coordinate system that facilitates calculations for this
problem which has an axis of symmetry:

ds’=c’di’—dp’—p°d®*—dz’
The interval becomes in R, removing the z
coordinate for simplicity:

ds?=ds’=c’dt"”—dp”—p"”(d0'+wdt ')

from where, by removing the prime symbols fo
lighten:

2 2
dsZz(l—p—(f)Czdtz—z p'wdt do—dp’~p’de’

Cc

16 It is a new pseudo-paradox of special relativity, presented in 1909
by Ehrenfest as an internal contradiction of the theory. If we accept
that the space for an observer of the disk is non-Euclidean, the
contradiction disappears.

17 Detailed articles: Space geometry of rotating platforms: an
operational approach, and, The relativistic Sagnac effect: two
derivations, Guido Rizzi and Matteo Luca Ruggiero (2008).

1561



By calculating the components of the Riemann
curvature tensor (done in the next chapter) we find
that all the components are zero. The spacetime of
the uniformly rotating disk is therefore flat'®, We are
well within the framework of special relativity, there is
no spacetime curvature, no mass present’, and the
spacetime is well flat.

Special relativity applies in flat spacetime: a change
of coordinates allows us to find the standard
Minkowski metric again. In general relativity, in the
presence of gravitation, this is only possible locally
around an event: orders zero and one can always
coincide with an inertial frame of reference
(Minkowskian spacetime), on the other hand, this is
no longer possible for order two, this is where the
spacetime curvature is expressed.

We can create an artificial gravity with a rotating
circular platform. The advantage, compared to the
rocket continuously accelerated by the thrust of its
reactors, is zero energy to spend. Once the disk in
rotation, by conservation of energy, the disk keeps its
kinetic moment, and gravity is maintained inde-
finitely for the occupants. On the other hand, the
created gravity is not uniform, and, in addition to the
centrifugal force that simulates gravity, there is the

18 You will have noticed the subtlety encountered here: space is
curved and spacetime is flat.

19 As with the uniformly accelerated rocket, there is no mass present
which creates a gravitational field and curves spacetime. The mass
of the rocket, or of the disc, is here totally negligible and does not
influence the metric. We are talking about test mass.
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Coriolis force that complicates the motion of the
astronauts.

2g

To minimize these two drawbacks, the radius of the
centrifuge must be large enough. The centrifugal
acceleration gives: gzu)zp and Ag/g=Aplp. For a
variation in arfificial gravity of less than 1% between
the feet and the head, a radius of about 200 meters
is required. And the corresponding angular speed of
rotation is two revolutions per minute:
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w=2xf and f:i .

e

The Coriolis acceleration is written @,=2®AV,. When
the astronauts run around the wheel, they feel
heavier running in the same direction as the
centfrifuge and lighter running in the opposite
direction, it is not very disturbing. On the other hand,
if they bend up and down, they can be pushed
sideways by the Coriolis force, which can be
annoying.”. Let's calculate: a./g=2v,/wp=2v,/\Vgp,
for a speed of 20km/h, a,/g=24%. This is not
negligible, but we can consider it reasonable.

Now let's look atf the fime dilation. For an observer at

rest:
2 2 2 2
dv=41-P2 dt:(l—p @

2 2
c 2c

For observers who are immobile in respect to each
other, time does not flow at the same pace. A set of
rest clocks at different points on the disk cannot be
synchronized. The farther away from the axis, the
slower the clocks go.

We place, according to the same protocol as for the
rocket, a first clock at p=370m, a second at
=300 m, and a third at p=200 m.

(p3—p1) 0°

We find: At= >
2cC

At.

20 Funny video: www.voyagepourproxima.fr/Manege Tournant.mp4
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After a day we bring the clocks back down to a
radius of 370 meters: the one at 300 meters
advances one nanosecond and the one at 200
meters advances two nanoseconds. Here, the
advances do not vary linearly with the distance. The
gravity is 1.5 g at 300 m and 1.85 g at 370 m, a good
exercise to build muscle and stay young!

We take back our excited atom. We count the work
received by the atom at each step. We mount it

from p1=300 m to p2=200 m. The atom then gains a
potential energy:

1
wi=—Ae,,;=[m; g(p) dp=m,0’ [ p dp=5m,0’(p;~p})

It emits the photon: w,.=—e.=—hf,

1
It goes up: wp=—AepF:§mpw2(pi—p§)

It receives the photon: w,=e,=hf,

We perform the energy balance:

1 1
S (p3=pr)=hfr—5meo”(p3—p;)+h fr=0

w’(p;—p3)

and we obtfain: fr=fg(1+ >

2c

The photon turns blue as it moves away from the axis
of rotation. We always have the same phenomenon,
the photon reddens as it goes up and blues as it
goes down.
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@ SCHWARZSCHILD METRIC

For comparison, we give the metric of spacetime
around a massive object with spherical symmetry. It
is the Schwarzschild metric of general relativity which
replaces Newton's force of gravity to calculate the
orbits of celestial bodies. For example, it can be
used for studying the moftion of the space station in
the gravitafional field generated by the Earth. In
order to respect the central sylmmetry, the metric is
given in spherical coordinates:

2
ds’= 1—2G]2VI c’dt’— dr —r’d6° —r’sin’0d ¢’
rc 2GM
1- 2
rc

M is the mass of the central body (planet, star or
black hole). This mass creates a gravitational field
and spacetime is curved. There is no global
coordinate change that makes this metric
Minkowskian. Gravitation and spacetime curvature
are absent in the special relativity.

Appears in the metric a quantity with the same units
as a radius, this characteristic distance of the system
is called Schwarzschild radius:

_ 2GM
we define rg=———.
c

As for the accelerated frame in special relativity, we
have an event horizon, here located in rs.
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For an object at rest we obtain the temporal part:

drz\/l—ZGMdt

2
rc

The further we move away from the massive object,
the lower the curvature. At great distance, space
can be approximated as flat, and, according to the
equivalence principle of general relativity, we must
find the form of the metric of the uniformly
accelerated rocket:

GM

2
rc

d'c:(l— )dt for r>ry.

For example, for the Earth, the radius rs is about 9
milimeters. On the Earth ground, about 6370 km
away, the approximation is extremely good?'.

With r=ry+x and ry>ry .

GM
dv,=|1-=2|dt and dr,, ={1-SM[1-% |4
r,C ! r,C o
gives dr, ,,= 1+%)dtr
0 rOC 0

The form is the same as for the uniformly
accelerated rocket:
1+9%

2
c

dt= dt.

21 Also, we can forget the Earth's rotation because the ground speed
can be neglected in front of the escape velocity (geocentric
reference frame).
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We find the equivalence principle when:
GM

—
'y

Here we have also the highest clocks faster and the
ascending photons that redden. On the Earth
ground, over a height of 100 meters, the time lag
reaches 0.9 nanoseconds in 24 hours®. Result close
to that obtained in the rocket®. Locally, nothing
allows astronauts to differentiate the arfificial gravity
field created by the acceleration of the rocket, from
a natural gravity generated by a mass. On the other
hand, over a sufficiently large space domain, they
could differentiate the two situations: the space of
the uniformly accelerated rocket is Euclidean while
that of the massive celestial body is not*.

22 In the case of the space station, even if the 110 meters beam can be
maintained directed towards the Earth with a tidal stabilization, the
clocks remain synchronized. At the level of the station, the gravity
field is still 90% of the one on the ground, but there is no redshift,
because during the rotation around the Earth, the external part goes
slightly faster than the internal part and the effect is perfectly
compensated. This is the principle of equivalence, for the astronauts
everything happens as if there was no more gravitation (they are in
weightlessness) because they are in free fall.

23 In both cases we have clocks at rest in relation to each other, which
become desynchronized. For the rocket, by changing the reference
frame, we can consider that it is a Doppler effect. This is not
possible for gravitation and we speak of a redshift or blueshift.

24 Also in the rocket the proper acceleration is inversely proportional
to the horizon distance, while for the massive object it varies with
the square of the distance to the center of the body. The
equivalence principle is only true very locally.
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Exercises

1. AAA Euclidean metric
d ’=dx*+dy’+dz°

Show that the Euclid metric is invariant by translation,
rotation and a Galilean transformation.
Answers p381.

2. ANA Rapidity

1 - Show that the standard Lorentz transformation
can be written:

ct'=ctchop+xsho
x'=ctsho+xchg
y'=y
Z =7
We used hyperbolic frigonometry and ¢ is the
rapidity.

2 - Show that, for two successive Lorentz transfor-
mations in the same direction, the rapidities are
additive.

Answers p382

3. AAA Rindler metric®
ds’=r’dv—dr’—dy’—dz’
1-What are the invarionces of the Rindler

25 W. Rindler, Relativity, Oxford Univ. Press, 2¢ Ed, 2006, 430 pages.
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coordinate systemn by rotation and Lorentz
tfransform?

2 - Show that this coordinate system corresponds to
that of a uniformly accelerating reference frame.

3 - Show that the following change of coordinates
makes it possible to find a Minkowskian metric:

ct=rsht
x=rcht

Deduce the change of coordinates between the
frame of reference (x, 1) of the uniformly accele-
rated rocket and the galactic frame of reference
& 1).

Draw on a Minkowski diagram, in the inertial frame

R', the set of coordinate lines for x and f.
Answers p382

434 AAA  Free fall in the rocket

In our uniformly accelerated rocket, to pass the fime
during this frip of a few years, we have fun throwing
objects at each other. Whether you drop a ball with
no initial speed, or throw it to your partner, we call
this motion of the object free fall, because it is not
subjected to any force. We explained that the
acceleration of the rocket generates arfificial
gravity. This is locally equivalent fo a uniform gravity
field, but, given the metrics of the accelerated
frame, we suspect that the trajectory of an object in
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free fall will be modified. We will approach the
question in two phases: a first qualitative approach
and then a complete computation.

1-We take two clocks initially synchronized and
stationary in the same place. As in the course, one
will stay in the same place, and the second one will
be moved and brought back to the starting point.
You play the following game: At the start both
clocks indicate zero. You have the mobile clock that
you can move as you wish. The only constraint is that
at one minute exactly as indicated on the fixed
clock, your clock will have to be back, placed very
quietly next to it. The challenge is to get the greatest
possible time on your clock. How do you have to
move it fo win?

Variation of the game: Previously the starting point
was the end point. If now the finish point, while
remaining at the same level, is different, how do we
proceed to maximize the time on our clock?

2 - The path followed by a free particle to go from
the initial event E; to the final event E; maximizes its
proper time:

ax

—fdt f ——dt with g(x)= 1+—

2
Lagrangian: L(x,v)= (X)—v—2
c
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An infinity of passible paths C

links F; to F.

Which one extremes t ?

We know that for the extremal
path, a small variation of the
parameters x and v does not
modify., at order one. the E,
proper time.,

It is a simple mathematical property: aft the maxima
and minima of a function the slope is zero.

Suppose that C is the optimal path and consider C'
infinitely close. At given 1, we pass from C to C' by
small variations of x and v;

o Xo=X-+0X
and
¢ Ve =VetOv

Let's develop the Lagrangian
at the first order:

) ’h
L{x+dx,v+dv)=L(x, v)+—L6x+—6v
dx v

Thus: fL(x+6x,v+6v)dt
2

—6x+a—L6v

—_fovdt+_f oy

dt=t+071

For the searched path 8t=0,

a- Confinue the reasoning and establish the
equation of motion of an object in free fall. Show
that this equation, at the start of the throw and at
low speeds, gives the equation of free fall in
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Newtonian mechanics.
Finally, how will you move your clock to win?

b- Demonstrate the following conservation law:
L— g—i v=cst

We consider the case of a release from rest. Find the
expression of position, velocity and acceleration as
a function of g(x). How does g vary during the fall?
Show that the falling velocity reaches a maximum
and then cancels on the horizon. What is the
maximum falling speed? At what distance from the
horizon?

c- Perform a numerical simulatfion to plot position,
velocity and acceleration curves as a function of
time. When is the maximum speed reached? When
does the object reach the horizon for an observer of
the rocket?

d- Proper time: Give the expression of the proper
time. In its proper reference frame, when does the
object reach the horizon? Suppose that the object is
a mini auxiliary rocket that leaves the mother ship in
free fall. What will happen to the occupant of the
mini-rocket when it reaches the horizon? This small
rocket is very fast, the pilot decides to ignite the
engine to return to the main ship, will he succeed?
You can illustrate the situation on two Minkowski
diagrams (galactic and rocket frames).
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e- Local Minkowskian observer. The coordinate
system of the accelerated rocket is not Minkowskian.
The velocity previously determined in a non-
Minkowskian metric is called the coordinate velocity.
This coordinate system has been constructed in a
non-inertial frame of reference and the assumptions
of special relafivity do not apply directly to it. This
reference frame is nevertheless very useful and
necessary for the occupants of the rocket, but the
speed of light is not fixed at c. This is why we will
consider a new observer, an inertial one. At each
instant and position of the object in free fall, we
consider the Minkowskian reference frame
coinciding with that of the rocket:

2 2 2 2 2
c'dt =c dt, —dx

For example, imagine two rockets fixed relatively to
each other and uniformly accelerated. All of a
sudden, one of them cuts its engine, its reference
frame becomes inertial, and for some fime it
coincides with the rocket still accelerated. Thus an
observer in the rocket which cut its engine is
minkowskien, and he can observe the fall of the
object. What speed will he measure for the falling
object? What will be the velocity of the falling
object at the horizon for a Minkowskian olbserver?

3 - Analogy with the fall into a black hole:

a- The Schwarzschild coordinate system is that of
an outside observer at the black hole. We can
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compare the radial fall of an object towards a black
hole with the vertical fall of an object observed by
the occupant of a uniformly accelerated rocket:

2
dv'=g(r)dt’— Zdr with g(r)zl—ZGZZVI
c’g(r rc
g(r)
tZIL(r,v)dt and L(r,v)z\/g(r)— 1 V—z
g(r)c

Describe the velocity profile of a faling body,
dropped without initial velocity, to the horizon of the
black hole ry=rs=2GM/c’. You will draw curves for
speed and acceleration as a function of r.

What is the maximum speed reached? At what
distance from the horizon?

b- Perform a numerical simulation to plot position,
speed and acceleration curves as a function of
time. When is the maximum speed reached? When
does the object reach the horizon for an observer
outside the black hole?

c- Proper time: Give the expression of the proper
time. In its proper reference frame, when does the
object reach the horizon? Suppose the object is a
spacecraft in free fall. What will happen to the
occupant of the spacecraft when he reaches the
horizon? This rocket is very fast and powerful, the
pilot decides to start the reactor to leave the black
hole, will he succeed?

d- Local Minkowskian observer: The Schwarz-
schild coordinate system is not Minkowskian. We
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have previously determined the coordinate velocity
and coordinate acceleratfion in this coordinate
system. This coordinate system is very convenient
and useful but the speed of light is not fixed at c.
That is why we will consider a new observer, him
inerfial. At each instant and position of the falling
object, we consider the Minkowskian frame motion-
less with respect to the black hole and coinciding
with the Schwarzschild frame of reference:

2 2 2 2 2
c d’t =C dtMink _drMink

Which speed is measured in this way for the object
in free fall? What will be the speed of the falling
object for a Minkowskian observer at the horizon?

e- Comparison to experimental data:

In 2018, a study® of the measurements made by the
XMM-Newton probe, which observed a super-
massive black hole of 40 million solar masses, shows
a wind of matter in free fall towards the black hole
that reaches relativistic speeds:

v~0.3c for r~20Rs

v~0.1c for r~200 Rs
Do these results seem consistent with those found in
the exercise?

Answers p384.

26 An ultrafast inflow in the luminous Seyfert PG1211+143 , 2018,
K.A Pounds, C.J.Nixon, A.Lobban and A.R.King. University of
Leicester, United-Kingdom.
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5. AAA  Fall of a blue ball

We release from rest a blue ball into the uniformly
accelerated rocket and watch it fall in free fall. What
will be the color of the ball perceived during its fall
by the astronauts of the rocket?

Answers p404.

6. AA/ Trajectory of aray of light
in the Einstein's Elevator

Albert Einstein proposes a thought experiment in his
book Relativity written in 1916. We imagine a portion
of empty space infinitely distant from all masses. We
have at our disposal a large box in which an
observer evolves in weightlessness. A hook makes it
possible to exert a constant force on the box by
means of a rope, which is then animated by a
rectilinear translation motion uniformly accelerated.
The observer thus experiments an artificial gravity.
Compared to the immobile box, constituting an
inertial frame of reference, the tfrajectory of a light
ray of speed c is rectilinear. On the other hand, in
the box accelerated by the traction of the rope, a
light ray, here, initially perpendicular to the direction
of motion, will fake a curved trajectory. Let's quote
Einstein: ‘It can easily be shown that the path of the
same ray of light is no longer a straight line".
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1 - Newfonian
approximation:
We consider the speed of
light constantly equal to ¢,
and the rectilinear frajec-
tory, in the Galilean frame
of reference which initially
coincides with the box.
For a constant
acceleration box a,
determine Ax.
Express the equation of the
frajectory y(x) and of the
light speed v(x) in the
accelerated frame.

2 - Special Relativity:

il

X

We answer the same questions as above. For that,
we first consider the equation of the light ray
worldline in an inertial reference frame. Then, with
the appropriate change of coordinates, we obtain
the equation of the worldline in the non-inertial box.

3 - Drawing of curves.
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7. AA/ Spherical coordinate system

Spherical coordinate system definition:

z —
Uy
M(r.6,¢) Uy,
r € [0,+0] MA
6 € [0,7] 0 ' -
: u
¢ € [0.27] ~ : :
P
0 i y
\\‘\ E E(PI
c— ] N
X ¢ O
H

1 - Conversions between spherical and rectangular
coordinates.

2 - Express the position vector F=OM and the

infinitesimal element vector c_lFZMM " between M
and M'infinitely close.

3 - Find by integration the surface and the volume of
a sphere.

4 - Definition of plane angles and solid angles: from
an observation point O, we observe an object. The
extensions of the periphery of the object cuts an arc
on the circle unit of center O. The length of this arc
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gives the value of the angle in radians under which
we see the object. In 3D space the circle is replaced
by a sphere unit on which a surface is cut out. The
area of this surface gives the solid angle in
steradians under which we see the object.

a- From which solid angle do we see the whole
space? The starry sky on a clear night? A room from
one of its corners?

b- Calculate the solid angle of an angle cone a.

c- What is the probability that a star is in the plane
of the ecliptic within ten degrees?

Answers p407.
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FOUR-VECTORS

We have infroduced special relativity through the
Minkowski spacetime: events space with its metric”.
We can extend this points space to build more
complex elements such as vectors or fensors.

The following presentafion is a bit formal but
necessary for a full understanding of relativity. We
will continue to rely on a geometrical vision as soon
as possible.

The elements of a vector space E are vectors, noted
in this book with bold letters : v.

If we need to specify that we are in a Euclidean
vector space, we will use the classic notation with
arrows : V.

In the case of the Minkowski space, we can clarify
the context by talking about four-vectors noted with
tildes : V.

27 We considered the standard Minkowski metric of an inertial frame
ds*=c*dt*—dx*—dy’—dz* in an orthonormal Cartesian coordinate
system. While keeping an inertial reference frame, the form of the
metric can be different. For example, in cases where the metric is
expressed in a non-orthonormal or non-Cartesian coordinate
system. We then speak of Minkowskian metric. When the change
of coordinates gives a non-inertial frame of reference (as for our
rocket and the rotating disk) the special relativity is applied by
adding metric effects (page 229).
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In general, a vector can be uniquely defined from
two points (or events) in our space (or spacetime):

v B v
v=AB v
A
Vector space is affine and with a third point we have
the relation AC = AB + BC .

BC
AB

A AC

By multiplying by a real we have a new vector k& AB
and the vector is directed BA =-AB. Any linear
combination of E vectors is a new E vector.

We express a v vector in a basis.
The basis vectors are denoted e;
and form a spanning and
generating set of E.

For a vector space of dimension n:
n

1 2 i i
V=V e +v e2+...+v”enzz vie,=V'e,
i=1
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We use Einstein summation convention, the
summation is implied for a repeated index up and
down. The v' are the components of v expressed
with the basis vectors (e, e, ... , en).

Scalar product of two vectorsaand b :
— (A Jp \— ipJ
a-b=(a'e,)-(b ej)—ei-eja b
We define the components of the metric tensor g
such as: g;;=e;e.

SO a-b:gijaibj.

For example, for n=2, we have:

a-b:glla1 b1+g12a1b2+g21(12b1+g22a2b2

The scalar product® is commutative and the

components of the metric tensor are symmetrical:
9;=9ji
We can write the components of the metric tensor in

a matrix.
For example, for n=3 in the basis (e, e,, e;) :

gdir 912 Y3
9=(921 922 Y3
g3z1 Y932 Yaz

We have a second way to project a vector. The first

28 In math, we talk about bilinear form, it associates to two vectors a
number, called scalar.
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components, given above, are obtained parallel to
the basis vectors. We can obtain a new set of v,
components with orthogonal projections:

v-ei=(vjej)-ei=gijvj= V.,

1

We then have a new basis associated with these
new components: eizgijej. The gij are calculated
from the g, with: gikgkj=6ij where 8/ is the
Kronecker delta, null, if the indices are different, and,
equal to one, if they are equal.

We then have a new writing :

v=v.e

1

Lower-index objects are covariant quantities, while
upper-index objects are contravariant quantities.

For example, the components Vv. are covariants
and the basis vectors e' are contravariants. The
components g;, are two times covariants and the

tensor g” is two times contravariants. We will see the
precise meaning and importance of this vocabulary
at the moment of the change of basis.

The metric tensor allows us to switch between these
two types of quantities.

In the end, we can have four different writings for
the scalar product:

a-b:gijaibjzaibi:aibi=gijal.bj
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Orthogonal vectors: a-b=0.

In the case of orthogonal bases:

if i# then g;,=0.
141 212
For example, for n=2: a-b=g,,a b +g,,a b

g9,, O
0 g5

and g=

Vectors, tensors and scalars are essential mathe-
matical objects for physics. The laws of nature are
expressed using equations constructed from these
three types of objects, because if we change the
basis, the laws keep the same form. The new basis is
associated with new coordinates used to redlize a
franslation, a rotation or a change of Galilean or
inertial reference frame. We will study the change of
coordinates later.

Following this somewhat abstract interlude, let us
approach different practical cases.
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a EucLIDEAN VECTOR SPACE

Newton's laws and all classical mechanics is built
with vectors, scalars and tensors.

Newton's second law:

F=mad
Kinetic power:
dE, d |1 o
P,=—Xt=—|-mV-V|=P=F-V
ot dt(Z

Angular momentum:
do d e s =
—=—\mrAV|=rAF .
dt dt( j

All these laws keep the same form by translation,

rotation and Galilean fransformation. The use of

vectors assures us that.

In Euclidean geometry the scalar product of a
vector with itself can only be positive or zero, we can
then define a norm:

V][=vv-v
The norm is positive definite:

e Vv-v=0.

«  v-v=0 ifand only if v=0.
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In Euclidean geometry, the norm of a vector is repre-
senfed by its length and this length is independent of the
chosen basis. Starting from O, all the ends of vectors of
the same norm are placed on the same circle (we have
represented four vectors of norm 2).

A property of the circle: if we draw a radius OM, the
tangent (1) is always perpendicular fo (OM). We thus
obfain a pair of orthogonal vectors:

u-v=0,
For a set of concentric circles of radii mulfiple of unity, a

line through O infersects the circles at a set of equidistant
points.
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Geometric determination of the scalar product:

d-b=|dll|[bllcos (@,b)

OA-OB=0A X OB X cos0

=+OH ,XOB

In the end, if we find an orthogonal vector 1, the
dot product comes down to that of two collinear
vectors and the value is the product of their radii:

d-b=¢-b=+R.XR,

The sign is positive if the two collinear vectors are in
the same direction, and negative if they are in
opposite directions. We have two equivalent

options, find a vector orthogonal to d or to b.

o Orthonormal Cartesian bases:

y
vi=y v We can always go back fo
] an orthonormal Cartesian
basis:
B é-¢.=90. .
i ] ij
Tk For example, for n=2, we
&|c have in this case:
el |

180



o=fs 3

G-b=a'b'+d’b’
and for the norm:

v=A=V (v ()

The covariant and contravariant components are
then identical. The same applies to the bases.

o Normal and non-orthogonal Cartesian bases:
Case for a vector of the plane (2-vector) :

We know the contravariants
components of V inthe
covariant base:

v=v e tv e,=e +2e,

1 cosf

with 9y, = cos 0 1

V=

and 6=Z
3

Let's determine the covariant components of V :
_ Jj_ 1 2
Vi=g;jV'=0inV 13,V

1 2 1 2 - >
vV,=¢g.,V +g,,V =v +cosOv =2=v-e,
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— 1 2 __ 1 2_5__.._.
vV,=¢g,,V +g,, V' =cosOv +v =5=Ve,

We now have two

possible decompositions

for v :

— —_ - - 5 -

V=6,+2¢,=2¢'+=¢’
2

Y >

Let us determine the metric tfensor components in
the contfravariant base:

9ng +9,9" =9/

919" ' +9,g" =1 then g''+cosbg’'=1
911912+912g2220 and glz:—cosf)g22
919 °+9»g =1 and cosBg’+g’=1
929"+, =0 and g*'=—cosbg"
so: g''=g°*=1/sin°0

and g¢'°=g°'=—cos0/sin’0

Metric: g¢"/= 12 1 —cos 0
sin“ 0

—cos 0 1
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Let's find the contfravariant basis:

=i ij—> __ il-> 2>
e=g e;=g e+tg e,

>1__ 11> 12 > _el—COSBeZ_4(_, 1-»)
SO e =¢g el+g ez——. > =—\e,—=e,
sin“0 3 2
—cosfe. +e, 4. 1
2 21s | 22- 176 -
e =g et+g e= 5 __(__el+e2)
sin“0 3° 2

V=

Now, if you are a math tfeacher in middle school and
when studying non-orthogonal coordinate systems a
pupil asks you, "Why do we project along parallels
and not perpendiculars?' you will know what to
answer. The pupil is absolutely right, both types of
projections are possible and even complementary.
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a MINKOWsKI VECTOR SPACE

We will establish the new physical laws of special
relativity based on four-vectors. For the formulas, we
will be inspired by Newton's mechanics via the low
speed limit,

We note the components of an event E with indices
fromQ0to 3:

~ 0 1 2 3
x=x"(x",x",x*,x°)

0 1 2 3

X =ct, x=x, x=y, and x =z

29

For the scalar product: d-b= g.,a'b".

With the Minkowski metric:

1 0 0 0
o =1 0 o
9Zlo 0 -1 o0
0 0 0 -1

We will show that this metric gives back the friangle
of times.

We have: d-b=da’b’—a'b'—a’b’—a’b’.

29 Vectors, or tensors, are regularly misidentified with their
components. In general, this does not lead to confusion.
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For the spatial part, we recognize a Euclidean scalar
product, we can then write:

@-b=a’b"-a-b.
The scalar product of a vector V with itself can be
positive, zero or negative:

V=" =l
Contrary to the Euclidean case, the Minkowskian
scalar product of a vector with itself is not always
positive. Moreover, ¥-¥=0 does not imply v=0.
There is no norm for a vector in Minkowski space. The
quantity V-V is sometimes called pseudo-norm®.
In  Euclidean space the length of a vector,
represented on an orthonormal coordinate system,
corresponds to its norm, and the vectors of the same
norm, starfing from the same point, are distributed
on the same circle. This is no longer the case on a
Minkowski diagram: two vectors can have the same
pseudo-norm and not appear with the same
length.’’. The 4-vectors of the same pseudo-norm
are distributed on hyperbolas.

30 Term used and debatable: this term refers to the Euclidean norm
without taking up all its principles. Contrary to the norm, the
pseudo-norm does not have the same units as the vector (the square
root is missing). We could consider the quantity: k =+/|V- V| where
k is the parameter of the hyperbola associated with the 4-vector.
We could name k, the timelike or spacelike norm depending on the
case (as in Euclidean where R is the parameter of the circle and the
norm of the vector). We will use the term intensity for the k of a
four-vector.

31 We represent the two-dimensional Euclidean space on a sheet of
paper which is itself a 2D Euclidean physical object. On the other
hand, using a FEuclidean sheet to represent Minkowski's plane
requires an effort of abstraction.
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We have three kinds of 4-vectors :
« timelike: V-v>0

0

« lightlke: V-V

+ spacelike: V-v<0

The light-like vectors are on the light cones
associated with the world-lines of photons. The time-
like vectors are in the cone (fowards the vertical),
and the space-like vectors towards the outside of
the cone.

0

‘;ﬁp‘df_‘e

~

\Gime

Depending on the sign of the time component, a
four-vector can point fowards the future or the past.
This property and that of the time, light or space-like
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kind do not depend on the inertial frame of
reference considered.

When the scalar product of two vectors is null we
have orthogonal vectors:

a-b=0

This property of orthogonality is also valid in all
inertial frames of reference.

Again, the situation is not as intuitive as in Euclidean,
it is not because two vectors are orthogonal that
they appear perpendicular on a diagram.

We have two types of hyperbolas, those time-like,
intfernal fo the light cone, of equations t*—x*=k* (fo
simplify we have set c=1), and the external ones,
space-like, of equations t*—x’=—k> *.

k defined as positive.

32 "Space and Time", Hermann Minkowski, lecture delivered at
Cologne on 21st September 1908.
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We easily find again the hyperbolas by a
construction with the friangle of times:

Plot of an internal hyperbola of parameter k. For a given x
it corresponds to a value of t which forms a right-angled
triangle with k: t*=k’+x°. For a 4-vector position x“, time-
like, k corresponds fo a proper time t. For an external
hyperbola, k is represented by a vertical line and if is x
which is placed at the hypotenuse: X =k*+t°,
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A hyperbolic geometry: vecfors of the same pseudo-
norm, that start in O, end on the same pair of hyperbolas.
We have represented four 4-vectors which have the same
pseudo-norm 1, they join the unit hyperbola on one or the
other of these two branches. The time-like hyperbolas are
indexed by k and the space-like hyperbola by -k.

A property of the hyperbola: if we plot a radius OM, the
tangent (1) is always symmetrical, with respect fo the
bisectors, at (OM). We thus obtain a pair of orthogonal
vectors: U -V =0.

For a set of hyperbolas with the same center O, the same
orthogonal axes, and parameters multiple of the unit, a
straight line passing through O cuts the hyperbolas info a
set of equidistant points.
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In 2D, in Minkowski's plane:

a@b=0 = d’b’=d'b'
Two orthogonal 4-vectors are symmetrical with
respect to the photon worldlines:

Triangles

A/@x

Four isosceles triangles, one equilateral friangle, one right-
angled friangle and one isosceles right friangle. All these
triangles keep their properties by 90° rotation and change
of scale.
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Examples of 4-vectors orthogonal

For all pairs represented: d - b=0

A\t

A
ot

o

NIH

o

~r
o

Rfﬁ?a

o
a
5

[)
i
Vo
. X

By tfaking the opposite of one of the vectors of the pair, or
by multiplying it by a constant, the paqir remains
orthogonal.

Geometrical methods:
* Use of the hyperbola.
*  Symmetry with respect fo the photon worldlines.
* Passage through the Euclidean: two perpen-
dicular vectors and we take the symmefry with
respect to the vertical of one of them.
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Case of 4-vectors collinear :

Two examples, the pair (&, b) and the pair (U, V)

—~— f t q /\L‘j
limc'elimr: ]' {LJ}(L
‘é"’ e =-1 b=kberime , L
space* ~space” A 9, ,/\L(}
\ {mk
- N
D h— o~ — /4
a.b= kdkb a=ktlelimu a ,% Y - o
\ nb//i\. &_;Q' \;\\_
+ q)// i
T9=-k k X7 e
WV=-K K, <, by
\ J’ . e_lhnc
/ V:k\-'c'spacc
esp.'me u:kueqpacc
1

&)

Pythagorean theorem in Minkowski space:

ad+b=

~

¢
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k : parameter of the
hyperbola /
magnitude / infensity
of the 4-vectors.



o Geometric determination of the scalar product

To evaluate @-b in the space of Minkowski:

We break down one of the two four-vectors
as the sum of an orthogonal vector and a
collinear vector to the second one.

b=(C+7)- b=T-b+7-b

S

We determine with a compass the para-
meters of the hyperbolas of the two collinear
vectors obtained.

The scalar product is the product of the two
parameters: H-F:F-'E:ikcxkb.
The sign is positive if the two collinear vectors
are timelike and in the same direction, or, if
they are spacelike and in opposite directions.
In other cases the sign is negative.

t M\
VY M,
—ﬂ
k, v
0 vl 5%
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Examples of geometric determination
of the scalar product :

:c-: BZ'G':K(E‘;JFQ‘{%):EE

— ’QLc.L * E— C (same directlons and timellkes)

52x1o,4 x84 [ ||

i

:}' | —
ot—i
.Ca.ICL.J!a!tion l?y;:cmhonents: a'__:(g) E:(i) A | O
x|6= a1l alb = 54 L
A

WiroarBHeSs SRR

b - eo e Bl
= QLC?‘- de
~314.33 5y

¢.%
bk,
223643
+46

n
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o Orthogonal bases

We can always go back to an orthogonal base such
as €,-¢€,=0 for u#v.
o Reference frame R

Let's look at the case of the contravariont and
covariant components on a Minkowski diagram:

t A\ L
,
X o’
0
X =X .
,
,
,I
,
,I
,
,I
| R
,
, ~ o~ ~
K X=3e,t2¢e,
’ 0
’ ~ ~1
R =3e —2e
h Jl‘\_ 1,
Y ~ rd
\\ 0 L '/
. eleg /.
Y ,
Lt \\ I' Ead
\\ L4 e
€ N N | ~
N IS 1 1 -
. ~ X =-X; X

Let's check, on this particular case, the general
formulas:

X, =g, X, e'=¢""e, and X=x,e"

We have well, by graphically calculating scalar
products : /E/O.'E/l:(_é().s(_él)>EuClid:O:glo'

Also €, e =e e, =1, e, e,=—e;e=—1 then
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doo=1 and g,,=—1. € pseudo-norm worth 1 and
€, pseudo-norm worth -1.

1 0

2D metric: g,,= 0 —1|

For the covariant components :
_ 0 1_.0 _ 0 1__ 1
Xg=gooX tgo: X =X and X;=g;oX +g;; X =—X

~0__ 00~ Ol~ _ ~ ~1_ 10~ 11~ ~
e =g e;tg e, =e,and e =g e +tg e;=—e,

~__ . ~0 S 0% 4 _ _
X=Xx,€ +Xx, € =X e,+x e,=x,€,—X, €,

o Reference frame R’

Let's now take the case of the inertial frame R’ seen
from R :

tA
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An unwarned Euclidean glance would naively see a
non-orthogonal coordinate system, and, basis
vectors longer than one. It is not so, the basis vectors
are well orthogonal because they are symmetrical
with respect to the worldline of a photon, and,
besides, the time vector of the bases of R'is along
the unit hyperbola and, therefore, of pseudo-norm 1,
the space vector is along the hyperbola corres-
ponding to a pseudo-norm -1. The metric is thus the
same as for R, which is to be expected because
there is no privileged inertial frame of reference:
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For the covariant components and the contra-
variant basis, we necessarily have the same
relationships as for R :

0 1 ~ ~ ~
x',»=x", x,=—x", e"=e’, and e " =—e’',.
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a CHANGE OF COORDINATES

We can switch from a system of n coordinates x' to
a new system of n coordinates x'!, where each of
the n coordinates x'' depend on the n coordinates

1

X .

x"(x', ., x%,x")

We have a function with n variables. For a function f
with two variables, we add the variations in both
directions :

0 0
df(x,y)za—idx+%dy

When we move from M (x,y) to M'(x+dx, y+dy).
infinitely close, the function f varies by df .

n

The generalization gives 1 df (x')=)_ Of gy

=1 OX'

Then dx'i:a—)c.dxj and dx'= ax.dx'j
ox’ ox"
i ox" i ox

We note : Aj: Xj and Aj= le
0Xx ox'

These two tensors are used to switch from one
coordinate system fo the other, they are the change
of basis matrices. The superscript indices correspond
to the rows and the subscript indices to the columns.
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Let's do the product of the two matrices® :

Pk ox"ox" _oax"
A, ~ox 8x'j_6x'j_6j'

The matrices are inverse fo each other :
AAT'=ATA=T

The covariant components of a vector are
tfransformed according to A, and the contravariant
components according to A~'. This is where the
famous name comes from. The same is true for the
base vectors :

1 1J

P A — Al — Ay i A
vi=ATY o viEAY vV viEA Y

e'=A'e, e"'=Ae e=MNe/

i__ i 4j
e=A;e
We can easily verify that the scalar product of two
vectors is invariant by basis change :

A-B=AB=N A" ,A'B"=5/A"B*“=A"B"

Also if two n-vectors are equal, they are sftill equal
after changing the coordinate system:

A=B = AikAk:AikBk: A'=B" = A=B

33 Some additional mathematical tools :

ox' _0x' 0x +8x' oy

oy' 0x 0y' o0y dy'
10 i k k

0x :6xk 6x‘ and 6f:6_fk 0x )

ox"” ox" ox" ox"” ox ox"

If x'(x,y) and y'(x,y) then

Generalized :
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Fundamental properties for constructing physical
laws, whether in classical mechanics, special
relativity or general relativity.

Let's look for the new metric:
[ r— k I _ k 1
g.j—ee j_Ai ek'Aj el_Ai Aj 9

In general, the change of basis matrix is applied as
many fimes as there are indices on a fensor. For
example, on the Riemann curvature tensor :

xes _AQ v P Apyu
R o= Ag Ay AR

o Rotation in Euclidean geometry :

M
x(r,8)=rcos0
,0)=rsin®
M y(r,0)=rsin
Jy
r 1 1 2
5 x"=x(x'=r;x=0)
> — x'2:y
O I X
1 _0X_ 1 _0X_ o
Al—ar—cose AZ_&G_ rsin®
2 0¥ _ 2 -0y _
Al_&r_sme Az—ae—rcosﬂ
cos® —rsin6
then A=

sin® rcos6
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Allzg—r X —cos® because r=\/x2+y2
X r

2_00 __sin® 000X, ,000y_4
A S ox r S 5x 00 oy 00
»_909_ 1/x _cosB 1_0r _ .
A=28= = A, =——=sin6
L0y 1+yiXE T > Oy
cosO sin0
finally : A~'=|
inally: A _ sin® cos6
r r

we wellhave AAT'=AT'A=I.

e,=e,=A',e' . +A’ e',=cos0i+sinb j
e,=e,=A',e' +A’e',=—rsinOi+rcosf j
The basis (€,,€,) is orthogonal and not normalized.

For an orthonormal basis we have the unit vectors as
follows €=U and é,=ri,
_ 1 0
0 1

and gij:AkiAIjg ’kl:((l) O)

T

I
J

1
1

b

Metrics : g'”:(
2
r
for example g,,=A"A',g',+A% A%, g, +0+0=r"
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Invariant length element :

d’=dl-di=dx"dx"'=g",,dx"dx"=dx’+dy’
d’=dx,dx'=g,,dx'dx'=dr’+r’d®’

Vector components : v(v*,v’)
1 1 1 1 2 .
v=v=A, v +A, v =cosOVv +sin0v’

sin® , cosO ,
- v+ v
r r

v2:v6:A12v11+A22v12:

. . ) , o
we well have v-V=g, v'v'=(v')+(v')'=g",,v"v"

ct'(ct,x)=y(ct—Px)
o Lorentz transformation :
x'(ct,x)=y(x —Pct)

X ’Ozct'(xozct;xlzx) X"=x

o Oct' o Oct'

= = A= =-—

A oct ¥ boox P

1 _0x'_ 1 _0x'_

0o act_ yB Al_ 8X _y

-Yp
then A=A"=
-y vy

ct=y(ct'+px")
Inverse standard Lorentz boost :
x=y(x" +pct’)

Then : A“:AV“:(Y Yyﬁ and AAT'=AT'A=I

YB
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Basis vectors :

For the Minkowski diagrams, we find the results given
on page 42 and following. On a Euclidean sheet of
paper the vector €, appears longer than €, :

||zt'||Euc1id:Y V 1+ﬁ2 :

Apparent angle : (€,,€,.)gg=arctanf .

Metrics : g,.v=

and so on, hence g',,=A," AS Gop=

The metric remains the same.

The invariant ds®:  ds’=g,,dx"d x'=c’dt’—dx’

=g, dx"dx"=c’dt"” —dx "

Vector components : ¥ (v',v*)
v =y =A VA iy (VB VY)

v ,1:vx':A10VO+A11v1:y(_|3vt+vx)
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We find the Lorentz transformation that applies to
any four-vector.

Aiso: V- V=g, vV =(v)-(v)=(")-(v")

And the scalar product is well invariant :
73,43

~ ~ 0 0 1 1 2 2
u-v=g, u'tvi=u"v —u" v —u'"v' —u"y
.2 0 1 0 1 2 1 0 1 0 2.2 3.3
=y (' —pu' ) (V' =pv') =y (u' =pu’) (v =BV’ —u'v —u’v
:yz(l—ﬁZ)uOVO+0+O—y2(l—ﬁZ)ulvl—UZVZ—u3V3

_ 0.0 1.1 2.2 3.3__ woov

UV -uv-uv-uv=g,uv

For all 4-vectors we have the standard Lorentz
transformation :

V=y )
vi=y (V=)
vi=v
vi=v’

The change of basis lambda matrices :

y —yp 0 0

A=A" _|—yb Y 0 0
Y 0 0 1 0

0 0 0 1

y yp 0 0

A=A M= YB Y 0 0
v 0 0 1 0

0 0 0 1
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a Four-veLocity

After building a new geometry of space and time,
let us build the new physics associated with it. The
position vector and universal time have been
replaced by the four-vector X. What about the
other physical quantities infroduced by Newton:
velocity, acceleration, momentum, energy, force,
etc?

First of all, we are looking for quantities that
fransform according to Lorentz's transformation, then
we will establish laws that give back the classical
mechanics at low speeds, and of course, the
supreme criterion, the experimental verification will
finalize the selection.

We will construct the covariant velocity from the
four-vector x“. We resume the classical approach
which allows to build a vector tangent to the
frajectory of an object. For two infinitely close events
on a worldline, we have the infinitesimal 4-vector :

dX=EE'=%(E")-X(E).
To define the velocity, simply divide by the duration,
just as infinitesimal, which separates these ftwo
events., Of course, in Newton's mechanics, there is
no hesitation to have, on the other hand, in special
relativity, we have the duration df measured in the
same frame of reference as the dx*, or, the duration
dt measured in the proper reference frame of the
moving object. No hesitation because drt is the only
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duration invariant by the Lorentz transformation®,
hence the expression of the four-vector velocity :
d% L dx"

Uu=—— and u
dt dt

For the three spatial components, we find well the
classical velocity v at low speeds :

u=(yc,yv)

]_ v —
with y= . B==, v=||V],
V1—p° b c

_dt i_d_Xi

Y(V)_E' v 10 and i/’:(vl,vz,v?’).
This four-velocity transforms well according to the
Lorentz transformation given on page 205, which
was not the case for the classical velocity (easy to
convince oneself by looking at the relations on page
362).

ok dx X
For example, along the x axis : u Zﬂzyv .
To think about relativity, it seems logical to reason
with the velocity provided by this same theory, and
not with that of Newton. But as with the notfion of
absolute space and absolute time, habits are
tenacious, and it must be noted that Newton's
velocity makes resistance.

34 dt is obtained by doing the scalar product of two four-
vectors, it is therefore invariant by the Lorentz transfor-

mation : dX-dX=g,,dx"dx'=c’dt’~dI’=c’d v’
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"You can't go faster than the speed of light" we hear.
Everything would then happen as if there were a
forbidden zone from ¢ to infinity. We don't like the
prohibitions, and neither does nature, it seems to
realize everything that is possible. So, not supporting
limits, in this supposedly inaccessible zone, we put
strange particles, fachions, particles that would
always have been faster than light... except that
these tachions violate causality, a basic principle in
physics.

Let's think differently, let's use the right definition for
velocity, the one that respects the symmetries of
spacetime. When you give each time more energy
fo a particle to accelerate it, it gains speed and its
velocity tends towards infinity :

_dx

—=¢c, Y20 and v

d x
vNewton_ dt >0

Einstein_ﬂ
The prohibited zone no longer exists!

Let's take again the example of the journey for
Proxima. From the Earth the astronaut travels 4 ly, his
journey lasts 3 years, and 5 years for the Earthlings.
Sometimes | hear "but he goes faster than light!". He
is going well, slower than light, he arrives after a ray
of light, and in the ship's frame of reference he has
tfraveled a distance of only 2.4 ly. But it is inferesting
to note that the person finally refers to the covariant
velocity u=Ax/At=4/3 c, and, in terms of covariant
velocity, that of light is infinite. Finally, we are not so
limited as that, at speeds close to ¢ we find
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ourselves on the other side of the galoxy very
quickly. For example, an ultra-relativistic electron
can travel 100,000 ly in one year (in its own frame of
referencel).

The temporal component of U is always positive, the
four-velocity is always directed towards the future.

Let's calculate the pseudo-norm :
~ ~ 2 2 2 2 2
u-u=yc—-yv=c>0

The 4-velocity is a time-like vector whose end is
located on the upper branch of the ¢ parameter
hyperbola. The 4-velocity cannot be null. For a
particle at rest there is only the time component
which corresponds, in a way, to the speed of the
flow of time.

-

Particle at rest: T =(c,0).

Particle in motion: T=yc(1,p).

209



Minkowski Diagram for the 4-velocity :

u
7
u?
yv
uN1 . relativistic velocity of an object af restin R.

The vector is vertical.

u, : 4-velocity of an object moving fo the right.
The fip is on the hyperbola of parameter c.
The corresponding gamma is 1.15 and v=50%c.

u, : 4-velocity of an object moving fo the left.

u, . The more gamma increases, the closer the

velocity vector gets fo the asympfote and the
light cone.

We have built the frame where the particle 2 is

motionless. By projecting the tip of U, into R, we obtain
a particle 1 that moves to the left at 50 % of c.
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The velocity triangle : u-u=(u'f'—(u*)f=c*

0 c
u c Y c L 11y

u? 'A% I")

(Triangles for y=2 and p=V3/2)

Here is the worldline of a particle. The
velocity is always tangent to the worldline
and confained in the future light cone. In
E; the fangent is vertical, the particle is at
rest, then it starts moving fo the right, slows
down and stops further to the right in E,. It
resumes its mofion fo the left, accelerates
and reaches its maximum speed af the
point of inflection in E,.
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a Four-ACCELERATION

The approach is of course quite similar:

-~ du du"
w=—— and M=
dt W dt

As for the 4-velocity, we do not use the classical
notations so that the differences appear without
ambiguity : w for the 4-acceleration and d for the
Newton acceleration.
To begin with, we have a nice property, 4-velocity
and 4-acceleration are orthogonal vectors :

d du - . du

— (97-77 :0__ - -
dr(u u) dt U dt

then u-w=0.

As we have established the link between o and v,
we are going fo make the link between W and a.
There, however, the link will be much less immediate
and the calculations are longer:

= du _ dyc dy-. _dv

T dt \dxt ’drv+ya

after calculation d—:y—za-v with p=

we have W=(y*'a-p, y*(a-p)p+y’a)

Now let's determine the pseudo-norm of W. The
scalar product is the same in all inertial frames of
reference. We then place ourselves in the inertial
frame of reference which coincides at a given
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moment with the proper frame of reference. In this
coinciding reference frame, by definition, v=0 at
t=0. Thus w=(0,d(0)) and W-Vv:—ai, where q, is
the acceleration felt in the proper frame of
reference. All inertial observers will agree on the
value of the proper acceleration aq, The 4-
acceleration is a space-like vector, in accordance
with the orthogonality with the 4-velocity.

In the Minkowski plane (w’)’—(w')’=—a, and W is
placed on a space-like hyperbola of parameter a,.

The acceleration triangle:

a
w! yia g 1
Ya

w? )’4 a 5 [3

s

For one-dimensional motion : W=ya,(+f,+1)

Generdlly speaking, one can always place oneself
locally in an inerfial reference frame that contains
the worldline in a Minkowski plane coinciding on a
porfion. We then have an osculating hyperbola that
allows us to determine the proper acceleration.
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o A look back on the trip to Proxima

We are on a particular case of rectilinear motion at
constant proper acceleration, where the worldline
of the rocket corresponds with the hyperbola of
parameter g.

We will elegantly retrieve the expressions of the page
116.

In the coinciding inertial reference frame WZ(O,g).
We perform a Lorentz transformation to obtain the
coordinates of this same acceleration in the terres-
trial frame of reference:

w=(yBg,vg)

as yBg=y'd@p wehave a(t):ﬂ:i3
dt y

affer integration we find the expressions for v(t) and

x(t).
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Voyage to Proxima :

x° ut w

We have represented the Minkowski diagrams for the
three four-vectors X, U and W. We have made an
appropriate choice of units so that the hyperbolas
correspond: OJ worth ¢?/g for the 4-position, ¢ for the 4-
velocity and g for the 4-acceleration. We study the
uniformly accelerated mofion in its generality, both for
positive and negative t : in the latter case V and d are in
opposite  directions, the rocket decelerates, and
WZ(—y Bg,y g). For this motion, the rocket worldline is a
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hyperbole branch of equation ¢*t’—x*=—c*/g* which
coincides here with the space-like hyperbole branch of W
The hyperbola branch of U is simply rotated by 90°. For
any event E of our worldline, U and w are as it should be
symmetrical with respect fo the bisectors, but, in this
particular situation, they appear, moreover, of the same
length on our Euclidean sheet. Indeed we have in this
case Ulc=y(1,B) and W/g=y(+p,1). The drawing is
very simple, for any event E, you draw the line (OE), W
corresponds with OE, and U is the symmetrical with
respect to the photon worldline. Although fthe 4-
acceleration remains constanfly on the spacelike
hyperbola of parameter g, on the diagram, the Euclid's
length of the relativistic acceleration W increases with 'y,
while that of the classical acceleration @ decreases iny’.

o Geometric determination of 4-acceleration

» From the worldline :

All the infermation is available in
this line. For any E event we can
determine the four-velocity and four-
acceleration. U is tangent at E and
directed fowards the future. [ is given by the
arctangent of the angle between the verfical
and . By adapting the scales with ¢ €, =€, we

can carry out the plot,
We then placed in E the dotted worldline of a
photon. The line D is symmetrical to U with
respect to the photon.
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As w is orthogonal to o its end

is necessary on D. As the
worldline continues below U,
there is acceleration and w is
upwards. We place the
osculating hyperbola that best
coincides with the worldline in the vicinity
of E. The distance between the vertex S and
the center O of the hyperbola allows us o
determine the proper acceleration g,. In order o
make the osculating hyperbola match the
acceleration we have the following choice of units
ape:,]:cz/apé::gé.

v=67 % C
y=1.35

.-

SO=1.79ly
For any event
of a world line,
there is always a v‘v
tangent

hyperbola

unique that ~
gives the proper "
acceleration.

ap=53% g
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¢ From three close events :

Previously, it was not easy to

$ determine the fangent hyper-

1ly pole. Here, from three events we

€y will find the osculating hyperbola

opfimized for the midpoint E..

E, We know that three points

determine a single hyperbola.

The approach is the same in

Euclidean geometry, if you have

E, three points of a circle you find

the osculafing circle using two perpendicular

bisectors whose intersection provides the center of

the circle. Here again the fangents are orthogoendl
to the radii.

z ) EE,
0 iscollinear fo

1y o the average

€, velocity U ,, and the

orthogenal line contain

W,, and the center O of the

hyperbola.,

5 E, We proceed in the same way with

the pair of events (E,,E,). The inter-
section of the two orthogonal lines gives the
center. We then check that the pseudo-

°E1 norms of SE 5}5:2 and 5-1:3; are equal. We
then have 0S, the paramester k, of the hyper-
bola, and the proper acceleration a,=—c’/50.
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@ MAsS-ENERGY EQUIVALENCE

Let us look for the relativistic equivalent of the
Newton's second law. In classical mechanics :

I dp
ma=F or —t=
dt

T

with the momentum p=mv

We will also need the kinetic power theorem :
p=E g
= =r-v
dt
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o Four-momentum

The mass is a property specific to a particle, it does
not depend on the frame of reference. It thus seems
natural to consider the four-vector p=m1u .

For the 4-momentum we keep the letter p because
contrary to the 4-velocity or the 4-acceleration, this
one has been directly adopted in the scientific
mores. Its spatial part is commonly called
momentum and the 4-vector as a whole can be
called the 4-momentum or more precisely the 4-
vector energy-momentum: p=(myc,my¥v).

P=(Elc,p) | with | E=myc® and | p=myV

The temporal component shows a quantity with the
units of an energy. Let's find out what this energy
corresponds to. In the coinciding reference frame
P=(mc,0) and F-F=m’c’: In the observational
frame p-p=E’/c’—p°. In the proper frame, where
the particle is at rest, B-P=E/c*, then E,=mc’.

A completely new notion, absent in classical
mechanics, appears, an energy is associated with
the mass of an object. Even at rest, a particle has an
energy, it is an energy of mass.

When the particle is in motion :

2

m*c*=E*/c*~p* and E’=(mc’)+(pc)
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The Energy-Momentum Triangle :

p° E ,
mc ‘ mc?

p’ pc B

E corresponds to the fotal energy of the particle,
which includes its mass energy and ifs kinefic

energy:

2 2 4 2 2 2 4 2.2 2 2 2.2 4
E=mc+p cc=mc+myvc=myc

and we find: E:myc2
For the kinetic energy: E,=E—E, .
At low speeds:
E=m(1—[32)_1/2C2= mcz+%mv2

We find again the classical expression of kinetic
energy.

For a massless particle, like a photon, E=pc,
p=(p,p) and B-p=0.

o Four-force

~

For the 4-force g we suggest :

dp_~
dt —9

Equation covariont with respect to the Lorentz
transformation. In the classical limit, the temporal
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part gives back the kinetic power theorem, and the
spatial part gives the Newton's second law:

9P e BBy By E)=7
P omiv=(y' -, y*(FD)B+y'F)=7

The link between 4-force and Newton's force is not
obvious. Classically, the force F is collinear and has
the same direction as acceleration d, in relativity it is
the case for g and w.

Pseudo-norm : '§-§=—Fi with F =ma,,.

Force Triangle :

4
Y F 1!1’);

e

Y°F,

For one-dimensional motion : 5 =yF p (iﬁ ,x1 )

dp _

For the spatial part: —£=g and FIS

|

We have the spatial part 'g of the 4-force, and on

the other hand the classical force 15, the Newton's
second law then takes the following form:
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Q
ge?’

=y’ (F-B)B+yF=f

Q.
~
<[t

The relationship between g and F is not simple and
we find that they are not collinear. Within the limit of

low speeds, we find Newton's second law md=F'.

Most often, to build relativity, the third force f is used.
When one injects, in Newton's law, the relativistic
momentum instead of the classical one, it is the

force that appears. This force f is commonly used as
an equivalent of the classical force at the relativistic
level. This standard force has a definition similar to
that of classical mechanics, but it is not the spatial
part of a covariant four-vector.

In Newtonian mechanics the force is independent of
the inerfial frame of reference F '=F, in relativity it is
also the case for the four-force §'=¢. On the other

hand, we have in general f'#f and §'#9.
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E=0

o Power

dp . dElc dp -
dt P dt d
dt t



o Conservation of momentum and energy

For an isolated system, 5:5 and the momentum-
energy four-vector is constant. For a set of particles,
the total momentum is the sum of the individual
momenta, and the same applies to the energy :

ﬁ=z Py E:ZEi and P:Z b,

This quantities are then conserved:

—_

Pp=cst, E=cste and p=cst

For example, during a collision, the particles may
change in nature and number, but whatever
happens there will always be conservation of these
three quantities: they will have the same values
before and after the impact. We can consider an
isolated system in three situations: no force is exerted
on the system, the sum of the forces is zero, or, as in
a collision, the inferaction being very brief, the 4-
momentum of the system has no time to vary
significantly. The forces internal to the system do not
infervene in these balances.

¢ Annihilation of an electron with a positron
Two gamma photons are produced :
e+e 32y with P +P =P, +P,
We take the case where the electron and the

positron have the same velocities (opposite
directions). In the frame of reference where the
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particle and the antiparticle are at rest, we have the
following Minkowski diagram of momentums-
energies:

p’=E/c
A
Der-.
5 A€ o~
p V1 b p Yz
p'=p

We have atf least two photons produced by
annihilation. It is not possible that only one photon is
produced because a photon cannot be at rest and
its momentum cannot be annulled to respect the
conservation of the momentum in the considered
frame of reference. If two photons are created, they
necessarily have the same energy and they go in
opposite directions. The energy of a photon
corresponds to the mass energy of an electron (or
what is the same of a positron). Photons thus have
energies of 511 keV. They are very energetic
photons, as a comparison the visible photons have
an energy of the order of eV.

We study in exercise the collision of two protons with
the creation at the threshold of a proton-antiproton
pair.
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Summary

. Classical Links / Special
Quantity Physics Standards Relativity
P ) X=(ct,?
iti r={(x,y,z —
position y ¥t
_dX
N u=yv dt
velocity 5=dr _dt T=(yc,i)
t Y—H
U-u=c’
p=mt
momentum 'ﬁsz _ﬁzmyv ﬁ:(E/C,ﬁ)
p=mi
G dT
R 0 4o = T dr
»_dV W :y a.[?) ~ __ 0 -
acceleration =ar ~ _ _4(=3\B w=(w',w)
w=y'(ap)p | _ _
w-w=—a,
2>
+y a
u-w=0
- dp
7_dp I dx
L f_dt N
force F=mad f T=mw
g=y ~ -
g=(g".9)
dE, - dE _ . &
dt dE = -
_ . 2
energy . T f-v E=ymc
k™ v 2
Ek:E_mC
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Lorentz force :

electro. o= qE f: 7:q ~
-magnetic | - L - -, >
field FBZQV/\B q(E+V/\B) -
a7 9=
9=y q(yE+ﬁ/\B)

The standard definition f for force is widely used by
the scientific community, which summarizes relativity
in a few equations:

Taught directly in this way it is fast and effective, but
at the same fime, if the student wants to deepen
the concepts it will be necessary for him to enlarge
his view in order to have a clear vision and avoid
confusion. Moreover, in our book we put forward a
geometrical perspective which is mainly based on
the approach of Hermann Minkowski. These are of
course the covariant quantities that are naturally
represented in  a diagram aond are simply
fransformed with the Lorentz boost.

For the electromagnetic field, the quantities are
detailed in exercise on page 252.
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a0 INON-INERTIAL REFERENCE FRAMES

As we know how to do in Newtonian mechanics, we
must also learn to apply special relafivity in non-
inertial frames.

Let us recall the approach in classical mechanics.
Newton's laws are verified in Galilean frames and by
a change of frame of reference we find their new
expressions in any moving frame:

mar:F+Fie+Fic

Everything happens as if we had new forces, called
inertial or fictitious. One may wonder if these forces
really exist. Indeed, these forces are not related to
fundamental interactions but to the change in the
frame of reference. Nevertheless, the driver and
passengers of a car experience these different
dynamic effects as real during the acceleration
phases, such as a sudden start, more or less tight
bends and braking strokes.

Classical mechanics give an interpretation of these
effects in terms of forces: coincident forces and
Coiriolis forces.

It goes without saying that special relativity must
allow all these effects to be found. At low speeds,
they must be equivalent. We will have new effects
that will appear with increasing speed. But also at
low speeds, for precise measurements and for the
behavior of light which is now included in the
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theoretical framework. The interpretation is however
very different,

In special relativity, there are no inertial forces but
metric effects. By a non-inertial change of frame, we
deviate from the Minkowskian metric and a free
particle follows a geodesic which modifies its initially
rectilinear and uniform motion to follow a curved
and accelerated frajectory.

For example, when the car accelerates at a green
fraffic light, it is not an inertial force that puts you
against the seat, but a metric modification that puts
you in free fall towards the back of the car (as in the
uniformly accelerated rocket). At the same time, the
watches of the passengers in the back of the car
are slow with respect to those in the front. Quite the
opposite when you brake, the metric modification
makes you plunge in free fall towards the windshield.
In a furn, the metric change causes you to fall
fowards the outside of the bend, the watches will
also go out of sync and Euclid's postulates will no
longer be verified.

In special relativity, the notion of inertial force is
replaced by that of metric effect. We have
previously studied the two particular cases of the
uniformly accelerated reference frame and the
uniformly rotating frame and we will now focus on
the general case®.

35 Here we make the analogy between classical mechanics and special

relativity, but historically we are rather used to the analogy made
with general relativity. In this analogical framework, during a brake
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o Coordinate lines, local basis and connections

Here we complete our description of a vector
space. These are very general mathematical
concepts that can be used in all scientific fields.

Coordinate lines are obtained when one coordinate
varies and all others are fixed.

At each point of this network we have a local basis
with the basis vectors tangent to the lines. When we
go from M to M' infinitely close, we have a small
variation of the basis vectors :

stroke, we say that everything happens as if a gravitational field was
pulling you forward. This gravitational field is of course fictitious. If
it were real, at the same time as you brake, a gigantic massive wall
of infinite size would have to appear in front of the car to justify
such a gravitational field! In general relativity, the gravitational field
creates an additional metric effect, spacetime is then curved, and
the gravitational field is very real (it exists in all observation frames
of reference).
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oe, . _ j
del:ﬁdx =T ijekdx
This variation can be projected on the starfing basis.
The quantities Fkij dllow to encode the variation of
the local basis at this point. We will call connection
the object Fk,-j. For a global basis, which does not
depend on the point, all the components of the
connection are null.

The connection is symmetrical on the last two
indices:
_ode; 5

_axj_axj

_O’MM'_’MM'
ox'ox ox'ox' g

OMM'
ox

k
I'.e.

ij ek

The metric contains all the information about space.
We can establish the expression of the connection
coefficients according to the metric:

g;=e;e; dgiizakgi].dka(del.)-ej+ei-(dej)
g dx"=(I'", e, dx")-e;+e-(T", e, dx")
gij,k:gljrlik+gimrmjk
9ii* i, 1~ e
=g,jFll.k+gl.mijk+g,iFij+gkmF"i.j—g,kljlji—gjmkal-
gij,k+gki,j_gjk,i=2gimrmjk

gni(gij,k+gki,j_gjk,i):29nigimijk
; , i 1
Finally :  I' jk_Eg (glj,k+gk1,j_gjk,l)
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o Covariant derivative

Variation of a vector A when moving from M to M' :
dA=AM")-A(M). In the Minkowski basis, or in a
Cartesian basis, we are in particular cases where the
basis is global, the basis does not depend on the
point and only the variations on the components
are to be taken info account.

In the general case: dA=d(A'e,)=d(A')e+A'de,

dA=0,A'dx’ e+T"A'dx’ e,=(0,A'+T" ;A" )dx’e,
Notations: D;A'=A", ;=6,A+T"' A", DA'=A' dx’

The capital D makes it clear that all variations have
been taken into account. For inertial frames of
reference, the connections are null in the Minkowski
basis, and 6, was our covariant derivative. In non-
inertial frames D, is the covariant derivative.

o lllustration on an example

Let's take the case of polar coordinates.
The basis depends
U, on the point.
It rotates with the
. o angle 6 and re-
mains unchanged
u, when p varies:

=l

P_~M\ |t u,(0) and ()

\B In classical

0 / ﬁ’p ) mechanics, we
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usually take unit vectors.

, o~ du, du -
Basis Variations : dep u, and deaz—up.

Then: OM=F=pii, gives v=pi,+pOi, and
a=(p—p6°)u,+(p6+2p0) T,
We can retrieve this result with the metric and the

connections :
2 ig0J 2 2, 2 312 2, .2 P
ds’=g,;;dx'dx'=dl’=dp™+p~dH di*/dt*=g;;v'v’

¢=t, ¢=pl, OM=pe+0%, v=""=(p,0)

2

9a1=2p I‘ln:o I‘222:0 =

1 1 1
r122:_zgugzz,1:_p F212:§gzzgzz,1:5 r 12:0

- _ i i k j—=
dv=(0,v'+I";v')dx'¢,
a=(0,v+T" ;v )x'¢é=0,ve+T", v X'E,
2.2 1.2= 2 01>

>_ 1> 2 1 2 2
a=ve+tvie,+I' ,vix e+ ,vx e+, vxe,

b s n PO T R
then a:pep+eee—p66ep+5p6e9+§6pe9.

We have a new method that uses the metric to
account for local basis variations using connections.

o Geodesics

Geodesics are the worldlines followed by free
particles. These curves, the equivalent of Euclid's
straight lines, maximize proper time.
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On a geodesic, the proper acceleration is zero.

Let us take up again the building of special relativity

for non-inertial frames of reference:

w_dx"
dt

With the covariant derivative, we can generalize the

Newton's second law :

2 2
ds’=g,,dx"dx"'=g, u'u'dt", u

and p"=mu",

d—p:ﬁ and 6:5—58—6(: becomes @:g
dt m T
w gu s
Equations of Motion: =21 u"u
T m

For the geodesics equation: g“=0.

The metric effects, equivalent to the classical forces
of inertia, are expressed through the connections,
which themselves reflect the variations of the metric
in a non-inertial frame.

i i
In classical mechanics : d—V:E—F’. vivE,
dt m ik

o Classical limit

In the classical case we already noticed that the
mass of the particle did not play a role: d=—ad,—d..
For the calculation of the acceleration d@ from the
velocity v, we have two kinds of terms, those which
involve the variation of the coordinates only, and the
others for the variations of the basis:

-

a= acoord+abase Ond acoord:_ae_ac_abase
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These are the three terms on the right that are
expressed using connections.

Uniformly accelerated frame :

— Mechanics of Newton :

._ -._doM_ .
ar:_ae: dt2 :_aR'(O)
257 L
R : rocket, aR,(O):dC?ZO:ai and %=-a.
t

— Special relativity . as demonstrated in the exercise
on page 243, the non-zero connection components

r r 2
are Floozgz and FOw:FOM:% with g(x)= 1+a—f ,
g c
Then:
1 2
(Zlu :d )§=—F100u°u°=—% 1+a_;< y2C2:_yza 1+a_;<
T d=x c c

We find the classical limit: x=—a.

Rotating frame :

— Mechanics of Newton : d.=—a,—ad.
azwzHM—Z(T)/\V:—(DZpLTp—ZUJLTZ/\ pU,+p0i)

a=(p—p6°)t,+(p6+2p6)Uy=0"pd,—2wPTe+2 wp O,
— Special relativity . ti=y(c,p,0,z)

Only non-zero connections :
2
r __pw I_,l pw

1
00— 2 02—F 20—

236



2 2 1
r?,=r’,=2 I’,=r,=5

_ 1 0.0 1 0 2 1 2.2\~
=(-T'uu 2T ,uu-T,uu)e

2 1.0 2 1.2\~
+(—2T" uu —2I",u u’)e,

=(—po’y’+2pwy V'+p ¥*(v'))e,
+(—2wy* v —2y*v*Vv") e, /p
We find the classical limit :

g‘jlj’p+épLTe=(—pu)2+2pu)6+pGz)ﬁp+(—2mp—ZDé)ﬁ})

We now understand how particles move in a non-
inertial frame of reference. Special relativity gives us
a new interpretative and experimental framework
where metric effects take the place of the inertial
forces of the old Newtonian framework.

In a flat space-fime and a non-inerfial frame of
reference, a free particle maximizes its proper time
by following a curved frajectory.

This is not simply a new point of view, but a
generalization to massless particles, and, as a
correction, with modified experimental measure-
ments.
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The classical notion of force is abandoned in favor
of a relativistic description in terms of space-time
geometry. Here, it is the concept of force of inerfia
that becomes useless, we follow the same kind of
approach in general relativity, where geometry
makes the concept of gravitational force disappear.

No need for the space to
be curved, for a free
particle to have a curved
trajectory.

o Lagrangian approach

The geodesic equations are found with the
Lagrange equations. The approach is explained in
the exercise on page 160. We are looking for
geodesics that extremes proper time :

oL d oL _

ox" dtou*

2
C r:fgluvuluuvd't/ L:guvuuuv Gnd

aL (x [) d 6L _ o B
a g(xﬁ u an W_gauu +guﬁu
d OL Voo du” p. B duﬁ
— == u'u+g.,, —+ uu'+g, s ——
d,‘: au.tl g(xu,v gapt dT gp_ﬁ,p guﬁ dT
a. B du®

gaﬁ MU u _gcxu vu U _guﬁ pu U _Zguﬁ d _0

Hence the geodesic equation : T, u” “+°jj—uT 0

238



Conclusion and synthesis

Let's come back to the notion of inerfial frame of
reference.

We have a circular definition: the postulates are true
in inertial frames of reference, and a reference
frame is inertial if the postulates are verified.

If a particle in a reference frame has a curved
trajectory, is it due to a force or to the non-inertial
nature of the frame?

In Newtonian mechanics, if we know beforehand
the nature of the forces, we can determine whether
a reference frame is Galilean. Let's take the
electrommagnetic and gravitational forces: if there
are no charges and masses present, and the
tfrajectory is nevertheless curved, you can deduce
that the reference frame is non-Galilean. You have
to imagine such a region of empty space, far
enough away from all matter that the remote action
of the forces is negligible.

Do you know the Olbers' paradox?

In cosmology, the universe is like a fluid homoge-
neous and isofropic of galaxies. You see the stars in
the dark night, the resulting brightness is low, but
logically the night should be white. Indeed, the
further away you look, the weaker is the light
received by the observer from each luminous
object, but at the same time their number increases
in the same proportions. The night finally is dark
because the Universe is expanding.
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But back to the reference frames, if we apply the
Olbers' Paradox to gravitation, we have the same
result, the gravitational field would tend towards
infinity at all points in the Universe... Here we want to
illustrate how the foundations of classical mechanics
are not ftrivial. Moreover, can we determine the
nature of forces without the help of Newton's laws?

In relativity, the situation is much simpler, we use
geometry. The behavior of spacetime alone makes it
possible to determine if the frame of reference is
inerfial — without using the notion of force.
Beforehand, it is sufficient fo have a set of clocks at
rest and synchronized on the region being studied.
If, during the experiment, the clocks do not go out of
sync, the reference frame is inertial.
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Minkowski metric
ds’=c’dt’— dx’—dy’—dz’

Inertial frame of reference

Minkowskian metric

2 ;o
ds=g,,dx"dx" with =c

light —

Inertial frame/ Maxwell's equations

Flat spacetime

Non-inertial frame / Metric effects
Accelerated rocket / Rotating disk

Zero curvature tensor

Back to the Minkowski metric by a change of coordinates
S P E C I A L R E L A T I V I T

G E N E R A L R E L A T 1 V I T
Equivalence principle / Einstein's equations
Curved spacetime in vacuum

Gravitation / Spatiotemporal waves
Energy-momentum and Ricci tensors are zero

Non-zero curvature tensor

Curved spacetime

Matter / Sources of the gravitational field
Energy-momentum and Ricci tensors are non-zero

Non-zero curvature tensor
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Exercises

1. AAA Change of basis

Let consider the basis € ’M of the inertial frame.

1 - Determine the basis ?M of the uniformly
accelerated reference frame of the rocket as the
function of €.

Place some examples of vectors from this base on a

Minkowski diagram.

2 - Deftermine the basis Eu of the uniformly rotating
reference frame of the disk as the function of € "
Represent this base on a Minkowski diagram.

Answers p409

2. AAA Riemann curvature tensor

We give here the curvature tensor without
justification. We will apply the formulas to show that
for the accelerated rocket, as for the rotating disk,
we are in flat space-time despite the non-inertial
nature of the reference frames. If all the compo-
nents of the tensor are zero the spacetime is flat, if
even one of the components is non-zero the
spacetime is curved.

Riemann tensor as a function of the connections:
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o _ra o o o o I8
R o=l oy gy otDl o T ps= T 5ol 4,

Connection coefficients® :

1

o _ af
r=59""0,9,,+0.9;,~09,.)

Notation: 88 =0, = , so 'y ,=0,T'%;.
The curvature tensor is antisymmetric in the last two
indices. The connection coefficient is symmetric in
the last two indices.

1 - Rocket: uniformly accelerated reference frame.
a- Determine ¢, and ¢"".

b- Determine all the connection coefficients. You
must identify the non-zero coefficients for the
calculation of the curvature.

ax 2

]_+—2 .
C

Helps: you can set g(x)=

Help yourself as much as possible with the symmetries.
Identify the non-zero terms of g,, and g"". Are they
constant? Which coordinates do they depend on? Which
ferms 0,g,, are non-zero?

c- Show that all the components of the curvature
tensor are zero.
Help: what is the consequence of anfisymmetry?

2 - Disk : uniformly rotating reference frame.

a- Determine ¢, and ¢"".

36 Also called Christoffel symbols.
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b- Determine all the connection coefficients.

c- Demonstrate that all the components of the
curvature tensor are zero.

3 - Spherical body: reference frame studied with
Schwarzschild coordinate system. To compare with a
situation where spacetime is curved.

r
We invite you to set g= 1—75:ef,

a- Determine g,, and g"".

b- Determine all the non-zero connection
components.

c- To show that the spacetime is curved calculate
the component Rolol.

r
Prove that Ry, o =—- Answers p412
r

3. AAA A non-uniformly rotating Disk

In the previous exercise we demonstrated that the
curvature tensor was null in the uniformly rotafing
frame of the disc. We will continue the demons-
fration in the case of any rotaftional motion of the
disk. We had for the inertial observer as a function of
the coordinates of the observer at rest with respect
fo the disc: 0'=0+wt. We now take the general
expression: 0'=0+A(t), where A (t) is any function of
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fime. Thus are included the possible phases of
acceleration, deceleration, oscillation, etc.

1 - Determine the connection coefficients.

2 - Calculate the Riemann curvature tensor.

3 - Wass the result expected?
Answers p419

4. AAA Spatial curvatures

The Riemann curvature tensor applies to any space,
space-time and sub-space regardless of the number
of dimensions. We have calculated the curvature of
4-dimensional space-time and we will calculate the
curvatures for the spatial parts. We take the three
examples of the uniformly accelerated, the
Schwarzschild and the uniformly rotating frames.

Let us detail the method and explain the general
approach to measure times and distances”’.

For the time, we determine the proper time interval
dt by setting the dx'=0 (i=1,2 or 3) :

1 1
dr:E@dXO and r:;j@dxo (x°=ct)

For the space, if the reference system is synchronous
go;i=0and: ds’=gy, c’dt’—dI’

with  dI’=—g,dx'dx’' =y, dx'dx’
The curvature tensor is then calculated with the
three-dimensional metric tensor y; as before. Here,
we run the indices from 1 to 3.

37 Landau / Lifchitz, The Classical Theory of Field, § Distances and
time intervals.
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If the reference system is not synchronous, the
temporal coordinate is not directly separated from
the spatial coordinates, and, we show that:

90i90;
Y=gyt
! 7 G

and dl2=yijdxidxj

We can then calculate dl with the three-dimensional
metric tensor. On the other hand, we cannot, in
general, determine the distance between two
bodies. Also, the curvature tensor cannot be directly
calculated in the form previously given®. Never-
theless, in the particular case where the reference
frame is stafionary, metric coefficients g,, inde-
pendent of fime, we can infegrate the element dl
and the curvature tensor is in the usual form :

Stationary frame:

03G,y _ i
agi —0, I=[dl and R,

1 - Rocket: Is the reference system synchronous?
Is the space curved?

2 - Spherical body:
Is the reference system synchronous?
Is the space curved?

3 - Disk:
a- Is the reference system synchronous?
b- Determine Yj.
c- Is the reference frame stationary? What is

the ratio of the perimeter of a circle to its diameter?

38 Cattaneo's projection technique.
Rizzi / Ruggiero, Space geometry of rotating platforms, 2008.
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(circle centered on the axis of rotation)
Does the observer attached to the rotating disc
experience a curvature?

d- Calculate R' ;.
e- It is shown that, for a two-dimensional

space, there is only one independent component of
the curvature tensor R, (i=1, 2)".

Calculate the Gaussian curvature K of the surface:
1 _ R1212

K= = 5
R, R, Yu¥n—"Y

where R, and R, are the radii of curvature at a point
of the disk. You can compare it to the Gaussian
curvature of a sphere,

Answers p419

54+ AAA Pair production

A high-energy particle can under certain conditions
create a particle-antiparticle pair. Let's take the
example of the collision of two protons. In the
barycentric reference frame they arrive face to face
with the same velocity. When their kinetic energy is
just sufficient, we say at the threshold, they create
four particles aft rest:

p+p=>p+p+p+p

39 Landau, § Properties of the curvature tensor.
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Draw the Minkowski diagram at the threshold in the
barycentric frame where ., p,=0.

Answers p422.

6. AAA Wave equation

The wave equation describes the behavior of a
multitude of waves: waves on water, sound waves,
seismic waves, electromagnetic waves, etc. These
waves, although of different physical natures, all
obey the same equation. The amplitude of the
wave @(F,t) is the solution to the following
differential equation:

2
—% g cg =0 so Ug=0
c” Ot
c is the celerity of the wave which depends on the
type of wave and the medium.

Ag

Definition of the Laplacian in Cartesian coordinates:

of o°f &
Af= C+ f2+ ];

ox~ 0y 0z

Al : YN ik
embert operator : = A——zp

C t

1 - Demonstrate that the wave equation is not
invariant under the Galilean transformation.
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Help: In classical mechanics, the amplitude of the wave is
a physical quantity that should not depend on the
chosen coordinate system. At a poinf M and at a given
time: Cp'(X',t'>:Cp(X,t). Such as, for example, the
wave height, or the sound pressure. By identifying dcp
and d@' deduce the relations between the partial
derivatives.

2 - Show that the electromagnetic wave equation
in vacuum is invariant under the Lorentz
transformation: [J E=0 and [1B=0. In this case the
amplitude of the wave depends on the reference
frame, the transformation formulas are given on
page 427.

Answers p422,

7. AA/\ Schrédinger equation

In quantum physics, the wave function obeys the
following equation of evolution:

2

A
ind¥__ 2 Awiyvw
ot 2m

The probability density of presence of a particle is
obtained by mulfiplying the wave function by its
complex conjugate:

_dP

==y g
P=av
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We can limit the study to the motion in one
dimension of a free particle of mass m:

ow_ I Py

7 ot B 2m ale

and a standard Galilean transformation: V. .=V i

1 - The probability of presence of a particle in a
given volume should not depend on the reference
frame. On the other hand, the wave function is not
unique and the probability density is not modified if
we multiply the wave function by a complex
number of modulus one.

Show that the Schrdédinger equation is invariant
under a Galilean transformation with:

%(EI—PX) 1 )
Y'=e ¥ where E:Emv and p=mv.,

2 - Show why the Schrbdinger equation cannot be
invariant under the Lorentz transformation.

Answers p424.
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8. AAA The electromagnetic field

Electric and magnetic fields are not written as
fourvectors but as components of a rank-2 tensor:

, _E _E _E
C C C
EX
~x 0 -B, B,
uv c
F=F"=
E
v B 0 -B
C
EZ
—~ -B, B, 0

The E and B fields are in fact one and only one
physical entity and their components depend on
the observational inertial frame of reference. We are
here in the inertial frame R, and we will also consider
the frame R'in uniform rectilinear franslation along x:
Ve r=V=VU,.

The ftensor of the electromagnetic field is
antisymmetric: F*'=—F™,

1 - Like mass, electric charge is an atfribute of the
particle that does not depend on the reference
frame. We can simply build a four-vector for the
charge and its motion:

T=qu (4-vector current)

We will demonstrate that the 4-vector F7 is
identified with the electromagnetic 4-force:
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dp
dt

=Fj and for the components Cz]i =F""j,

By developing the components, temporal then
spatial, show that we find the electromagnetic
power, as well as the expression of the Lorentz force.

2 - Give the expression of the components of E'

and TS' in R' as a function of those of TE and TB in R.
3 - Determine the components of the tensor F ..

4 - Find the expressions of the two Lorentz invariants
of electromagnetic fields. They are scalar invariants

functions of E and B. The first one is obtained by
contracting all components of the electfromagnetic
tensor with itself: F*'F . The second use the
completely antisymmetric unit tensor of fourth rank:
e“V“'SFWFaﬁ. "'’ components are zero if two
indices are the same and 1 else. The tensor
alfernates sign under inferchange of any pair of

. . 0123
indices. We set: € =1.

5 - In the reference frame of the laboratory R, we
have two planar metallic plates separated by a
distance e and respective plate charge densities o
and -0. The capacitor plates are assumed to be
infinite and we will take the z-axis from the negative
plate to the positive plate.

We will use the Gauss's and Ampére's circuital laws:
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¢ E-ds= ‘30 ¢ Bedl=u,l,,. (u,c’=1)

The use of these tools is not explained here. A book
in itself on this subject would be necessary. Refer 1o
a undergraduate level course on electrostatics and
magnetostatics.

a- Determine the electric field at any point in the
space. Write the matrix F*V in R.

b- We are now in the frame of reference R' in
uniform rectilinear translation along the x-axis at the
velocity V. For a classical observer of this frame of
reference the charge density remains the same on
the plates and the electric field E'=E. On the other
hand, as the charges are in motion, a surface
current density appears: determine the magnetic
field at any point. Write the matrix F'*" in R"

c- Starting from the tensor F*" do you find F """ with
the change of basis lambda matrices? Do we well
have the invariance of the two Lorentz invariants?

6 - In the reference frame of the laboratory R, we
have a homokinetic beam of protons of velocity V,
radius r and density n. We call R' the proper
referential of protons.

a- Determine the electric field outside the beam in
R'.

b- By general considerations, determine the struc-
ture of this same field in R with few calculations.

Answers on page 425.
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9. AAA Maxwell's equations

James Clerk Maxwell established in 1864 the theory
of electrommagnetism  which unifies Michael
Faraday's theory of electricity and André-Marie
Ampeére's theory of magnetism through the following
equations:

In vacuum:
= - OB —
V/\E:—E V:-B=0

The fields are derived from a potential V. and a

vector potential A according to:

. = A L=
E=-VV oA and B=VAA
ot
Lorentz gauge condition: %%—V v A=0
. S _
Charge conservation: V-J +E_
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Definition of operators in the Cartesian coordinate

system:

Gradient of f : Vf_af_' (')f—» afk
0x ay 0z

-~ = = 0C, 8C 8C
Divergence of C: V-C=

0x 6y oz
Curl of C :
= . [0V, 0V 8V 8V 6V GV
VAV= ——
oy 0z 0oz 0x ax oy

1 - Galilean transformation:

the Galilean transformation.

b- Lorentz's force is considered invariant under this
same transformation. From this, deduce the Galilean
transformation laws of E and B as a function of
V, =V, Check that they well correspond to the
non-relativistic limit of the Lorentz fransformation of

these same fields.

c- Show that the first two Maxwell's equations

v-TS:O and ?/\ E:—%—Itg remain invariant under a

Galilean fransformation.

Help to do the calculations in vector form:
Sy 0 0

Partial derivatives: V=V ' and FTRrTY
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a- Show that Newton's second law is invariant under



Useful formula:
VA(AAB)=A(V-B)-B(V-A)+(B-V)A-(A-V)B

d- Show that the following two Maxwell's equations
are not invariant under a Galilean fransformation (to
simplify the calculations, we can consider the case

without the sources p and ).
Useful formula: V-(AAB)=B-(VAA)-A-(VAB).
2 - Lorentz transformation: Let us show that from 1905

the Maxwell equations could incorporate their
natural relativistic framework.

a- Show that Maxwell's equations are invariant
under the Lorentz transformation.

b- We infroduce the 4-vector current density
7:ppﬁ where p , is the charge volume density in the

proper frame of reference. Show that by using the 4-

vector gradient auzﬁz(%ﬁ we obtain a
' C

charge conservation equation in covariant form.

c- We propose to introduce the potential 4-vector
Z:(V/c, Z\). Show that the Lorentz gauge condition
is simply written in tensor form with A" and the 4-
vector gradient 0,. Show that by judiciously
combining the four-vectors A* and o*, we obtain
the tensor F*",

-V

d- Show that the covariant equation 0, F* =u,j
gives back the Maxwell equations with sources.
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e- Show that the equation 0“ F*'+0" F*“+0" F*"=0
gives back the first two Maxwell equations.

f- Find the expression of the propagation wave
equations of V. and A

3 - Show that the fields are not modified by the
following gauge change:

vr=v-9L
\ai ot
A=A+Vf

This is called gauge invariance. The Lorentz gauge
condition corresponds to a parficular gauge choice
that gives the potential propagation equations a
simpler form. Above all, A" then behaves like a 4-
vector, and the invariance of Maxwell's equations
becomes immediate.

Answers p431.
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Tome XVL Samedi 2 Juillet 1898 5 Annés, — N* 27.

L'Eclairage Electrique

REVUE HEBDOMADAIRE D’ELECTRICITE

CHAMP ELECTRIQUE ET .\[.\ﬂ,\il"]'l'l()_[_ff‘l
PRODUIT PAR UNE CHARGE FLECTRIQUE CONCENTREE EN UN POINT ET ANIMEE

B'UN MOUVEMENT QUELCON QUE

A. LiiNarp,

Professeur & I'Ecole des Mines
de Saint-Etienne.
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INTERACTIONS

We study the interaction between two charged particles.
We want to draw the Minkowski diagram of two electrons
that repel each other. To do this, we will place ourselves in
the barycentric frame of reference. The elements of
electromagnetism treated in the exercises The electro-
magnetic field page 252 and Maxwell's equations page
255 are assumed to be acquired.

@D FIELD CREATED BY A PUNCTUAL CHARGE

A particle of charge g is at rest at P, origin of the
reference frame R'. We observe the static field created at
a given point M:

! -

=( ¥, L Br=0
or

We now place ourselves in a inertial reference frame R, of
origin O and in rectilinear and uniform translation with
respect to R Vgz,x=V. The particle is in motion in R and
passes through O at 1=0. We want to obtain the expression
of the fields in M in this new frame of reference R. We
apply the Lorentz transformation and the transformation
of the fields™ :

PM)p=(x",y",z")=(y(x=Bct),y,z) with v=vi
F=(PM|y=|PO|+(0M ;=|OM |;—Vi=(x—wt, y,z)
r?=y (x—vt +y*+2° =y’ [r’=(y*+2*)p’]=r’ y*(1—p’sin°0)
with 6=(Vv,7). Moreover E=(E' _,yE',,yE',) then:

40 H. Lumbroso, Relativité, Interaction de deux particules chargées.
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}

_1-p* w, VAF_VAE
and _(1—stin26)3/2475q r

We obtain the relativistic expressions of the Coulomb's law
and the Biot-Savart law for non-accelerated charged
particles.

The electric field always seems radial, but with a non-
isotropic angular distribution. In fact the situation is more
complex, because the signal now propagates at finite
speed, and this field was not generated by the particle at
=0 in O, but at an earlier position. The corresponding
event is at the infersection of the past cone of M(t=0) with
the worldline of the particle.

In the previous formulas the fields at the instant t are
expressed using quantities themselves function of t,
whereas it would be judicious that they are expressed
according to the retarded time t.

Electric field of a positive charge in recfilinear and uniform
motion. Even if an obstacle is inferposed on the trajectory
between P, and P, a radial field with respect to P will be present
at time t at point M. However, the charge will never be at P,
Everything happens as if the field anticipated a rectilinear and
uniform motion of the charge (Boratav and Kerner's book)
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Electric field lines of a charge which, first comes from the left at
95% of c, then stops abruptly at O at t=0. Picture of field lines in
the observation frame of reference at t=At“'.

Lines and amplitudes of the field. The particle first af rest, then
begins to accelerate uniformly, then continues at constant
speed c/V2 (longitudinal factor 1-8°. The electric field
decreases along the direction of motfion and increases in the
transverse direction®.

41 Picture of Dynamic Electric Fields, Tsien, American J. of P., 1972.
42 Electric field lines of relativistically moving point charges, Daja
Ruhlandt, Steffen Miihle and Jorg Enderlein, 2019.
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We give the general expression of electromagnetic fields,
as a function of t,, for any motion of the charge®. This
formula was first established in 1898 by Alfred-Marie
Liénard®. We might be surprised that this relativistic
expression of fields was expressed even before the special
relativity was revealed in 1905. In fact, there is nothing
anachronistic about it, since Lienard relies on Maxwell's
equations, which, as will be seen later, are purely
relativistic.

SPPE (E S TS
Codme| r? (1-2pP r(1-8H)7 |,

- EPr/\E' »:r »:z

B(M,t)=—" F=|PM|j é=—

E:VR/C and f:’; are the instantaneous velocity and

acceleration. € is the unit vector directed from the
charge at P to the observation point M.

The date t, verifies ¢(t—t,)=r.

The first term 1/ depends only on the velocity of the
parficle and corresponds to that found for the static
charge. Here, the proper frame R' of the charged particle
is no longer inertial and the proper acceleration is non-
zero. A second term which depends on the acceleration
appears, it is a term 1/r, radiative: An accelerated charge
emits electromagnetic radiation.

The fields E and B are stil orthogonal.

43 Landau, The Lienard-Wiechert potentials. Also: Jackson, Classical
Electrodynamics, 1962, 641 pages, equation (14.14).

44 A. Liénard, Champ électrique et magnétique produit par une charge
électrique concentrée en un point et animée d'un mouvement
quelconque, L'Eclairage Electrique, July 2, 1898. Expressions also
established, independently and two years later, by the geophysicist
Emil Johann Wiechert.
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For the two electrons arriving head to head:

M, M,
. P P,
By G By o7 B, 92 B, X

= Ef) 62 31 .(fs =
E, E;

One-dimensional motion and central symmetry simplify
the resolution. To lighten, all retarded quantities have not
been reproduced in gray, only the quantities at time t are
placed in black. All vectors are along the axis and the
radiative term is therefore null on the axis: (é—p)AB=0.
Here, the unit vectors €; and €, do not depend on tfime:
é'1=7:—é’2. Also, at a given instant, the velocities and
accelerations according o indices 1 or 2 are in opposite
directions and have the same values in norm : B,;=X%;/c,
before the collision 3,<0.

For M=M, and P=M,: 7, =[P, M,
1=
e 1 P
E t)= '
ol 4meg (xy—xp ) 1+Bp,
E, =0 E, =0 B =0

y1 z1 1axis

We had an instantaneous longitudinal factor (1—p2) that
did not depend on the direction of the velocity, as for the
Lorentz contraction. Here, this is no longer the case with
the retarded longitudinal factor (1=B)/(1FB), as in the
Doppler effect, which takes into account the direction
and propagation delay.
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o Forces between two charges

Two charges move in R with velocities Vi and V.. The

electromagnetic force f1 exerted by P, on M, is expressed
using the Lorentz force:

flqu(E2+_\51/\ Bz)
For rectilinear and uniform translation:

'V +3 V1’E2
2 VT
C C

t

As it should be, the classical principle of action and
reaction is no longer verified. This principle presupposed
simultaneity and instantaneous action of interactions.

For our two electrons in frontal collision:
2
4TE€0 (Xl—er) 1+[32r

fl(xl’t):q1 Exl(xlyt)_i':—

a RabiaTiON DAMPING

An accelerated charge emits electromagnetic radiation.

o Radiated energy

Energy emitted by units of time in the proper frame of the
particle:
1 2,
= —3a
43'660 3c

When the proper frame of reference is non-inertial, the
particle, immobile and with proper acceleration qp,
radiates. The radiation is here infegrated on all directions
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and frequencies. For non-relativistic particles, it is the
Larmor formula established in 1897, valid then for any
moving particle in the proper reference frame. This
radiation makes the atom unstable in the Rutherford
planetary model. Indeed, in this model, the electron
radiates until it crashes on the nucleus™.

For any relativistic motion of a charged particle in an
inertial reference frame “:

» (VAd)
» a4~ 2
1 2e c
4me, 3¢° v2\®
2
c

This radiated power slows down the particle. However, it is
not simply equal to the kinetic power, because the
particle is not an isolated system and it interacts with
other charges. The particle is subjected to the damping
force and the Lorentz force. On the other hand, in order
not to have to take into account the interaction energy,
we can calculate the energy of the system when all its
constituents are at a large distance from each other. For
example, for the scattering of two electrons, the
difference in kinetic energy before and after the impact
corresponds o the radiated energy.

o Damping force

We need to complete the equation of motion of a
charge by adding emission damping g :

45 Hence the emergence of quantum physics, which has replaced the
classical approach. The term classical can mean non-relativistic or non-
quantum.

46 Landau,§ Radiation from a rapidly moving charge.
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Covariant expression of the damping 4-force” :

dw" u'u' dw,

dt C2 dt

128
4me, 3¢°

g

GD RETARDED POTENTIALS

The formulas for the fields are deduced from the
potentials:

V= q l 1_’*} and A= q l ﬁ»_’}
4n€0 r(l_e'B) ret 4ﬂ7€0 T‘(l—e-ﬁ) ret
~_ g o o -
= A= ——| Wwih ¥=r(1,é)=(r,7) and F7-u>0
4ﬂ€0 r-u ret

The four-potential is expressed using covariant quantities,
so it is a four-vector. The four-potential A at M is collinear
to the retarded four-velocity U, at P, A is thus fimelike, it
points to the future for a particle with a positive electric
charge, and to the past for a negative charge.

For a distribution of charges in motion at the retarded
positions P;, the total four-potential at M will be the sum of
the individual four-potfentials. The four-potential created
by a charge distribution is therefore also timelike.

47 Landau,§ Radiation damping in the relativistic case.
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o Geometric construction of the 4-potential

Let's consider the world lines of two charged particles. We
are looking for the field created on a particle at M by a
second at P. We have drawn the Minkowski diagram in an
inertial frame of reference. As the field propagates at the
finite speed ¢, the event P is anterior on the past cone of
M. We obtain H by orthogonal projection of M on the
retarded four-velocity. The intensity of AatMis equal to
the inverse of the intensity of HM multiplied by lgl/4meo.
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This property can be read directly on the graph:
?’-ﬂ:(ﬁ+ﬁP)-H:kHPku:kMHc

The intensities of HP and MH are equal, because these
two vectors point to hyperbolas with the same
parameters (90° rotation to switch from one hyperbola to
the other).

The projections of A along the axes of the study frame of
reference provide the potential V and the vector
potential A, The spatial and temporal variations of these
two quantities then determine the E and B fields. It is
therefore clear that by projecting along the axes of
another inertial frame, we would have other values for the
electric and magnetic fields. The infensities of the fields
change, while the fourpotential remains the same.

Attractive case.
Charges of opposite signs,
first at rest, then move closer fogether.

qi=e qp=-e

M H

=2

-2
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Minkowski diagram of a collision :
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Exercises

1. AAA Units

Sometimes we need to switch from one unit system tfo
another. We have in the books equations where c=1, or
old systems of units with 1/4se, that have disappeared.
We want the expressions in the new international system
approved in 1946 (S| MKSA : m-kg-s-A).

We find in a book the expression of the radiated power P
by a charge e of acceleration a:

_2é

3¢

Restore if necessary the Sl units.

P

Answers page 439

2. AA/ Reldtivistic equation of motion

We consider motion in a one-dimensional Carfesian
inertial frame of reference.

dv
dt

N . X FX
In classical mechanics we have: a,= :;.

What relationship do we have in special relativity
betweena,and f, ?

Nofoﬁons:azc(lj—‘t/ and f:(ii_f with p the momentum.

Answers page 439
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3. AAA Radiation damping 4-force

Damping four-force g properties:
1- Show that g-u=0.

2- For a rectilinear motion along x, determine the
expression of g as a function of v, a and da/dft.

Notations:  g=g'=g’ a=ad'=d V' /dt v=V=dx/dt

Answers page 439

4. AN Four-potential magnitude

Express the intensity of A in terms of rand B.

Answers page 440
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Voyager 1 and 2 probes

IMAGING, NA

ULTRAVIOLET
1 SPECTROMETER

2 W/\ INFRARED
} SPECTROMETER
COSMIC RAY / AND RADIOMETER

PHOTOPOLARIMETER

HIGH-GAIN LOW-EMNERGY
ANTENNA CHARGED PARTICLE
(3.7-m DIA)

HYDRAZINE
THRUSTERS (16)

MICROMETEORITE
P /_ SHIELD (5)
/ OPTICAL
CALIBRATION

TARGET AND
RADIATOR

PLANETARY RADIO
ASTRONOMY AND
PLASMA WAVE

HIGH-FIELD
ANTENNA (2}

MAGNETOMETER

RADIOISOTOPE
THERMOELECTRIC
GENERATOR (3)

LOW-FIELD
N;)AG MNETOMETER

(SPACECRAFT SHOWN WITHOUT
THERMAL BLANKETS FOR CLARITY)

MNASASPL
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INTERSTELLAR TRAVEL
AND ANTIMATTER

a INTRODUCTION

Who says travel, says to leave his place of life for
several reasons:

* by necessity, for reasons of survival

* in the spirit of adventure and discovery

« to conqguer and colonize

For all these reasons, we have for centuries:
* explored our planet Earth
* we are right now exploring our solar system
* and, one day, surely, we will leave our system
to explore other stars

Our planet is fragile, and even if we managed to live
on it in harmony, it may seem risky to stay in only one
place.
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SURVIVE / DISCOVER |/ CONQUER

A representation of a picture of our galaxy, the Milky Way.
At night on a beautiful starry night without clouds and
without Moon, we clearly see a milky band arching the
celestial vault, the cross section of our galaxy. Our Sun is
at the cenfer of the small circle, and most of the stars we
see at night are our neighbors and are contained in this
zone.

Of course, this is not a real picture, we have never placed
a camera in a place outside our own galaxy. This is a
computer-generated reconstruction from real photos.

278



For example, it is very likely that a meteorite, like the
one responsible for the disappearance of the
dinosaurs, will hit the Earth again one day, in a few
years, or, millions of years, we don't know. Hence the
idea of a multi-planetary humanity, with as a starting
point the establishment of autonomous colonies and
extraterrestrial bases.

Some, such as Elon Musk are fargeting the planet
Mars with a manned mission planned for the near
future, and subsequently the establishment of a
Martian base and the terraforming of the planet. This
project is exciting, but before a group of humans
can live on Mars without being dependent on
freight arrivals from Earth, it may take several
centuries.

The planet Mars is perhaps the best candidate
among the eight planets that orbit our Sun. But
probably not among the thousands of exoplanets
already discovered that orbit other stars!

The idea is to join an exoplanet that has a greater
similarity to Earth than Mars, a twin planet of Earth,
so, despite a longer journey, the colony could
establish itself much faster.

Some will fell you that the other stars are far too far
away and that interstellar travel is unrealistic, when
in fact we are already making interstellar fravel with
Voyager probes.
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They were built with the technologies of the 70s. They
have already crossed the heliopause, the limit of our
solar system, and are now fraveling through the
inferstellar medium. These probes were designed to
explore only the solar system, but, simply, with
current tfechnologies, they could be adapted to
reach other stars. For example, the radioisotope
thermoelectric generator will stop in 2025 and the
tfransmission with. They can easily be replaced by
batteries with an isotope with a much longer lifetime.
The Voyager probes travel at about 61,000 km/h and
would reach the closest star to our Sun, Proxima
Centauri located 4 light-years away, in 70,000
years®,

This is a lot compared to the life span of an
individual, but very little compared to the age of
mankind. As we will see, the spaceship can be large
and reach this speed on the same principle. We can
then design, still with currently accessible techno-
logies, a seedship.

A manned journey over such a length of time is
difficult to conceive, people would be born and die
in the vessel over several generations, this type of
vessel is called a generation ship.

On the other hand, the seedship contains only

48 In fact, over such periods of time we can no longer consider the
stars motionless from one another. Nevertheless, in order not to
complicate the presentation unnecessarily and to get to the point,
we will consider the star Proxima Centauri fixed at 4 light-years.
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frozen ovocytes and spermatozoa (no risk of them
hitting each other!). Once close to Earth's ftwin
planet, an automated process starts the incubators
and the first generation of children will be raised by
robots with arfificial intelligence.

At this rate, an extraterrestrial human civilization can
establish itself and re-launch a new intferstellar
seeding ark in 100,000 years. Thus, step by step, in
small leaps of 10 light-years, humanity can colonize
the entire galaxy in less than a billion years.
Reasonable duration, compared to the age of our
Sun, 4.5 billion years, and the appearance of the first
cells 3.8 billion years ago.

We will first talk about the Voyager probes and then
detail other technologies that would allow us to
reach the other stars much faster.

@ VOYAGER PROBES

The two Voyager 1 and Voyager 2 probes were built
identically and were launched in 1977. They each
have a mass of 820 kg including 90 kg of propellants.
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In astronautics, the term propellant, refers to the
chemical substance that allows the propulsion of
the rocket. For your car to work you must regularly
take your vehicle to the pump to fill the fuel tank. But
your car would not be able to run on the Moon,
because for the combustion of the fuel it also needs
the oxygen naturally present in the Earth's atmo-
sphere. A rocket operates in vacuum and therefore
has to carry both the fuel (the reductant), and the
oxidant, the combination of the two is called
propellant,

From the ground the probes left the terrestrial
attraction on board Titan rockets containing tons of
propellants. In addition to the speed thus gained, is
added the speed of the Earth in its orbit around the
Sun. But even so the speed of the probes was
insufficient to break away from the solar attraction.
And it is not the few kg of propellants carried by the
probe that would allow it, they are used for
frajectory corrections. The Voyager probes cleverly
used the gravity assist of the planets to escape from
the Sun's gravitational well.
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Speed with respect ta the Sun in km/s

a SLNG EFFecT

We use the speed of revolution of the planets
around the Sun. For example, Jupiter orbits at
13 km/s around the Sun and the Voyager ]
spacecraft after its deflection by the planet has
gained more than 12 km/s.

T sty LRI A L R L | LR LA T 7 T TTI T T T T TTT T

Voyager 1 speed and distance

End
of data
collection
hy 2025

Passing
the star
Gliese 445 in
40,000 yrs

a0 o ——mI
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1{:\ & \'{:\...\
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IBLERL

1Ly in
18,000 yrs

Interstellar medium

N =Oo N

Selar system
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sl I sl |

1

Ll "
Distance From Sun in astronomical units 1000 10000 100000

The black line represents the speed of the probe as a
function of the distance fo the Sun (multiplicative scale).
By flying over Jupiter, the probe escapes its orbit around
the Sun. The shaded line crossed corresponds to the
speed necessary fo escape from our stellar system. The
astronomical unit corresponds to the distance Earth-Sun,
one light-year is about 60,000 au.

283

au



The Voyager 2 probe even took advantage of the
slingshot effect of four planets: Jupiter, Saturn, Uranus
and Neptune.

Interstellar P Voyager probes trajectories
Medium o
_~Voyager 1
< January 2020
’ ¥ 148 au
re 4 61,000 km/h Saturn Jupiter
VI:Nov.80 vz March 79

A
/

Heliopause

v: Aug. 81 V2 July 79

Neptune

Earth

Vayager 1: Sep. 77
~ Voyager 2 Voyager 2: Aug. 77
January 2020
123 au
55,000 km/h

We have a small drawing, that follows, which allows
us to understand simply the sling effect. A train
moves towards you at 50 km/h and you throw a ball
at 30 ksm/h to make it bounce on the front of the
locomotive. Let's now put ourselves in the position of
the train driver, he sees by additivity of velocities the
ball arriving faster, at 80 km/h, the sum of the velo-
cities, with respect to the ground, of the frain and
the ball. If the collision is perfectly elastic, the ball
starts again, with respect to the train, with the same
speed and in the opposite direction. So the ball
thrower sees the ball bounce back with a speed of
130 km/h with respect to the ground. By throwing the
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ball frontally, the speed of the ball increases by
twice the speed of the train.

130 km/h

» : 3 " |I'—_’ | }-’ L h ‘ -
TSR

i:. Kohlhase (@ NASA)

If now you throw the ball at a certain angle, the
effect will be weaker but the principle remains the
same. The same happens with the probe and the
planets.

ry
Vs/s

Jupiter in the center and the hyperbolic trajectory of the
probe in the frame of reference which has for origin
Jupiter. The velocity of the spacecraft Vg, with respect
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to Jupiter changes in direction but not in magnitude. The
velocity of Jupiter with respect to the Sun must be added
v, to obtain the velocity of the probe v, with respect
to the Sun. We see in our figure that this speed increases,
this is the slingshot effect. In the example of the train,
there was a half-turn of the ball and the deviation D was
180°. For the passage of the Voyager 1 probe in March
1979, the deviation was 80° and the heliocentric speed of
the probe increased by 12.5 km/s*. The object which
benefits from the gravitational assistance can have an
important mass without modifying the effect (its mass
must remain small in front of the mass of Jupiter...).

a VovaGer 3 PROJECT

The Voyager probes were not designed for inter-
stellar travel, but to explore the solar system. For the
Voyager 3 project, we are optimizing the slingshots
to gain speed and reach nearby stars. For example,
we could fake advantage of an opportunity: in
25,000 years, Proxima will be as close as possible to
the Sun, 3 light-years away instead of 4.

This is a great project for mankind that also allows
humanity to project itself into the future.

Next page, a numerical simulafion of the frajectory of the
spacecraft with the successive deviations at the flyby of
Jupiter, Saturn, Uranus and Neptune.

49 Document: La fronde gravitationnelle, Pierre MAGNIEN, 2019.
Real time position of the Voyager probes: voyager.jpl.nasa.gov.
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Voyager 3: the probe is propelled at the level of the
Earth's orbit and it then chains four slings around the gas
giants. The final speed is 140,000 km/h. Two differences
compared to the historical Voyager probes: additional
propellant is used and the effect of the slings is optimized.

The mass of the whole, the probe and the propellant, is
very reasonable: only about fen tons, which can be sent
into space with the current rockets.

Below is the speed profile of the probe. We see an initial
velocity surplus of 5 km/s given by the propellants. Each
slingshot borders the upper atmospheres of the gaseous
planets for maximum speed gain.

Speed of Voyager 3
70000
50000
50000

40000 &l\

30000

Heliocentric Speed in m/s

Time in days
20000
1 10 100 1000 10000
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a ROCKET EQuATION

We would like to go even faster towards the stars by
thrusting the probe with propellants. The propellants
burn and the resulting gases are ejected backwards
and allow the rocket o gain speed by reaction. The
low of astronautics gives the speed increase Av of
the rocket as a function of the inifial mass m; of the
rocket, of its final mass my and of the speed of
ejection v, of the gases.

We can begin by illustrating this law with the
example of a small boat on which a person throws
stones backwards as far as possible with all his
strength:

The boat is at first immobile with all its reserve of stones.
The person on the boaf throws a first stone backwards.
The boat then starts to move slightly. This is the
conservation of momentum. The friction with the wafer is
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neglected: the acquired speed is preserved. The person
throws the stones until the stock is consumed and the
speed of the boat increases with each throw. The last
sfone increases the speed much more than the first one
because at the end the boat is much lighter. The first
stones are not very effective because the boat is inifially
very heavy and they are used above all to move the
sftock of stones in waiting.

Start End
m; m me
> “P
vi v v
- —_— —_—

The initial mass of the rocket is that of the probe and the
propellants, the final mass corresponds fo the probe
alone. The speed variation Av is the difference between
the final speed and the initial speed. The mass of
propellant required increases very quickly, much faster
than the speed reached.

Rocket equation:

i
Fp

The crocodile illustrates that in spite of a mass ratio made
important by the increase in the quantity of propellants,
this ratio is massively crushed by the need fo also increase
the speed of these same propellants before ftheir
combustion.

Av =V X
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For a conventional chemical propellant we have an
ejection speed of approximately 4 km/s. Let's ima-
gine that we want to go twice as fast to reach
Proxima with a Voyager-type probe. How much
propellant would we have to take on board?

We then have Av=60,000 km/h, or 16 km/s. The mass
of fuel fo be embarked increases exponentially and
it would take 40 tons of propellants to get o Proxima
in 35,000 years... To get there in 50 years, we would
far exceed the mass of the Universe!

Duration of a ftrip fo 4 light-years (current Sun-Proxima
distance) with a Voyager type probe using fraditional
propellants (chemical energy / probe with a mass of

800 kg):

Duration of | Mass of propellants m, 1n| M
the trip required m; m,
70 000 yrs 0 ton 1 0
35 000 yrs 40 tons 50 4

1000 yrs Mass greater than that of 140
50 yrs the observable Universe 0 2800

Once the star system is reached we can slow down the
probe by sling effect. For the journey twice as fast, if we
don't want to simply fly over the distant star system, the
gravity assistance will not be sufficient fo put ourselves in
orbit around the star and we must also bring fuel fo slow
down the probe. As we have a factor of 50, we need
2000 fons of propellants at the departure from Earth fo be
able fo be in orbit at the level of the exoplanet at the
arrival!
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To get around this monstrous increase in mass, the
ejection speed would have to be increased instead.
We would then have to use other technologies. We
can use nuclear energy or mass energy.
For one kilogram of propellant, which substance
allows the maximum release of energy?

Lets compare energy efficiencies. It is the energy
released compared to mass energy. For example, one
gram of anfimatter releases more energy than a
thousand fons of chemical propellants:

Propellant Efficiency Details

Chemical 1 /6 billions | 0.00000002 % | Oxygen-Hydrogen
Fission 1/1000 0.1 % Uranium 235
Fusion 1/250 0.4 % Deuterium-Tritium
Antimatter 1 100 % E=mc’

In  the current stafe of scientific knowledge,
antimatter appears to be the ideal fuel. The entire
mass is then converted into energy and motion of
the rocket.

Duration of a one-way trip for Proxima Centauri for a
Voyager-type probe using an antimatter reactor (10%
efficiency):
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Travel time to Proxima Antimatter mass required
70 000 yrs 0
35 000 yrs 230 grams™
10 000 yrs 1.4 kg
1 000 yrs 16 kg
50 yrs 333 kg

Calculations for a distance of 4 light-years. In fact,
Proxima Centauri will be closest fo the Sun at 3 ly in 25,000
years. For an equivalent quantity of propellants, we gain
10,000 years.

We see that the problem of the mass of propellants
to carry has disappeared. We will therefore focus on
antimatter: its nature, its collection and its storage.

a ANTIMATTER

Paul Dirac in 1928 constructed a theory to unify
special relativity and quantum physics. It was then
that antimatter imposed itself in the equations, it was
later discovered experimentally as early as 1932 with
the positron. Theoretical prediction appears as
symmetry in the Dirac equation. In natfure, to each
elementary particle corresponds a “twin" particle, a
particle with exactly the same mass but with an
opposite electric charge.

50 One gram of antimatter releases as much energy as an atomic
bomb.
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For example, to the electron corresponds the anti-
electron commonly called positron, or positon. In
1955, the antiproton was discovered by creating it
with a particle accelerator. In 1995, the first atom of
antfimatter was created, the atom of anti-hydrogen.
When a matter particle meetfs its antimatter
counterpart, the two disappear and annihilate each
other in pure energy. Hence perhaps the name
antimatter, but, to avoid any confusion related to
this name, let us specify that antimatter is matter.

We can produce antimatter arfificially with a
particle accelerator, but it also exists - although in
much smaller guantities than matter - in nature.,

The production of antimatter in the laboratory
requires a lot of fime and energy. For example, to
create antiprotons, protons are accelerated and
when they collide at high energy, they create
proton/antiproton pairs:

p+p > p+p + p+p

You create a proton for nothing and the productivity
is low. It is very interesting and precious to
understand the secrets of matter on a small scale,
but, to produce the propellant for a rocket, it is
perhaps not the most judicious®'.

51 In 2020, world energy production corresponds to the energy
released by the annihilation of 3.5 tons of antimatter, however, with
the existing current means, even to produce just one gram of
antimatter would be prohibitively expensive.
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It would be simpler to collect it in the nature.
Positrons are released by beta-positive radioactivity,
by cosmic rays or even storms. Antiprotons are a fuel
of choice because they have a mass energy much
higher than positrons. However, unlike positrons, anti-
protons are not directly produced in our solar system.
The Sun, the most powerful source of energy in our
star system, only rises in energy to the level of fusion
and the solar wind does not contain anfiprotons.

We must, therefore, look for a source of antimatter
outside our system. This source exists, it was disco-
vered in 1912, it is the cosmic rays. It is made up of
particles of very high energy capable of creating
antiprotons. The precise sources of this radiation are
not yet known, but it is now believed that they are
mainly located in our galaxy. This galactic radiation
is constantly passing through the solar system, and it
is estimated that 200,000 tons of antimatter crosses
the heliosphere every year®.

The density of anfiprotons is higher in the planetary
magnetospheres. For example, around the Earth,
there is an anfimatter belt with a zone a thousand
times denser than the surrounding cosmic rays®.
Cosmic anfiprotons are trapped, and moreover,

52 A lot of data is taken from a very comprehensive article from the
Draper Laboratory: Extraction of antiparticles concentrated in
planetary magnetic fields, 77 pages, 2006.

53 Analysis of results from the PAMELA detector installed on a
satellite in Earth orbit: The discovery of geomagnetically trapped
cosmic ray antiprotons, 2011.
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others are directly created by the infteraction of
cosmic rays with the upper layer of the Earth's
atmosphere. The Earth's antiproton belt is located
several hundred kilometers above sea level in the
Van Allen radiation belt.

G  JUPITER: THE SOLAR SYSTEM GAS PUMP

The Earth generates a magnetic field that traps
charged particles at alfitude, such as electrons
contained in the solar wind. Sometimes during a
destabilization of the magnetosphere, for example
following a solar flare, electric particles are released
at the poles and create beautiful polar auroras. The
magnetosphere acts as a giant magnetic bofttle
that stores all kinds of charged particles. The Earth's
magnetosphere is subjected to a flux of about 4
grams of antiprotons per year. But it is mainly the
large gas giant planets, and, without a doubt, the
gigantic magnetosphere of Jupiter that could
contain the largest amount of antimatter with a flux
estimated at 9 kg per year.
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A picture of the anfiproton belt around the Earth. Here,
an antiprofon moving at 70% of the speed of light. The
Earth's magnetic field curves ifs trajectory and fraps it
using three types of combined moftions: the fastest, a
cyclotron rotation that makes it make small circles, then,
an oscillation between the poles, and finally, a slower drift
that makes it go around the Earth.

Satellites could collect and store this antimatter. The
ships would then refuel at Jupiter before leaving for
the stars.
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aD ANTIMATTER STORAGE

We currently know how to store antiprotons for more
than a year. The temperature is maintained below
one Kelvin and the measurements of the charac-
teristics of the antiproton are extremely accurate®™.
Nevertheless, the quantities are very small and the
mass of the trap is very large compared to the mass
of antimatter stored.

wel}

Penning trap. By combining a magnetic field and an
electric field, charged particles can be frapped in the
laboratory.

The ideal would be to store antimatfter on a
microscopic scale. The antimatter thus trapped and

54 BASE experiment: A parts-per-billion measurement of the
antiproton magnetic moment, review Nature, 2017.
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confined at the atomic or molecular scale could
then be stored like matter. We would have a flexible
and versatile use of this new fuel, both for space
travel and in our daily lives. For example, a car could
tfravel around the Earth on a single tank of a few
milligrams of antimatter.

Let's call Proximium this hypothetical fuel of the
future. A luminal fuel that would allow us fo reach
the stars and bring us info a new energy era. Could
this dream come true? Only experimentation will
allow us to make progress on this question. Let's start
by letting our imagination consider different options.

1 - Exofic atoms where an electron would be
replaced by an antiproton:

Examples of helium and carbon atoms where one or
more e have been substituted by a ,t_) Antimatter density
of the sfructures: 20% and 14%. The first compound,
sometimes called antiprofonic helium and noted ;_)He+,
was discovered by serendipity at the Japanese CEC
laboratory in 1991, and then studied at the CERN
antiprofon decelerator. Normally an antiproton is stopped
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by matter and annihilates on a nucleus in a time of the
order of a picosecond. In this experiment, where a beam
of slow antiprofons encounters a liquid helium farget, we
naturally obtain the metastable /:_)He+ state in which the
tfrapped antiproton can be stored for several
microseconds®.

2 - An antinydrogen atom ionized with an additional
positron F_I+, could replace the nucleus of a
hydrogen atom. Two such exotic atoms would
constitute a Proximium molecule:

&
e

dihydrogen _
Stable H* and e” Stable?

anti-hydride A*
Stable

Proximium Stable?

The storage density in this case would be almost 100%.
Experimental research can first focus on the synthesis of
an anti-proximium molecule. Experiment easier to
implement for a molecule that has the same stability.

55 Atrticle of Havano Spectroscopy of antiprotonic helium atoms and its
contribution to the fundamental physical constants, Japon, 2010.
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3-A cage molecule. There are many cage
molecules in chemistry that allow the encapsulation
of molecules. We can imagine such a molecule that
contains an anfiproton as in a microscopic Penning
frap. We have, for example, fullerene-type
molecules and nanotubes:

Different carbon-based structures. In the top left corner,
we represented the Cy, fullerene. Different types of afoms
have already been frapped in these sfructures. Fullerene
can easily be negatively ionized and could thus be a
good antiprofon frap. Botfom right, the same structure
using a model showing the electrostatic spheres of
influence of electronic clouds. Diagonal, a nanotube with
4 confined antiprotons.
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And so on... We can start by measuring the life span
of such structures, and maybe one day we will have
the pleasant surprise of finding a stable one.
Scientific research makes it possible to test multiple
combinations. It's worth the effort because even if
we don't find what we're looking for, we'll have
learned a lot about matter.

Scientists have already studied different exotic
atoms. We have created and studied anti-hydrogen
atoms that have proven to be stable. Another
hydrogen derivative, positronium, which consists of
an electron and a positron that revolve around
each other, has a stability of 100 nanoseconds. The
muonium, on the other hand, replaces the nucleus
of a hydrogen atom by a muon, the stability is 2
microseconds.

Anti-Hydrogen Positronium Muonium
Stable 100 ns 2 s

Stability can also depend on the context. For
example, a neutron in the nucleus of an atom is
stable, whereas in its free, isolated state, the neutron
has a lifetime of only 10 minutes.
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a ConcLusion

By learning to master antimatter we could reach the
first stars in 50 years and explore the entire galaxy in
a few million years. This type of vessel could be
manned and would quickly overtake the previously
sent seed ships. Both scenarios deserve to be
developed in parallel over the next decades.

Elon Musk projects a colony on Mars of one million
humans by 2050 and a progressive empowerment.
Also planned are microprobes for Proxima propelled
by giant lasers placed on Earth.

Often for interstellar travel, nuclear fission or fusion
are proposed as a source of energy and anfimatter
is little considered. The aim of this conference is to
show the important potential of antimatter as a key
element for the future.

303



304



Exercises

1. AAA Figures

Find the numerical values of the conference:

A probe goes at 61,000 km/h to a 4 ly star.
Do you find 70,000 years of travel?

World energy consumption is estimated af
15,000 Mtoe in 2020. The toe (fon of oil
equivalent) is worth 42 GJ. Show that this
energy is equivalent to the energy released
by the annihilation of 3.5 tons of antimatter.

Using the data in the table on page 34 of the
article Extraction of antiparticles concen-
trated in planetary magnetic fields, find the
200,000 tonnes of antimatter that crosses the
heliosphere each vyear. For example, for
Jupiter the flux is 9.1 kg of antiprotons for @
cross section of 45 R, radius (zone of influence
of the Jovian magnetosphere with R, the
radius of Jupiter). The effective radius of the
Sun is taken at heliopause, limit of the
influence zone of the solar magnetic field. If
we now tfake the interstellar flux of cosmic
radiation, external to the heliosphere, eva-
luate how much the antimatter flux is by using
the following curve.

Answers on page 441.
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Over significant periods of time, several thousand years,
the sftars can no longer be considered fixed fo one
another. The three stars of the Alpha Centauri system will
be closest to the Sun in 25,000 years af three light years.
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2.\ AAA The distances of stars over time

In the conference the distance Sun-Proxima is set to
4 light-years. For fast journeys the stars can be
considered fixed, but for slow journeys of more than
10,000 years the variations in distance are no longer
negligible. We have placed the curve in the
previous pages. Show that the Voyager 1 and 2
probes could not reach Proxima Centauri. What
should be the minimum speed of the probes? How
fast does a probe have to go to reach the Alpha
Centauri system when it is closest?

Answers p442.

3NV AAA Sling effect

We consider the flyby of Voyager 1 at the level of
Jupiter.

a - With an initial probe speed of 12.6 km/s and a
Jovian speed of 12.8 km/s, find the speed variation
of Voyager 1 (heliocentric velocities). The maotions
are assumed to be coplanar and the trajectory of
Jupiter in the heliocentric reference frame circular.
You will estimate the required angles using the curve
on the previous page.

Help: it is not easy fo visualize the asymptotes, trajectories

at a great distance from the probe, the view is too close.
Two indications: the inner angle between the fwo
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asymptotes of the hyperbola is 82° and the impact
parameter b is 13 R, (b: distance between the barycenter
of Jupiter and the asymptotes — R,: radius of Jupiter).

Definition of angles : ai:(ﬁ) and ocf:(vff,vTj).

b - Evaluate on the NASA graph the maximum
speed of the probe at the periasfron. Does the result
correspond to the peak on the graph page 283 ?
Estimate the speed of the probe 38 hours after its
passage at the periastron. Deduce, by calculation,
the speed of the probe to infinity. Evaluate the
minimum approach distance of Voyager, and
deduce by calculation the impact parameter b of
the probe.

Help: For an isolated system, in a Galilean frame of
reference, there is conservation of mechanical energy
and angular momentum.

¢ - Conic parameters.
Find the semi-lafus rectum p, the eccentricity e and
the deviation D.

Aids: The general solution of the Kepler problem provides
the polar equation of a conic (hyperbola, parabola and
ellipse):
__ D _r _

r_1+ec056 p_am a=GmM
Origin of the reference system: center of mass of Jupifer.
Angles origin: main axis of the hyperbola.
p : semi-latus rectum of the conic.
e : eccentricity. L : angular momentum of the probe.
M=M,=1.90x 107 kg. m : mass of the probe.
Distance Sun-Jupiter: 800x 10° km. Ms=2x 10% kg.
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d - We want fo increase the sling effect.

¢ All else being equal, for what value of ar do we
get a maximum v;? Determine the corresponding Av.
If the probe then left the solar system directly, what
would be its interstellar speed?

e The tragjectory of the probe from the Earth is
considered to correspond to an orbit of the
Hohmann transfer elliptic orbit type.

What is the semi-major axis a of this ellipse”?

Voyager

We can also find again the angle of approach. How
could we increase the inferstellar speed of the
probe? We must not get too close to Jupiter. The
equatorial radius of Jupiter is 71,492 km and an
altitude of 1,000 km places the probe as close as
possible, in an atmosphere sufficiently tight that its
influence can be neglected.
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Aids: Mechanical energy for a conic:
2

— O (2 ; o _b
= 1). Elipse: E_= d p=
> (e"—1) ipse: E,, > and p

m

e Explain why Mars does not adllow to have a
consequent slingshot effect despite its high orbital
speed.

e Retrieve the characteristics of the speed profile of
Voyager 1 by considering the two slings one after
the other (Jupiter then Saturn). A spreadsheet can
be used for a systematic calculation for n slings.
Conservation of the angular momentum and
mechanical energy between the slings, properties of
the hyperbola during a sling.

e Model the succession of the four fronds from
Jupiter to Neptune. Show that it is possible to obtain,
by optimizing the successive effects, an interstellar
speed of 100,000 km/h (on the principle of Voyager
probes and using only gravitational assistance).
Show that by giving, at the level of the Earth's orbit,
a speed surplus of 4.8 km/s using propellants, the
probe reaches an inferstellar speed of more than
137,000 km/h.

e Globally, all the planets revolve around the Sun in
the same plane, called the eclipfic. In our model for
the succession of the fronds, the probe leaves the
solar system in this plane. However, most of the stars
are out of the ecliptic. For example, at the closest, in
25,000 years, the star Proxima will be located 39°
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below the ecliptic plane®. The velocity given by the
gravity assist has a value but also a specific
direction. The direction of the velocity is just as
important as its magnitude: what's the point of
going fast if it's not to the right place? Do you have
a proposal to have a correctly directed velocity
without using huge quantities of propellants?

e The probe at the end of its 25,000-year journey flies
over the Alpha Centauri star system. How should we
proceed to slow down the probe in order to trap it in
the star system? Should additional propellant
reserves be provided for this purpose?

Answers p442.

4325V AAAA Numerical simulations of the slings

The simulations make it possible to recover the results
established in the previous exercise, which used
Kepler's formulas. Also, simulations give a great deal
of freedom and help to envisage a number of
situations. The counterpart is the necessary compu-
ting power. We will use that of a personal computer.
This will be sufficient for a first approach and to
explain the basic principles.

56 Calculations in the exercise Motion of the stars on page 322.
Current ecliptic coordinates of the stars: heasarc.gsfc.nasa.gov/cgi-
bin/Tools/convcoord/convcoord.pl. Often only equatorial
coordinates are given, all conversions on this site.
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We will study the problem of N bodies in gravita-
fional interaction. The modeling is very ambitious
and the computation time can be very long: the
number of interactions evolves in N factorial and
from N=3 we can have chaotic regimes. Each body
has 6 degrees of freedom, three for the position and
three for the velocity components. We will, therefore,
simplify with a set of reasonable hypotheses.

For the Voyager probes the motions will be consi-
dered in the same plane: indeed, it is a reality,
basically all the planets orbit in the plane of the
ecliptic, moreover, it is shown that the two-body
motion is done in one plane,

We will assume that the Sun is motionless. This way
we have one less body to consider. The heliocentric
reference frame is then Galilean. No need to
consider the center of mass of the solar system and
the Copernican frame of reference, because the
mass of the Sun is very large in front of those of the
other bodies.

We will not consider the forces between the planets.
Always to simplify the equations, reduce the number
of relations, and the computation fime. Only the Sun
exerts its force on a planet. Only the probe remains
connected to all the bodies.

Newton's equations of motfion give a system of
coupled differential equations:
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dv, M M
2. Gm,

—= Gm.
dt j#i T‘UB

For each body, we have two vectorial differential
equations of order one. For a 2D motion, we have
four variables per body: xi. yi, v and v,. Finally, for
the probe and the four gas giants we have 20
equations. It is already a lot.

The principle of digital resolution is simple, it is a step-
by-step method. We have the initial conditions at
t=0, positions and velocities of all bodies. After a
small interval of time At, we evaluate the new
velocities and positions using differential equations.
We thus pass, step by step, from t, to t,.;:

X :Xi,n+vx,i,nAt .

i,n+1

vx,i,n+1: vx,i,n+Fx,i (Xj,n b .y]',n) A t .
This is the Euler method. We will then study the much
more precise Runge-Kutta method.

Mechanically, as in a line of dominoes that fall one
after the other, we move causally fromm one stage to
the next. At each step, we make a small local error
that accumulates to the one of the previous step.
We will take a step small enough to be able to
properly linearize each segment and minimize the
global error. Since we are not mathematicians, in this
initiation exercise we will be content to control, as
good physicists, the conservation of mechanical
energy and angular momentum.
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We will use a spreadsheet program. No need to
download any special programming software, a
worksheet will be enough.

Let's start by practicing on simple models for which
the analytical solutions are known.

1 - Revolution of the Earth around the Sun:

Let us take as initial conditions the Earth at its
perinelion: r,,=147,098,074 km and V,4=30,287 m/s.
Sun mass: Ms=1.9891x10% kg.

Gravitational constant: G=6.6743x10"" N.m?/kg®.

a- Kepler law's: The previous data comes from
Wikipedia. Determine, from them, the semi-latus
rectum p of the conic, the eccentricity €, o Vmin.
the semi-major axis a and the period T.

b- First simulation with a step h=1 day.
Do you get a satisfactory simulation on a revolution?
What is the percentage of error on the radius affer
one revolution? How does this percentage change
forh/2,h/4 and h/87?
Do you find the right values for the period of
revolution and the values at aphelion ?
Even already on the first step from t=0 to t=h, do you
notice an anomaly ?
How to explain it?
We have calculated the values at t,,; from those at
.. For example, the velocity v, .1 is calculated with
Ven, Xn, ANA Y . ONn the same principle, the position
Xns1 IS calculated with vy , and x . But it would also be
quite possible to determine the positions X..; and Vy n.
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with the velocities at rank n+1. Indeed, it is no more
false to take the velocity at the end of the interval
than at the beginning. Run the simulation again for
h=1 day with this modification for the calculation of
the positions. Do you now find better estimates for
the period and the aphelion? What is then the
global error for the radius after one revolution? What
is the value of the variation of mechanical energy
over 365 days? Conclusion.

2 - Runge-Kutta method of order 4 (RK4):
The global error with the Euler method was of the
order of h, with the midpoint method (for example,
the modified Euler method seen previously) accor-
ding to h% and with RK4 in h*. Although the calcu-
lation for one step will be a little longer, the fofal
calculation time for the same global error will be
immensely shorter. Rather than using only one slope,
the one at the beginning of the interval, as for the
Euler method, we will use four slopes judiciously
distributed and weighted over the interval.
We give the general Runge-Kutta scheme for two
degrees of freedom, and let you generalize. The
degrees of freedom are named X and Y. For
example, in physics, for a one-body motion in one
direction, we would have X=x and Y=v;.
X and Y(t) obey the following differentfial equa-
fions:

ax _ ay _

=A(X,Y d =B(X,Y
dt (X,¥) an dt (X.Y)

With the initial conditions X(0) and Y(0) known.
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We determine the values X.,; and Y,,, from those of
the previous rank X, and Y, over the interval
[nh, (n+1)Nh] with the following iterative method. For
each degree of freedom we have four slopes to
calculate. For example, for X, A, corresponds to the
slope at the beginning of the interval, A, and A; are
estimates of the slope in the middle of the interval,
and A is an estimate at the end of the interval:

A1:A(Xn’Yn) BIZB(Xn’Yn)

A2:A(Xn+gALYn+gBl)

h h
BZZB(XH+EALYH+EB1)

A3:A(Xn+gA2,Yn+gB2)

B3:B(Xn+gA2,Yn+gB2)

A,=A(X,+hA,Y +hB,)
B,=B(X,+hA,Y +hB,)

Xn+1:Xn+g(A1+2 A+2A+A,)

Yn+1=Yn+g(Bl+2B2+2 B,+B,)

We take again the case of the revolution of the
Earth around the Sun with this method.
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a- Establish the RK4 scheme to solve this
problem: define the variables, write the differential
equations of order 1 while naming the functions and
the slopes.

b- Start the numerical calculation for a step
of one day and compare the precision of the
method with the previous simulations.

The RK4 method will now be the preferred method.

3 - Voyager 1. Establish the Runge-Kutta scheme
(here we have 48 slopes to calculate for each
iteration). Find the characteristics of the speed
profile, the approach distances and check the
values and the conservation of mechanical energy
and angular momentum between two slings.

It will be necessary to adapt the step at the moment
of the slings because the curvature is then
important. The motion is plane and on each step
you can calculate the angular variation on the
osculating circle to check a good tracking of the
trajectory.

4 - \loyager 3 Project. retrieve the speed profile.
Adjusting the initial conditions to perfectly chain the
four slings can be fedious. It can be judicious to
proceed as in reality, with, for example, the use of a
bit of propellant for a trajectory correction at the
Uranus periastron (minimum energy consumption:
powered flyby and Oberth effect).

Answers p458.
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57 AA/ Calculation of propellant masses

The aim is to retrieve all the values given during the
conference.

1-You are out for some repairs outside your space
station. But a small loss of attention and you are
detached from your rope drifting freely in space with
your adjustable wrench in your hand. You slowly
move away from the station. How could you get
back?

By throwing the one kilo wrench with all your
strength, it can reach a speed of 36 km/h. Your
mass, including your suit, is 100 kg. What will be your
speed after the throw? What quantity is conserved
before and after? Is energy a quantity that is
conserved? Is the kinetic energy acquired by the
key the same as yours?

2 - Resume the calculation for a rocket. In this case
the mass varies over time and must be infegrated.
The gas ejection speed is considered constant.
Show how the formula fits for antimatter.

3-In the relativistic case of Voyage fo Proxima,
calculate, for an ideal photon rocket, the antimatter
masses for a round ftrip.

Duration of the outward journey: 3 years of proper
fime. Constant acceleration: 1 g.

4 - Calculate the mass of propellants required for the
Voyager 3 Project.

Answers p473.
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6. AN Planetary alignments

For the slings, the planefts must have particular
relative positions. We can use the alignments as
markers. For example, for a slingshot around Jupiter
after a departure from Earth, we start by looking for
the Sun-Earth-Jupiter alignment dates. The align-
ments searched are approximate. Perfect align-
ments are very rare or do not exist. For example, the
global alignment of the Earth with the Moon and
the Sun happens twice a lunar month. On the other
hand, exact alignments occur only at eclipse times.
We consider circular and coplanar frajectories.
Periods of revolution of gas gianfts:

T ~11.86 yrs T ~29.44 yrs

Jupiter Saturn

T ~84.05 yrs T ~164.86 yrs

Uranus Neptune

1- Show that two planets A and B are aligned
according to the period:

_ TATB

Tp=T

T

where B is further from the Sun than A. Tss is the
synodic period.

2 - Determine the Jupiter-Earth synodic period and
the next alignment dafe with the help of
ephemerides”.

57 Institut de Mécanique Céleste et de Calcul des Ephémérides de
I'Obs. de Paris / CNRS : vo.imcce.fr/webservices/miriade/?forms
Form. : p:Earth, p:Jupiter / heliocenter / Ecliptic.
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3 - Set a date for the Earth-Jupiter-Saturn alignment,

4 - How often does the alignment of the four gas
giants with the Earth take place?

Answers p477.

7 A A/ Motion of the stars

For a quick trip to the nearby stars we can consider
them fixed. In the case of slow travel over 25,000
years, we must anficipate the motion of the star to
launch the probe in the direction it will be at the
fime of arrival. The velocity of a star is divided into ifs
fransverse and radial parts. The transverse compo-
nents are known with good resolution thanks to the
Hipparcos satellite, and now with the even more
precise Gaia satellite, which took over in 2013. The
Gaia spectrometer allows, by Doppler method, to
improve the accuracy on the radial part.

1 - Determination of the velocity of a star:

The databases give the current distance d, of the
star, the proper motion u, and, the radial velocity v..
The proper motion indicates the angular displace-
ment per unit time. This angular change s itself split
info two orthogonal components, along longitude
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and latitude in equatorial coordinates: u, and us.
a . right ascension / 6 : declination
units: milliarcseconds per year

Proxima Centauri :

do Vio Uao Uso Oo Oo
dy) | km/s) | (mas/yr) | (mas/yr)

4244 | 222 | -3781.3 769.8 14h29™43° | -62°40'46"

Determine u, the tangential velocities v, Vis, v+, and
the velocity v of the star Proxima Centauri.

What will be the equatorial coordinates of Proxima in
a century?

2 - AA Linear motion approximation:

We neglect the Sun gravity and the galactic
gravitational potential®. At first order, the velocity
vector of the star can be considered as constant.
The motion of the star is then rectilinear and uniform:

58 The Close Approach of Stars in the Solar Neighbourhood, Matthews,
1993. Close encounters of the stellar kind, Bailer-Jones, 2014.
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a- Determine the distance d of the star from the
Sun as a function of time.

- Determine the minimum approach distance a,,
and the corresponding date 1,,.

c- What are the coordinates of the star at the
closest approach distance?

Distance of stars over time:

Gliese 445

o

Ross 248

-~

Alpha Centauri

4
3
1
0 ,v«_,_,a
0 10 000 20 000 30 000 40 000 50 000 tyrs

Three stars that can be reached in less than 50,000 years
by a probe that uses gravitational assistance.
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Radial and tangentials velocities
of Proxima Centauri

35

A"

25 =

w

E

=
15~

V§

5

0 /]

/
-5

Vr
-15
VO:

e >
35 t(yrs)
10000 O 10000 30000 50000 70000 90000

The motion of a sfar is rectiinear and its speed v is
constant, However, its three components, normal fo each
other, vary with time. At the perihelion fime, the radial
velocity is zero and the fangenfial velocity is maximum:
v,=y va2+v52. At infinite times, the velocity becomes purely
radial and the tangential components tend towards zero.
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Proper motions of Proxima Centauri

ra RN o 9.2}

\\ \ W {arc"/yr)

=]

-2

\ M

-4

t (yrs}
-6
10000 O 10000 30000 50000 70000 90000

Proper motion of a star for a terrestrial observer. We have
the annual angular variations on the celestial sphere in
equatorial coordinates of the position of a star. These
proper motions are not constant and vary over the
millennia. The distant stars can be considered fixed and
the closer they are to our Sun, the more apparent their
motion becomes.

One second of arc = one 3600th of a degree.
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The position of the stars in ecliptic coordinates at the
time when the spacecraft will have joined fthe
distant star system. 13 stars at less than 100 000 years
and 40 km/s.

Answers p478.
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8.7/ AA/ Can a pair of primordial black holes be
used as a stargate?

Researchers explain in a 2019 paper” how the
existence of primordial black holes beyond
Neptune's orbit would explain, both, the anomalous
orbits observed for transneptunian objects, and, an
excess in gravitational microlensing events observed
by the OGLE experiment®. The primordial black
holes (PBH) would have been created in the first
moments of the Big Bang. They could explain the
origin of gamma-ray bursts and part of the dark
matter. These small black holes have not yet been
observed, they would be the size of a fist and a few
earth masses.

In this exercise we assume the existence of such
black holes beyond Neptune, and we imagine that
they sometimes form pairs in rapid rotation around
their barycenter.

Characteristic data for PBHs: Radius R=4.5 cm.

Mass M=5 M. Distance from Sun D=300 au.

1 - Show how such a pair of primordial black holes
could help to reach dizzying speeds by gravity assist.
Could we, from there, reach Proxima in less than 50
years?

2- As we get closer to primordial black holes, the
tidal forces increase. Would a manned mission be
viable? Answers p485.

59 What if Planet 9 is a Primordial Black Hole? J. Scholtz, J. Unwin.
60 Optical Gravitational Lensing Experiment is a Polish astronomy
project based at the University of Warsaw.
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9. AA/ Antiproton-proton collision

1-In a particle accelerator, what must be the
minimum speed of protons incident on a hydro-
genated target to create a pair p 5 ?

Mass of a proton: 938 MeV/c?,

2 - The same thing can happen when an antiproton
collides with a proton. Do the antiprotons of cosmic
rays have sufficient kinetic energies to create pairs?
The quantity of cosmic protons is much greater than
that of antiprotons. Could we obtain a consequent
flux of E using energetic p?

Data on page 7 of '"The discovery of geomagne-
tically..." and on page 13 of "Extraction of particles...":
there are about 10,000 times more profons fthan
antiprotons in this energy range.

Answers p488.

10/ AAA Helical motion

This kinematic and geometric study will help us fo
inferpret the dynamics of the anfiprofon in the Earth's
magnetic field.

Parametric equations of the trajectory in Cartesian
coordinates for uniform helical motion:
x(t)=rcoswt
y(t)=rsinmt r=cst>0 w=cst v,=cst
z(t)=v,t
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1 - Write the equations in cylindrical coordinates.

2 - Determine the components of the velocity v and
the acceleration d.

3 - Calculation of v, a, dv/dt and the radius of
curvature R.

4 - Relation between R, the
radius r=HM of the helix
and the pitch p (JAz| for
one complete helix turn).

5 - Calculation of the arc
length | traveled by the
particle on one turn as a
function of: r and p, then

of, v and vi, and even-

tually, of R and a (angle between v and the

horizontal).
Answers p489.

1.V 25 AAA The magnetosphere

The field lines of the Earth's magnetosphere are
similar to that of a giant bar magnet with its south
magnetic pole close to the geographic north pole.

1 - Show that in a magnetic field the speed of a
particle is constant.

- > d -
Help: In relativistic mechanics f:%?:%

have, here, for the Lorentz force fz ql E+v /\B).

and we

For the energy aspect f V= Cij—f with E=T+mc”.
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2 - Give the trajectory of a charged particle in a
uniform magnetic field.

3 - Give the shape of the field lines of a magnetic
dipole. Characteristics and components of the
magnetic field of a dipole in spherical coordinates.

4 - Show the mirror effect on the example of a
narrowing field tube.

5 - Show the drift phenomenon in the simple case of
two areas with uniform magnetic fields of different
infensities.

6 - Trapped antiproton: We will carry out a numerical
simulation with the Runge-Kutta method of order 4
(method described page 313).

a- Establish the expression of the components
of the magnetic field of a dipole in Cartesian
coordinates.

b- Give the equations of motion of a charged
particle in a magnetic field.

c- Write the RK4 scheme.

d- Carry out the numerical simulation. On a
spreadsheet it can be too computationally intensive.
In this case we preferred to program in php and to
make the calculations on server.

Answers p490.
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12/ AAA Penning trap

This charged particle trap, designed in 1936, uses a
quadrupole electric field and a uniform magnetic
field. Penning traps are commonly used at CERN tfo
store antiprotons. The electric field is created by a set
of electrodes that follow the hyperboloidal equi-
potentials of the quadrupole. The globally uniform
magnetic field in the storage area is the one
created inside a solenoid.

1 - Expression of the electric field:

E= —xi—yj+22E)

UO - -
—
0
Show that E derives from a potential that we will
determine.

2 - Show that the origin O is an equilibrium position.
Discuss the stability along the (Oz) axis and then in
the plane (Oxy). Calculate the pulsation w, of the
oscillations along Oz.

3 - To stabilize the frajectory of the antiproton we
add a uniform magnetic field:

-

B=B,k
a - Is the motion along (Oz) modified?

b- According to Oy): show that the
antiproton is trapped if By is greater than a critical
value B to be determined (fo do this, establish the
differential equation verified by p=x+jy, j2:—1,
with o _=e B,/m),
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c- Solve and highlight two angular
frequencies w.' and w,, (Magnetron frequency).
Numerical Applications: Up=9.3 V, r;=29.1 cm, B,=0.55T,
e=1.6x10"C, m,=1.67x107kg.

d - Plot the trajectory.

4 - Microscopic cage: Could we create a Penning
trap at the microscopic scale? We are going to
propose a model to try to give elements of an
answer. For the quadrupole electric field we can use
cations and anions. For the magnetic field we have
paramagnetic atoms which have a permanent
magnetic moment (iron is an example among many
others). Let's take six atoms arranged in a bipyramid
with a square base. The two atoms at the vertices
have a charge 20 and an elementary magnetic
moment us. The four atoms at the base are cations
of elemental charge .

Data (usual order of magnitude):

Edges of the regular octahedron equal fo: a=100 pm.
Elementary charge: e=1.6x10"° C. €,=8.85x10” C°>.m*.N"".
Elementary magnefic moment: that creafed by a
classical electron orbiting in a hydrogen afom, called
Bohr magneton: Ws=9.27x10%A.m’. All atomic magnetic
moments are equivalent fo a few elementary magnetons
(orbital and spin moments combined).
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Representation of a hypothetical microscopic Penning
trap within a crystal lattice or molecular structure. The
paramagnetic afoms placed at the top and botfom
create a globally uniform magnetic field around the
center O. These atoms at the apexes of the bipyramid
correspond to the upper and lower caps of a
macroscopic Penning trap, and the cations at the square
base, fo the ring electrode.
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a - Show that this atomic structure is not a monopole, nor
an electric dipole.

b - Evaluate the magnetic field B, created at the center
of the bipyramid. You can use the expressions on page

491,

C - Estimate the factor U,/rs.
You can consider the Oz axis to identify the expressions.

d - Is the magnetic field sufficient fo tfrap an antiproton?
Conclusions.

Answers pb07.
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Answers

1. The Crystals of the Pop Exomoon
(Barnard system)
Exercise p25.

Distance and relative time
measured in the galactic
frame R,
Arrival af the galactic
vear 2120
(=2010 + 10).
Rocket speedin R':
v=6/10c¢

=60% of c.

ITis a double

TG S distance : 6 light-years

2. One-way ticket for Sirius with an old pé
(Exercise p26)

speed = (distance / time)y
then: relative time = 9 Ly. / 60% (See vessel
characteristics), so:
At =9 /0.6 =9x10/6 = 15 years.
We try to build a triangle of times
with a base of @ cards and a
hypotenuse of 15 cards. The
proper time is 12 years.
Arrival at 42 years (=30+12).
Arrival date: 2169 (2154 +

&

15). You arrive one @ . .
, 40"  distance : 9 light-years
year affer the first D I S M Y
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festival, you have to wait for the one of 2178.
It's a triple triangle of 3-4-5.

1. 3. Parcel delivery (Exercise p26)

The round ftrip distance is 8 Ly. and the
cumulative proper fime is 4 years.
The relative time is approx. 9
yeqars.

So the customers
are delivered in
4 in a half years,
the speed of the dlstance .8 llght years

ship in the galactic frame is 8/9 = 89% of ¢, and the time
dilation is ¢/4 =~ 2.2,

years

1. 4. Twin on his way fo Sirius
Exercise p26.

21566 - 2132 = 24 years, and 12 years of
relative time to go. On the return trip,
the twin who remained on Earth is
44 years cld, and the fraveling
twin is 36 vears old (20 +
8x2).

Rocket speed:
/12 or 75% of c.

proper time around 8 years
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1. 5. Cruel dilemma? (Exercise p27)

If Denys stays at home, in the galactic center, he will die
in 3053, therefore impossible to aftend the festival
Moreover, if he does not defuse the bomb, it will explode
in 3052 and due to the propagation of gamma rays the
center of the galaxy will be destroyed 26 years later in
3078, so no party either...

On the other hand,

if Denys travels with K A

a dilation of two, for
32 years of life in the
ship, it takes 64

years of galactic -

time. B O
Let us consider that

Denys goes to disarm the bomb, his relative time AB is
twice the proper time AO, and BO is 26 ly.

Construction: we draw a vertical line, we fix a point A, we
draw a circle of arbifrary radius, for example 5 cm. One
obtains a point O, one draws a perpendicular straight line
on it. A second circle with a double radius of 10 cm is
drawn. Measure the distance BO = 8.7 cm.

The proper time is therefore:

5 /8.7 x26 = 15vyears.

10cm | ?years | ang 30 years for the relative time.
8.7cm | 261ly. Denys arrives in fime to defuse the
bomb, in 3051. Then he is back at
the galactic center 60 years later in 3081, one year before
the festival. And he is not dead yet because he has only
aged 30 years, he will die in 3083 and will therefore be
able to attend the party in 3082!

Scm | ?years
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1. 6. Muons (Exercise p28)

A muon at rest disintegrates in 1.5 ys, so the half-life is a
proper time. We can name R the proper frame related to
the muon.

The ferrestrial reference frame named R' is in rectilinear
and uniform translation with respect to R, at the speed
v = 0.999 c. Over the short duration of the experiment R'is
a very good inertial reference frame, and R, therefore,
also. The relative decay time of the muon is:

At'=yAt and y=1/V1-p’
then, here, y=1/11-0.999"~22.4

The half-life time in the terrestrial frame is 22 times longer
than in its proper frame.

The distance traveled by the muon in the terrestrial frame
during its relative half-life fime is:

d=vAt'=Bcyt,,~10km

About half of these muons reach ground level, the other
half will have disintegrated, before, in alfitude.

In the context of classical mechanics, or if we forget to
take into account time dilation, the muons would have
1.5 us instead of 33.5 ys fo reach the ground. Thus, after
450 meters, half of them would have already disinte-
grated. After 900 m only a quarter would still be there,
and on the ground, affer 10 km, one out of 2% would
have survived . Finally, such a muon would have only one
chance out of four million to reach the ground, which is
very different from one chance out of two!

Muons were discovered in 1936. The measurement of the
muon flux as a function of altitude made it possible 1o
verify the validity of special relativity.
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1. 7. High-speed train journey (Exercise p29)

The average speed of the tfrain is:
v=d/t=2300/8=287.5km/h=~79.86m/s

This speed is tiny compared to the speed of light, gamma
is very close to one, and a calculation of ¥ with a
standard calculator will give you 1, as if there was no time
dilation. However, as we will see, this dilation is very easy
to measure with atomic clocks.

For low speeds, compared to the maximum speed, it is
more convenient and meaningful fo use series
expansions:

At'=y At=(1-p*) " Ae=(1+p*/2) At

The difference of time between the clock that stayed in
Beijing and the one that traveled 4600 km is:

2

At'—At:(1+[32/2)At—At:[32/2At:# At
C
Hence the difference for the 16 hours round trip:

2
79.86 516X60X 60==2.04ns

2(3.10%
The clock that stayed in the station is two nanoseconds
ahead of the one that traveled.

At'—At=

Let's check if our clocks are accurate enough: A clock
drift of 10 '* seconds per second, gives, for a trip of 57600
seconds, a global drift of 0.6 ns. The uncertainty is small
compared to the measured difference: the time dilation is
confirmed.
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1. 8. Safellite  (Exercise p29)

We add proper times on a revolution. We calculate the
duration of a tour:

_2mR_2mx6900.10°%3.6
v 27000

At

~5781s =1 hour 36 minutes

This leads to the following time difference between the
two clocks (same formulas as in the previous exercise):

2 27000/3.6)°
At’—At:v—zAt:%WBl:l.Sus
2¢ 2%9.10

The clock in the satellite is 1.8 us younger than the one
that remained stationary in the geocentric frame of
reference.

We can achieve a Taylor series expansion, because the
satellite speed is very small in comparison with the speed
limit (one forty thousandth of ©).

1. 9. Hafele-Keating experiment (Exercise p30)

Two sources of time dilatation are present here: speed
and gravitation. In an airplane, speed increases and
gravitation decreases. The two effects act in opposite
directions. The clock hypothesis is generalized and the
tfime At' spent in the plane, reference frame R', compared
tfo that At for a stationary clock in the geocentric
reference frame R, is written as follows:

gh V

1+ Y

2
, vo| At
> >|At and At —At:(gh——)
¢ 2c 2
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Towards the east, the speeds are added and we have
the following time difference:

(2674/3.6)°
2

40X 3600 _

At'—At=(9.81x10000— 6 =—284ns
9.10

To the west, the speeds subtract and we have the time
difference:

(674/3.6)
2

40X 3600
9.10'

~129ns

At'—At:(9.81><10000—

Furthermore, the difference between the clock on the
ground, terrestrial reference frame R, and the stationary
one in the geocentric reference frame R, is:

(1674/3.6)° 40x 3600

At—At'"'~
2 9.10"

~173ns

We add the two equations:

To the east: At'—At"'~173—-284~—111ns,
The clock on the ground advances 111 ns.

To the west: At'—At''=173+129~=302ns,
The clock on the ground retards by 302 ns.

Our results obtained with our simple model are consistent
with those of the 1971 experiment.

It is normal that the results differ, the actual flights, with
multiple stopovers, were only globally equatorial, the
speeds and altitudes had different average values than
those chosen in the exercise.
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Exercise p45.

"The Crystals of the Pop exomoon "

2120 | | 2120

2116
| B
s M a
U R
N N
A
R
D
2110 );

0ly-
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2178 "':SE;@Z%“ 51 yrs||-2178

" A spacious and comfortable ship to go fo the two suns
festival "
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S yrs

v=89% of ¢
y=2.2

4 yrs

A

I\

- yTS

a5 A (45

yrs | L yrs
p

R

i - O
N X
N -1
M

- A

0vyr yr 2

0ly ly e

" The twins *

" Parcel delivery with a
Spacelruck "

7 v=75% of ¢ |
2156 y=1.5 N
44yrs- K36 yrs oo 2156
i - S
- L 1
S - R
v !
N ] C U
i - S
2144 7 -
32yrs| T :2144
i’ 3
2132 4 4/ |
20yrs+ £ e _29113;2
0ly 7 3
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" Denys will die in
exactly 32 years, and there is no cure... "

t [h¥p. t2) - ggggz v=8;':g of c
Arrival - 3081 1 \30Vrs
3078
F(yp- 1)- %gg%: | 3052 - explosion
30517 s k3051 - defusing
Galactic Bomb
Center
Departure - 3021
0ly A 261y
2.2. Interstellar communications Exercise p45.

Let us reason from the galactic frame of reference, at the
moment when the traveling twin lands on the exoplanet,
5 years have elgpsed since the departure for the twin on
Earth, the light ray then takes 4 more years to reach the
Earth - the speed of light in vacuum is independent of the
inertial frame of reference - and the photo is received 9
years after the departure and only 1 year before the
return!
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v=80% of ¢
y=5/3 ~ 1.67

Although the landing and
five years indicated on the
Earth's clock are simulto-
neous events in the
galactic  frame of refe-
rence, the information is
propagating at finite speed
and it is necessary to wait
for the images to arrive.
And here also 4 years of
propagation, in his tele-
scope, so the twin will see
his brother landing and

, receive the picture at the

same time, 9 years after the
departure.

Now, if the twin on Earth
looks through his telescope
at the date t=5, he will see
photons emitted earlier, he
will not see his brother
landing on Proxima b at all
(even if that's what he
actually does at that time),
he will see him in his ship on
his way to Proxima, 1 year
and 8 months before his
arrival in ferra incognita.

This result is given by the calculation of the point of
intersection of the two straight lines:

worldiine of the ship: t:%%

worldline of the photon : t= —i+tp with t,=5
c
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Then for the intersection point | : t;=

tP
_1+[3

~

I

and ‘512722

In order for a message to be received from Earth at the
time of landing, it must be sent in advance, only one year

after departure.

2.3. Call for help

Notations :

Cruise ship speed relative to

c: p,=0.5

Emergency shuttle speed:

B,=0.9

Worldlines :

Vessel: ct:—Bi(x —-D)
1

Messenger photons:

Exercise p46.
- B
S |
A

ct= —x+—+2 1 \>E" —
2B, 2 ’IE\\
D D 1. o N\
Shuttle: CI_BZX+2—&+? N ).(;
Coordinc’res of point S :
1 ,D.D _B,(1-B) D
B ARt 2p, 2 MeN X=TROE
1 ,(1-B,) D D} D
and cts—ct =+ || =
clsmca= "By BitB, 2 By 2P,
D 148, At,, D 148, 5
== = =— 1—
SO CAtys > BB, and Ty Y 20[31"‘(52\/ Bi
Numerical applicafion: t,,~2.35yrs

Passengers have to wait two years and four months

before help arrives!
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2.4. Tim, Tam, Tom Exercise p46.

Notations :

. ) v, 10
Speed relative to ¢ of Tim : 61:?:%:0.5
Speedof Tam:  Py=—2=12=075
peed of Tam : 2= T

For Tom, we apply the time dilation factor y,~1.1547

and 11:%:51.96min then an arrival at 10:52 1o his

watch.

For Tam by bike
y,~1.5119,

To go,
At=Ax/p,=13.3min and

12:%z8.82 min

then an arrival at 10:51
to his watch.
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.1. Composition of velocities Exercise p71.

a- 80% of c. b - 50% of c.

2. Two vessels Exercise p71.

a- In practice we do not know the position of an
object continuously but at regular infervals. We
estimate the velocities and accelerations of a point
by using average values with the help of neigh-
bouring points. For example, on an air-cushion table,
with a video, or a radar, we have such measure-
ments.

Average velocity between two points M, and M,,; of
a trajectory:

. M M, OM
Vn n+1: =

tn+1_tn Atn n+1

OM

n+1l n

Estimated velocity at the intermediate date:

t .+t

__"n+1 n

tn n+l1=— 2

- Between t; and t, :
t,=(t,#t,)/2=2 and At,=t,—t,=4
VAlzz(XAz_Xm’YAz_yA1’ZA2_ZA1)/At12
then: v,,,~(1/2,0,0) and v,,,~1/2
SO Pa,=1/2 and y,,=2/V3.

The velocities are not expressed here in the
infernational system in m/s, but in their natural units
in ly/yr, i.e. as a percentage of c.
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Veo=(4-2,2,2)/4 then Vg,~(1/2,1/2,1/2).
v:||T1||=\/vX2+vy2+vZ2 and  Vg,,~=V3/2

SO Pp~V3/2~0.866 and y,,=~2.
- Between t, and t; :

t;=6, At,,=4 and V,,,=V,,,
Vios=(1/4,1/4,1/4) then Vp,~+3/4

SO Bpys=V3/4=43% and Y, =V16/13=1.11,

b _
Average acceleration
between the instants t,,.; ONd toi1ne2

Av . Voarine2™ Vanet
and a, ppp2=——

a= :
At Cnstne2 " Canet

Estimated acceleration at the intfermediate date:

t

+t
—-min2 nml o oreover At=t

b= = —t
t 4 n+1 n+2
2

nn+l"'

-Betweent, and tyfor A: d,~0.
- Betweent, and t;forB: t,,=4 and At=4,
d,~(1/4—1/2,—-1/4,—-1/4)/4
so d=d,~(—1/16,—-1/16,—1/16) (deceleration)

a=a,~+3/16=0.108 ly/yr’

c - Any reference frame in translation, rectilinear
and uniform with respect to a reference frame of
inertia is also of inertia. The reference solid of the
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vessel has a tfranslational, rectilinear and uniform
motion with respect to the frame of reference R (the
velocity vector of point A is considered constant in
R). As R is inertial R"is also inertial.

Given the three events at our disposal, the trajectory
of the vessel B in R can be rectilinear (the three
positions provided are aligned).

Let us now determine the coordinates of the events
of Bin R'using the Lorentz transformation:

x'gle=y(xz/c—Pt) X B:§<2_0>
Y'5=Ys For t,=0 Y's=2
Z,B:ZB Z’B:2
t'=y(t—Bxglc) . _2 0_12
=201
4 2
Then: ER',B,l(X'B:ﬁ;y'B:2,Z'B:2,t'1_—ﬁ)
2,1
X B_\/§(4 24)
For ty=4 : y'p=4
z';=4
2 1
t=——(4-=4
=Zia-1a)
' , , , 4
Then: ER',B,Z(X B:\/_)y B_4,Z B 4,t zzﬁ)
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o2 1
XB—\/g(S 28)
Fort3=8: yB:S
z'3=5
2 1
t',= 8—=5
=L(6-Ly
2 11
Then: ERB3(XB_\/3’yB 5,z'g=5,t'3= \/g)

Two remarks concerning the worldline of vessel B
inferpreted from R on the one hand the three
events are no longer separated by equal time
infervals as they are from R. and on the other hand,
the spatial part projected in R' corresponds o non-
aligned points, contrary 1o R.

d- v’ B12™ (X B2~ X'515Y B2 Y 'B1sZ B2 ZBI)/At 12

v',~(0,2,2)43/6 and v',,,~(0,v3/3,V3/3)

at t',=(t'+t,)12=1/\3 with B’,,,~V2/3~0.816

—, = = —, 2 V3 43
Vipy=(=2/V3,1,1V3/7 50 V'ppp=(=2, =5, 7)
15 V10
at t'y=—>= with B'pa=-——=0.452
23 2\/3 [3 B23 7

e- a'=a',~(-2/7,-43/21,-4+3/21)23/13
then a'=~(—4+3/91,-8/91,-8/91)

and a'=a',=4+/11/91=0.1458 ly/ yr’
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t'p*t'yy 17
2 43

f- We can reason in R or R. Let us observe the
proper frame Rp of vessel B from the reference frame
R, and let us consider the inertial reference frame R"
which coincide at t=4 yrs with Rs. We show on page
113 that the acceleration of B measured in R" is
equal to the one felt by the passengers in the
reference frame of the vessel B. And the relation
between the accelerations of a point measured
from two inertial frames of reference R" and R is
given by the law of transformation of accelerations.
We choose a new abscissa axis for R according to
the rectilinear trajectory of B. The velocity of R" with
respect to R is approximately:

VB12:(4_2:2;2>/4 and U:V32:3\/§/8
so P=Ps,=3V3/8, y=y,=1.32

and a,,.=a''=y’a=~2.275a,~0.246 ly/ yr’ .

proper

g- 1yr=365.25x24x3600 = 31,557,600 s
11y = 3x10° 31,557,600 = 9.46728x10"° m

Then: 1-X =951

2

yr S
and a,..=234m/s =24%of g

proper

Comparisons:
17% on the Moon's surface and 38% for Mars.
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3. Low speeds limit Exercise p72.

The law of composition gives on a standard
calculator 180 km/h because the difference is
extremely small. We will therefore perform a Taylor
series expansion:

2\-1 2
_ Vclassical 1 v N 1 \4 )

vrelativist - — Vclas + 2 - vclas( )

V1V2 C C

1+2
C
3 2
\% Av v 2
AV=V = Vg=2— and —=—=f
c V. C

Numerical applications:

Av=347.10"m/s=035pm/s and Y =69%10 "

c

356



.1. The suicidal physicist Exercise p95.

2 a2
then B:%
Ag +Ag

1+
}\'Red:\/ 1 _E )\'Green

32% of ¢ also 350 millions of km/h.

2. Laser sail Exercise p95.
a- The force is expressed as the variation of the
momentum per time interval:

F=Ap/At.

Energy of a photon: e=pc.

Variation of momentum per reflected photon:
Ap=2e/c (e/c at incidence and e/c at reflexion).
Number of photons received during At : AN=®Af/e.
d(J/s) : flux / power / luminous energy received per
second on the sail.

Force: F=2d/c.

Radiation pressure: P=F/S=2®/Sc.

b - Due to the Doppler effect, in the reference

frame of the sail moving away from the laser

sources, the photons are less energetic and less

numerous, the apparent power is reduced by a
1_

Doppler factor squared: QO:TECD .

Same factor for force and pressure.

C- Here =0.2 and %:3 :

The force is reduced by one third.
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3. Optical molasses Exercise p96.

a-When the atom is stafionary, the radiation
pressures produced by the two lasers, and thus the F
forces exerted on the cross section on the two oppo-
site sides of the atom, balance each other.

When an atom moves towards a laser, the radiation
pressure increases by the Doppler factor squared
and decreases by the same factor in the opposite
direction:

148 1P| _ 4B

1-p 1+B)  1-p°

The resulting force is in the opposite direction of the
velocity, so it is indeed a force that slows the atom.

F J—

resultant —

b- Forv«csof«l: 1-f’~1 and Fr:i—vF

Or in vectorial form: E:—%V
C- At rest, the atom does not interact with the

laser because its absorption line is above that of the
laser. The atom therefore remains confined.

When the atom possesses kinetic energy and moves
towards a laser, it sees in its own referential the laser
frequency increased by Doppler. When this
frequency corresponds to its resonance frequency,
the atom absorbs a photon. The momentum is
conserved and therefore the atom slows. A photon is
re-emitted after a duration of the order of the
lifetime of the energy level of the atom in a random
direction. The emitted photon has a higher energy
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than the absorbed one, hence the decrease of the
atom's kinetic energy.

A+y > A > A+y

3 A A
] 3k roAEs> " T
d €= 27 Ond T3

N.A.:t=27ns, i=h/2n and T, ~0.1mK .
We find the right experimental order of magnitude.

e- ezngT:%mvz where v is the root mean
, 3k,T fi
square velocity. Thus v= =4 —
m Tm

N.A. : I\/IRb=87x1O'3kg/moI, M=M/N,, v=16 cm/s.

4. Detection of exoplanets Exercise p98.
2 3
qa- Tz — 4" a
G(m,+m,)

with m,=m, m,=km, k=10>1 and a=R.

nm, nm,
a and Rg,= a=—-d

d.p=d=R
m,+m, m+m, m,

Planet

2nRy 2mmyd |G(my+m,)m, 1 \/Gml
V. = = =
T 2mmy \ d*(m+m,)} 1+k\ d

N.A.: v, =13km/s<c

Precision already accessible by Doppler in the 50s.

1-B
1+[3X

b-  When the star gets closer: A'=
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For g small: & '=(1—p)"*(1+8) " r=(1—B)r
And when the star moves away: A '=(1+p)A

C- he=(1+B)A and, affer /2, An.=(1—Pp)A, then

AR=N =k, =222 and A}\—X:ZX
c C

NLA.: Ak—)‘:8.7><10’6

5. Calculations for the moving ruler  Exercise p100.

O_
E;: ct:l x+i
B 2y
1 L
E,: ct=x|x——
; er=dx 2y)
y=0

b- MC=(x,y—D,ct.—ct)
To ensure collinearity we make a cross product:
y—D—bc(t.—t)=0 (1)
MCAT=0 gives ac(t.—t)—x=0 (2)
bx—ay+aD=0 (3)

We now infroduce the constraints of the end
worldlines.

For E; :
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+1 *+1
@) : bx,=—aD, bzi2 and a=—F———
1+ ﬁ 1+ 2
D X1
1 L
@ —X1+GE X1+§ —act=0

then by substituting a :
(1-B*)x,*—2Blct—LI2yB|x,+p*[(ct—L/2yp)—D*]=0
Quadratic equation for x;, same approach for x,,

then :

We retrieve the long-distance limits:
lim L,=yL(1Fp)

t>+o0

2
Le=yL+yp +D’

2
+D2—\/(y|3ct+§

L
t__
yBc >

6. Velocity transformation Exercise p101.
and the aberration of light

a- According the Lorentz tfransformation:
x'=y(x—Bct), y'=y, z'=z and ct'=y(ct—fx)

hence for infinitesimal variations:
dx'=y(dx—Bcdt), dy'=dy ., dz'=dz
and cdt'=y(cdt—pdx)

1
with B:% and yZ\/
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And by dividing the two equations:

VX
dx' dx—Bcdt Vv, ¢ p . v,—u
= , = and v,'=
cdt' cdt—Bdx ¢ v, uv,
1-p—= 1-—;
c c
' 1%
dy -= dy fromwhere v '=————
cdt' y(cdt—pdx) Y uv,
y|1-—
c
VZ
and likewise: v,'=
uv,
y|1-—
c

u is the velocity of R' with respect to R.

b - v=(—ccos0,—csind,0)
- 5= _ccosb+u  csinf
1+ucose ’ (1+uc056) ’
C ¥ c
— = _[ccos@+u)’+c’sin’0(1-p°) _ _2
ucosf,’ T
1+
(14050
g- can® _V, __ csin® __ sinf

v, y(ccosO+u) y(cosO+p) "

X

7. Composition of velocities
and accelerations. 3D generalization Ex. pi0].

a-  v=(0,v,0) and i=pc=(v,0,0).
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v,.—u 1% \%

Y4

1 uv, uv, ’ uv,
=2 Y|l y|1-—

C C c

v .
then v'= _V1:72:0 and B':\/Bi"'ﬁi_ﬁiﬁi

NA: v'=~66%of c

b-  v=(v,co0s0,v,sin0,0)
) 5 v,c0s0—v, vzsinB\/l—Bf
gves V= 1—B,B,cos6’ 1—B,B,cos6 ’
ang = V(BocosO =By )" +B;sin’0 (1-Bj)
1-B,p,cos6O
+p5—2p,B,cos0—p; B,sin’ O
eventually B,:Wb'l P2 2P P, Bi P
1-8,p,cos0

NA: B,=B,=+v3/2 and 6=30° then v'=70% of c.

c-1-

First method:

We apply the formula of the previous qu/_es@n. We
are going to determine the angle 0=(V,,V,). V, is
along the edge of a cube and V, is along the
space diagonal, so we reason in a right friangle with
sides 1, V2 and V3, then cos0=1/+/3, sin0=+2/3 and
0=~54.7°. Withc $,=1/2 and [32=\/§/2, we find the
same result:

ot b B,:\/1/4+3/4—2\@_/4><1N3_—3/16><2/3:\/2
o 1-3/4X 13

3
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at ts; : same calculation with B,=+'3/4

,_\V1/4+3/16—23/8x1//3-3/64x2/3 _10
1-3/8x1/3 7

B

Second method:

We calculate the three components of the velocity
with the general transformation of the velocities from
Rin R'with p=1/2 and y=2/y3 :

-

Forty: v=(v,,v,,v,)=(1/2,1/2,1/2)

oo [1/2=1/2 3x1/2 ¥3x1/2) (. 1 1
v'= , ,— =0,—=,—
1—-1/4 * 2(3/4) " 2(3/4] V3’3

2
and 'z\ﬁ
V'3

Forty: v=(1/4,1/4,1/4)
1/4-1/2 \3x1/4 ¢3x1/4)_(_g J3@)
7’

r

v'=

1-1/8 ° 2(7/8] * 2(7/8) 7, 7
r_\/E
and v —?

c-2-
Transformation of accelerations:
dv dv.,'
— Yy " Y
a=—> aond a '=
Yoodt Y dt’
uv u
’ a,1- - +v,—a,
. ',:dvy, dt _ c c 1
Y dt dt’ uv, \’ uv,
—T y|1- 2
c c
eventually:
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X
uv
3 X
Y (1— 2
C
UVy
1 2
C
—- 5 ay'l'
a = ) 1 uv, 1_LIVX
Y T 2
C C
uvza
2 X
1 a+ C
2| Yz
2[4 uv, l_uvx
Y T T o 2
C C

The transformation law is very different from that of
classical mechanics where, between two inertial
frames of reference, d=d,=d.=d'. d' depends here
of d and Vv (which only occurs for non-Galilean
frames in classical mechanics).

We consider d and v at t=4:
d=(-1/16,-1/16,—1/16) and v=(3/8,3/8,3/8)
B=1/2 and y=2/\3

.. | 3x8 V3 3x8 3x8°
a=\- 3 0 0 3 0 3
13° 2 13 13

,_3x8 V11 )
=3 2 ~0.145 ly/ yr

Results, both for velocities and accelerations, in
agreement with those found previously.
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8. Starry sky at the halfway point Exercise p102.

5.10°x 25
4*x37
We divide the emitted powers by the distance

squared.
Proxima Centauri is not visible to the naked eye.

a-M=-25log ~11>6

5.10°x25°
2°x37
Proxima would still not be visible to the naked eye.

b-M=-25log ~9>6

c- 6,=0 and Ia—l—lél 391 with $=0.95.

39%5.10 °x 25
2°x37
Proxima is now visible to the naked eye!

=-2.5log

~5<6

XZ

d-M= ~25log| ~—1,5<6

The Sun vvould be well visible to the naked eye
(equivalent to the brightness of Sirius seen from
Earth).
e- 0,=m and I:—BI:—
1+ 39
1X25°
39%2°x37
The Sun is sfill visible to the naked eye with a
brightness comparable to that of the star Polaris.

=—25log ~2.4<6

f - The Sun in the night sky of the exoplanet Proxima
b would be visible to the naked eye with a
magnitude of zero, a brightness comparable fo
Vega from Earth.
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9. Numerical simulation of the sky  Exercise p104.

a - Uniform spherical probability law:

e We have a uniform distribution with respect to :

¥ =1U(0,360)=360U with U=U(0,1)
Indeed, the infinitesimal area elements between ¢
and g+dg are all of the same size:

0=mxn

ds= [ dosinodg=2dq¢.

0=0
Corresponds to the area bounded by two meridians
on the surface of a sphere.

¢ \WWe do not have a uniform distribution with respect
to 6. The surface elements between and 6 and 6+d6
are not all the same size:

Q=2n
dS= [ dOsin6dp=2xsin0do.

©=0
It is analogous to the area delimited by two latitudes
on the surface of a sphere. The surface at the
equator is larger than at the poles.
We have a probability density function f(x) propor-
tional to sin(x):

f(x)=ksin(x) and _Tf(x)dle then k:%

_ 1—cos(x)l

Cumulative function: F (x)= [ f(x)dx >

Inverse transformation method: ©=F'(U).
Then: ®=arcos(1—-2U).

b - We enter on a first column of a spreadsheet the
values of :
=ALEA.ENTRE.BORNES(0;360) (for LibreOffice)
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We enter on a second column of a spreadsheet the
values of B:  =ACOS(1-2*ALEA())/P1()*180

Before calculating the apparent angles, the energy
and the number of photons received, we check, at
the beginning of the spreadsheet, the consistency of
the results with the theory:

6,
S=[ 27tsin6 d6=27(cos6,— cosb,)
Bl

Surface S obtained for a unit sphere, then divide by
47 for the percentage. For example, at the North
celestial pole between 0° and 20° of colatitude, we
have 3% of the surface and therefore of the stars,
whereas between 80° and 100°, therefore for the
same amplitude of angle, we have 17%. This
corresponds well to a uniform spherical distribution.
On the graph the uniformity is not obvious; it is the
same problem when we want to represent a sphere
on a plane. For example, on a world map in
Mercator projection, Greenland and Africa seem to
have equivalent surfaces, whereas in fact Africa is

14 fimes larger.
File: www.voyagepourproxima.fr/docs/CielRelativiste.ods

10. A bit of math... Exercise p106.

a- cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a+b)=sin(a)cos(b)+cos(a)sin()

Mnemonics:
COCO MINUS SISI, SICO PLUS COSI
Quickly re-demonstrates itself by going to C:
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Qila+D) _ gia e’=cos(a+b)+isin(a+b)=...

tan(a)+tan(b)
1—tan(a)tan(b)’

So tan(a+b)=

2tan (0/2)
1—tan’(0/2)
C-V (6,0, € 10,0,[Ul6,x[ :

2tan(0,/2) sin0 1
t 0 )= = ==
an (0,) 1—tan’(6,/2) y(B+cosO) k

b - a=b=0/2 gives tan(6)=

Then: x*+2kx—1=0 with x=tan(0,/2)

—(B+cos )=y (B+cos®)+(1—p?)sin’0
sin 0

x=—k+Vk*+1=y

_ —B—cosei\/|32+2Bcose+c0526+sin29—[3251n26
- sin©
__ —B—cosO£|1+BcosO|  —pP—cosB+1+PcosO
=Y - =Y -

sin 0 sin0

X

X

_ _ayl—cos6_ [1-P
x=y(1-B)——5 —\/1+ﬁtan(6/2) QED

11. Energy distribution Exercise p106.
do 1-B do
a- We have: dtan(6,/2)= ¢ :\/
( ) cos’ 0, 1+8 cos’0
2
SO dof= 1+f cosZE)dea
1-P cos’0,
tan &
0 0 2

Besides: sin©®=2sin 5 COS = 2

1+tan’9
2
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2
becguse Cosze:% Ond Sinze: tan 62
1+tan’0 1+tan"0
tan —
do
dQ=2msin0d0=4x(1—p) 2 A
,0,\ cos 0,
1—B+(1+p)tan >
. e _ 2
dQ=2n(1-p") SN Y -d6,= 1-p 5d Q,
(1-Bcos6,) (1—BcosH,|
nﬁ(ea): 1_62
Ng_o (1—PBcos6,)
”B(O): 1+p and n|5(7'5) — 1-B
Ny 1-PB M=o 1+P

Nyoos(0)=3ns_y aANA  ny_gs(w)=ny_o/3

b - Nﬁ:():f n,_,dQ=4mn,_,
0=0
7T N 3 T @2
N,= [ ny(0,)dQ,=—L= 126 gino,do,
0,=0 2 6,=0 (1—[3cos 0,

The integral calculation gives 2, we have a constant
number of stars.: Ng=N,_,=N.

C- E= f ng_oldQ=4mn,_,1

E 7T )2
E = ng (6 dQ == -sin06,d 0,
f B( ELE 29‘[0 1- BcosG

E,= [ n,(6,)1,(6,)dQ, :L(3+B)

6,=0

We have well the expression of the course.
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[ np1,de,=1*B (Bz_zﬁ”)E

(=}
=
Q
Q
—
—_
|
=
~—

_ 7 _(1-p)* (B*+3B+3)
Ea(§<60sn)—en_£lnﬁlad90— (1o6) s E

For $=0.5, forward E4(0<m/2)~1.3 E and backward
Eq(6>m/2)=~0.13 E. In tofal E,~144E, and forward
Eo(B<mt/2)/E~90.8%.

12. Number of photons Exercise p107.

a - Infinitesimal energy received from the infinitesimal
surface dS: dE=nIdQ=n(0)I(0)2nsin0d 0.

The energy of a photon is given by the following
relation: e=hf=hc/A. Hence the expression of the
number of photons received from this surface
photons— AET €.

In the vessel's reference frame:

I 1—p2 Vo V1-p* ml(8)_  1-p’

T_(l—Bcosea)Z' V' 1-Bcos6,” ny, _('1—[3c056a)2

element: dN

So: dN =dE,le,=n,I,dQ,le,

photons ,a

3
1—p%)?
dn, a:(iﬁ)ﬁinﬁadeax
" (1—BcosB,)

27ng_oI M
hc
In fotal:
0 = 3
=T 1— 2\2
N, ,=Constant X f (—ﬁusineadﬂa:pr
’ o=0 (1—PBcos0,)
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The number of photons received does increase by a
gamma factor.

b - By intfegrating from 0 to wt/2:

N, .(0<0,<Z)==(1+p)(1-5)

For example, at 50% of c, there are, in total, 15%
more photons received. But above all they are
differently distributed: 84% of the photons come from
the front hemisphere, for 91% of the total energy.

13. Power emitted by a star Exercise p108.

a- P=[[fi(r)drdQds=[i(r)dr[dQ [ds
and P=IX2nx4nR’
2hc® 1

5 hce
NkyT
e —1

da

with szi(x)dx:T

The integral 1 is numerically estimated at
www.integral-calculator.com. h, Planck's constant is
6.63x10%Js. ks is Boltzman's constant, kg=R/Na,
R=8.31J/mol/K  (ideal gas constant) and
Na=6.02x 10%° mol (Avogadro constant).

One finds P~4.34x10*W, which corresponds to the
expected value.

b - Values proportional to the areas under the
luminance curve:
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A=800nm
visible — i(n)dnd QdS=~1.80x10*°wW
A=400nm

P.= [ i(A)drdQdS=226x10"W

A=800nm
A=400nm

Py,= [ i(A)drdQdS~029x10"W

uv
r=0
P P P
and ?“5241%, f:sz% and TUV=7%.

c-For Proxima Centauri, we find Pp~1.1x10%W,
hence Pp/Ps~0.25%, which corresponds basically to
the value found on the wiki.
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.1. Half-time Exercise p129

Using the results and notations of the lecture, we
have for the galactic time at half-time t,,=T/8~1.397
years., Hence the distance covered at Earth's half-
time: x(t,5)~0.74 ly. Seen from the Earth, the halfway
distance is 2 ly and the value of the distance at the
half-time of the halfway is less than one light-year,
because the motion is not uniform but accelerated.

In the reference frame of the vessel we will be at a
different position, because the time of the vessel is
each time more dilated and passes less quickly with
the increase of the speed.

For the proper half-time: t,s=1/8=0.855 yrs.

t
Butg?t:sh(% so we find % => X(T15)=0.41 ly

In classical mechanics the distances would be, of
course, the same, because the times are identical:

1 D 1 D
Xzagtz, ?:Eg(ztl/g)z and X(tl/g):§:051y

The classical calculations are, of course, false here,
because the speed is not small in front of c, the
speed of the rocket would even exceed the speed
of light at the halfway point,
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5.2. Readlity show Exercise on page 129

t
a- \/T
c
C2
then X:—(y—l).
g
moreover with t_gsh(gcT { (months)
we obtain y= ch( gc
b-1-2- We have:
tobs_t+ﬂ
C
C2 T
but x=—|ch g_ _1],
g c
then
tobs__[Sh(ﬂ +ch ﬁ -1
c c
gt
SO tobs:_ e ‘ _1 .
g t {months)
20t //é
t o
and t=S1n| Lo E(Tone) X(T"h?),,g‘ Tons
g c

3- t=6months gives
tops=7.9 months.
4- We can calculate t's

for t,,'s for 12 months and 12
months and one day.
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We subftract the two Tt and we have the answer.
Another more elegant method is to calculate the
derivative of t,, with respect to t. Indeed, the
variations are small, one day, over the duration of
the trip, one year. The curve can be linearized
around the point studied.

AT dt dt 1 dtobs gtobs

~ = =1+

Atobs dtobs ‘ dtobs gtobs + Ond !
Cc

e
1 T c

For tu.=1 year and At,.=1 day, we find At=11h and
41 minutes. The daily reality show on Earth will have

to be satisfied, one year after departure, with
describing only half a day of life on the ship.

For t,,,=10 years, we find At=2h and 5 minutes. The
reality show will narrate 2 hours aboard the ship
each day. If it's while the spacemen are sleeping,
there won't be much to say!

c-1-2- we have:

( ) _grobs
t(robs):t+x Tl then t=Sl1—e €
c [¢]

1

and T =£ln

obs

with  t<ty, ==
g

gt
C

N.A.: t;,~11.4months , instant precisely reached on
December 14, 2100 at 17h20m00s.
3- t=6months gives t,,,~8.5months .
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g Tobs

drobs _ c

dt ¢

For ta=1 year and At,.=1 day, we find A¢~8h and 22
minutes. The daily reality show aboard the ship will
be largely satisfied with 8 hours of life on Earth. There
is always plenty to talk about, at any given moment
on the globe people are getting up, living and
going fo bed.

For 1,,,=10 years, we find At~2.3 seconds! The reality
show in the rocket will be limited by the event
horizon located on December 14, 2100 at 17:20m00s
(Earth calendar). In 2110, the ship's calendar, 10
years after their departure, they will have images of
the Earth on December 14, 2100, fromm 17h06m30s
until 77n06mM32s! And the day after, they will have
two seconds more...

d- Doppler effect for an accelerated frame:

T

Received

dt
1- From the inertial frame: —=2=
dtr T

Emitted

t
fE 1+g obs)
C

1+gtobs
C

then: fR= and Ap=A,

9 Tobs
d Tobs _ c

From the accelerated frame: dr

_ g Tobs 9 1:obs

then: fr=fge °© and hg=hge ©
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grobs

2. “R=2=¢ ¢ then tobs=§1n2:thmln2.

The Dblue light emitted from the Earth will be
perceived red on board the spacecraft after 7.9
months lived by the astronauts in the ship.

3 tobszglnz then Ag=(1+In2)A~677nm,
Orange-red light received on Earth.

4- Contrary to the case of inertial reference
frames, the Doppler effect in an accelerated
reference frame is not symmetric. We find an
asymmetry in the twins experiment, also due to the
presence of a non-inertial reference frame.

We have studied the case of the same proper fimes.
We can also look at simulfaneous fimes:

_gT
l1—e ¢ =5

2g

it t=S1In2 then t=<
g g

ZE?»:GOOnm

and Ag=A >

1+g_t
c
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3. Head-to-head Exercise p131

a - By replacing in the formulas, we find:

v(x)=c [1-—2 then  Y1272) g5,
gx ¢
1+—2
c
Bi+B, 2B
relative speed: D/2)= = ~99.85 %
p Brel( ) 1+[31[:))2 1+BZ o

v(D/4)

b - ~87% and PB,.(D/4)=99%.

Cc - Let us propose the Doppler effect. If each of the
vessels confinuously emits a monochromatic light
beam of known frequency f with the help of a lamp,
we can deduce the relative speed from the

received frequency f;.
2

Ly g
1+, (f
frzﬂ/—f then B =-—5—
1_[3’” (fr)
—|+1
f
gt
d- yv=—C & L_gp|9T| oy Y_py|9T
2,2 c c c c
1+9

e- We can consider the ftwo inerfial reference
frames that coincide at an instant f with the vessels.
According to the law of composition of velocities:

v, 2thE

¢ 1+th’E

with gng—T
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Experimentally, we note that the Doppler effect
depends only on the instantaneous velocities of the
fransmitter and the receiver, and not on their
accelerations. We would thus find the same result in
the proper reference frame of the vessel which is
accelerated and not inertial.

; dv, _dv,lc % a= 2g
Tar Y9aE T g1y

B
At the start: t=0, £=0, ch&=1, thE=0 and a,=2g.
At the quarter: £=gt/c~0.90 and a,=0.208g.
At the halfway point: E=gt/c=1.80 and a,=6x10°g.
The acceleration varies with the proper time: the
relative  motion of the wvessels is not uniformly
accelerated.

In Newtonian mechanics:

1 1
xlzigtz, a,=—g, v,=—gt & x2:—§gt2+D.
=> Xr=X2—X1=D—gt2, v,=—2gt & a,=—2g.
In this case the relative moftion is also uniformly

accelerated with a double acceleration. We well
find this result in the classical limit £=0.
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.1. Euclidean metric Exercise p159

Xx'=x+a
e Translation: {y'=y+b dx'=dx+0 .. dl'=dl.
z'=z+b

e Rotation: case of rotation in the plane (Oxy)
_i’—cose_i’ ’—sine_f '
By projections: J— sm@ i "+cos E)J

kic
F=xi+yj=f'=x'T"+y"]’
F=x'1'+y'j'=(xcosO0+ysinB) i '+(—xsinO+ycos0)j’

x'= xcosO+ysin0
y'=—xsin0+ycos0
z'=z
d1”=dx"+dy""+dz "=
(dx cosB+dysin 8 )’ +( —dx sin 0+dy cos 0)*+dz’
d1”=(cos*0+sin’0)(dx*+dy’)
+(2cos0sin@—2cosBsin 0)dx dy +dz’

dl'=dl
xX'=x—vt
e Galilean transformation: y'=y
z'=z

The measurement of the position of both ends of a ruler is
done at the same time, and the term vt is therefore

constant :
Ax'=(x,—vt)—(x,—vt)=Ax
then dl'=dl

381



2. Rapidity Exercise p159

1-With y=chgp=1 and —fy=shg,
we well have ch’o—sh’@=y*(1-p*)=1 & q=argchy.
We can verify the invariance of the infterval:
ds*=c*dt*—dx"*—dy"*—dz "

=c’dt’ch’@+2cdt dxchqsh+dx’ sh*¢

-c*dt* sh*9—2cdtdx chgsho—dx’ch’ p—dy’—dz’=ds’

ct'=ctcho,+xsho, ct''=ct'chg,+x'shg,
2- x'=ctshq,+xchg, x"'=ct"shg,+x'chq,
ct''=(ctch @, +xshq,)ch cp2+(ct sho,+xch cpl)shcp2
=ct(chg,chg,+shq,she,)+x (chg, sho,+she,chq,)
=ct ch(@,+¢,)+xsh(q@,+q¢,)

x":ctsh(cp1+cp2)+xch(cp1+cp2) then  @=@,+@,

The rapidity, like the covariant velocity, has the
advantage of varying from -oo to +o0. The artfifact of the
limit speed disappears. Moreover, the rapidity is additive,
unlike the covariant and classical velocities which have
more complex composition laws in relativity.

3. Rindler metric Exercise p159

1 - We have invariance by rotation in the (y.2) plane.
We do not have invariance by rotation in the (ry) and (r,z)
planes. For example:

T

r'= rcosf+ysin0

y'=—rsin6+y cos0
& ds”=(rcos0+ysin0)fdt’—dr’—dy’—dz’ #ds’

t'=tchog+rsho ds ?#ds?
r'=tsho+rche

Therefore, the reference frame is not inertial.

Lorentz transformation:

2 - For the uniformly accelerated reference frame:
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2
1+% c*dt’—dx’ —dy’—dz’

C

ds’ =

It is enough to set r=c’/g+x and t=gt/c. This change of
origin and units allows us to find the Rindler metric. This
metric corresponds to a uniformly accelerated frame of
reference.

3 - ds’=c’dt’—dx’=(dr sht+r chtdtf—(dr cht+rshtdt)’
=dr’sh’t+2rshtchtdrdt+r’ch’td’

—dr’ch*t—2rshtchtdrd t—r’sh*tdt’

=r’dt’—dr* This was to be demonstrated.

Then:
c gt
ct'=| x+— |sh —)
g c
2 2
x'=| x+& ch(ﬁ <
g C g

We have simply replaced and changed the origin for x'in
order to resume the chosen initial conditions (invariance
by translation). Thus for the coordinate lines of x, we have
a grid of hyperbolas centered on (-c*/g, 0):

2 2
2,12
—ct" =

CZ
X'+

C2
X+—

g

The coordinate lines of t are straight lines that pass
through the center of the hyperbola:

gt
c

T C2
X'+
g

It follows that the coordinate lines of x are orthogonal to

those of 1.

ct'=th

383



ct'(z

1:0‘2
1.5 2
=0 X
I:_le
Vi \ \,
-1.5 i
\ 4
-2
4. Free fall in the rocket Exercise p160

1 - Let's imagine that we can use a superpower that
allows us to reach a speed very close to the speed limit
very quickly. To win, we can reach a level as high as we
want almost instantly and return just as fast. For example,
a level where the time runs twice as fast, and we would
come back with 2 min displayed on our clock. Except
that it is not possible to come back in time, indeed, from
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the point of view of the clock at rest, even if you go at the
speed limit, one second passes every 300,000 km traveled
and you will not be able 1o rise more than 9 million km in
one minute, and the place where the clocks turn twice as
fast is nearly one light-year away!

Two opposite effects are at work here, a static effect that
makes time go faster as you get higher, and, a dynamic
effect that, on the contrary, slows down the clock as you
gain speed.

To win, you must find a compromise between elevation
and velocity in order to maximize your proper time. A free
particle has the maximum proper time. For your clock to
be free, it must be in weightlessness and therefore in free
fall. The winner will not even need to accompany his
clock, he just needs to throw it upwards with the right
speed so that it falls back down after one minute.

The same goes for the variant with a bell curve. In this
case, there are two fixed clocks at the same level and
previously synchronized (possible here, because same x).

2-a For the path of maximum proper time:

j(aL oL

—Jdx+=—9v|dt=0

o0x ov
Link between 8x and dv :

_dxc,_dxc+d6x

d
Ve =v,+dv and 6v256x

dt dt dt
Follow an integration by parts:
E
oLy OLd g |4 _r[eL_doL oL, 1°r
Nooxr oy ad) =)o wa 6th+[av6X]E

i

The ends of the path are fixed: 6x,=0 and 6x,=0.
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oL doL

= | ox diov

This relationship must be true for all dx tested around the
extremal path, hence:

dxdt=0

. : oL_doL_,
Lagrange's equation : ax dtov
oL 1 0g_ g' . ,_2a ax oL 1%
— == th =—|1l+—=| & —=———
ox 2Lox 20 M9 cz( : ov L

d oL dvidt v dL
dt ov C2L (;ZL2 dt

oL oL dL oL OL.
dL=——dx+—d = y+——
ax vt e Taxav!
doL 4 v [g'v vv \% g g'v
— = ——|=— +
dov L ’L*\2L (L L\ S 280
()= (V-1
c 2
% v
Differential equation of motion: —2:9— —Z—Q
¢ gl\c 2

For a Minkowskian metric we find the rectilinear motion:
g=1, g'=0 and v=%=0.

For x small in front of a light-year:

g(0)=1, g'(0)=2—g, %<<1 and v=-a
C

We find the Newtonian equation of uniformly accelerated
motion. After a few months the tfrajectory will significantly
differ from this parabolic trajectory.
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This free fall equation corresponds to the trajectory that
makes the proper time maximum. So fo win, it's very
simple, just throw your clock upwards (the front of the
ship) so that it falls back 60 seconds later. The difficulty is
to measure the initial speed for a return at the right fime.
The throw is vertical or according to a bell curve for the
variant of the game.

Numerical resolution: The duration of the experiment is
short compared to fy=c/a, so we can use the classical
parabolic curve and make series expansions:

At gpto

. . 1 .
k=—g, Xx=—gt+v,, xz—zgt +Vt, Vo=9—- 29

2 2 _ 2
—% dt:f\/1+2fzx—(v°czgt) dt

-

gx
1+

2 22
-2 t+g't
VO—%Q t)— (vo Vo_‘ZJ gr) dt

C

t=At

1
t—At—C2 I_IO

2
v
2vogt—gzt2—50)dt

ngt3
24 ¢

after calculation: T—At=

To win: vo=300 m/s, h=4500 m and your clock will be 10
picoseconds ahead. Well done, you can't do better!

In the frame of reference of the vessel the frajectory is
curved, while in the galactic frame of reference the
trajectory of the object is rectilinear.

Note that the trajectory of a photon will also be curved in
the accelerated reference frame. But fo understand what
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happens, we must differentiate the coordinated velocity
v that we have defined in the coordinate system of the
spacecraft, with the velocity measured in a Minkowskian
reference frame defined locally in space and time at the
level of the particle. It is this velocity which cannot
exceed the limit velocity ¢ and which is equal ¢ for a
photon. The coordinated velocity has no such constraint.

Here, we are in flat space-time and this does not prevent
the astronauts from lobbing their playing partners. By a
similar reasoning. in the framework of the Schwarzschild
metric in curved space-time, we would also find the
curved trajectories that we observe when we play ball on
the beach. We could abandon our vision of a force of
gravity and embrace that of a free particle maximizing its
proper time in a non-Minkowskian metric. If we leave the
local analogy, there will be notable differences between
the accelerated rocket and the approach of a massive
star.

oL
ov

oL,
ov

oL d

dL_OL +6L. oL d
Oox dt

d
a ox Ty’ *

e

2-b

we recognize in the first term on the right the equation of
motion from which:

d oL
Il L-==v|=0
dt ( ov
Conservation equation L— 8—v v=cst

The object released in free fall starts from x=0 and joins
2
the event horizon at xH:—%. In the same time g(x)

varies from 1 1o zero: g€]0,11].
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Expression of the position: x:xH(l—\/E)

2
Calculation of the speed: L+Bf=cst with B:X
C

Determination of the constant for the initial conditions of
arelease: at =0, x=0, x=0, L(0,0)=1 and cst=1.

Then: L*+p’=L and L*+2p°L*+p*=L’
g'—2gB+p*+2gp*~2p*+p'=g—p* and p=—Vg(1-g]

Expression of the speed:  v=—cvg(1—g)

Calculation of the acceleration:
dv_dvdgdx_ 1-2g 2a@v

dt _dgdx dt  2yg(l—g) &

d
Expression of the acceleration: 7: =—a(2g- 1)\/5

The acceleration v is zero for g=1/2. As expected, since
the speed is zero at the beginning, for =0, and tends to
zero when ftends to infinity, it passes through a maximum:

Voax ==  at x(vmax):(l—i_ x,~0.3x,

V2

As we will see Iater, the speed of light in x(vmux) is c/\2
and vm:vligm/\/zzﬂ %V 1IN agreement with a local
Minkowskian observer for whom v, .. (x, . )=c/vV2~=71%c.
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Metric factor g(x) :

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-1 -09 -08 -07 -06 -05 -04 -03 -0.2 -01 C
*/dy

The metric of the reference frame of the uniformly
accelerated rocket shows the temporal factor with
g(x)=[1+x/dy [ with d,=c*la. g(x) varies from zero to
infinity, when, x varies from -d, , the horizon, fo infinity in
front of the rocket.
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-vfc

Velocity of fall of the object v(x) :

-1 -09 -08 -07 -06 -05 -04 -03 -0.2 -01
Xf’dH

Velocity versus position of the fall of an object released
without initial speed from x=0. For an observer of the
accelerated rocket, the object starts to fall according to
a classical parabolic motion (dark gray curve), fo then
reach the maximum speed c/2 and fo become zero on
the horizon. The maximum speed is independent of the
acceleration of the spacecraff. We have fraced in
dotted line the coordinated speed of light in this non-
inertial reference frame. Indeed, the accelerated rocket
frame of reference is not Minkowskian, and the speed of
light is not fixed at +c. For a photon dt=0, which gives in
the rocket v, (x)==[1+x/d|c. For -1<x<0 | vign| <C, and,
for x>0 |vignt| >C. For other initial conditions, such as
X(t=0)=3ady, we find van.=-2c. We verify that at any point
the speed of the falling object is much lower than the
speed of light, except on the horizon where the two
speeds equalize.
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dv/dt

Acceleration of the object a(x) :

-10

-1 -09 -08 -07 -06 -05 -04 -03 -02 -01 C
xfdy

Object in free fall in the rocket: the acceleration is zero
when the speed is maximum. The acceleratfion then
changes of sign and the object decelerates to the
horizon.

c- To solve the differential equation we have performed
numerical simulations in Runge-Kutta 4 for the fime evolu-
tion. We could also follow an analytical approach and
perform a direct calculation using the coordinate change
given in the exercise Rindler metric. All the equations are
expressed in terms of dimensionless quantities:

X=x/d,, d,=c’la=—x,, T=tlt,, t,=cla=d,lc

_dX X_dY o1+ xP)(1+X)

b=ar=Y Tdr

The maximum velocity is reached for T=~0.88 (=10
months). The horizon is reached only asymptotically when
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t tends to infinity. The classical mechanics curves are
plotted as gray lines.

Position
0 05 1 15 2 25 3 35 4 45

wm

Position x/dy

-1.0
Coordinate Time t/ty

Velocity of fall in the rocket

Coordinate Time t/ty
0 0.5 1 1.5 2 25 3 35 4 4.5

(A}

-0.1

-0.2

-0.3

Coordinate Velocity vic

-0.4

-0.5
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=via

Coordinate Acceleration A

Acceleration

02 /—\
0

0.5 1 15 2 25 3 35 4 45 5
Coardinate Time tfty
-0.2
-0.4
-0.6
-0.8

d- Proper time: rzf \/g—ﬁzdt:fgdt

T= tHf 1+X2dX

J’- ]_+X
v1 1+X
with sin0=1+X wefind t(X)=t,V1—(1+X)’

So t(x,)=t,, for the observer in free fall the horizon is
reached in a fime ty and nothing special happens. The
person crosses the horizon without realizing it and his time
continues, of course, tfo flow. On the other hand, the
observers of the rocket will see the time of the falling
person freeze at ty and as long as they wait they will never
know what happens next. A difference, however, for the
person in free fall, before and after the horizon: before he
can sfill stop his fall to join the mother ship with a very fast
rocket, after it is impossible, even if his rocket went at the
speed of light.
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N

-Q,foj 0 X
Let us represent the situation on the Minkowski diagram of
the inertial reference frame of the object in free fall. The
object is dropped, without initial speed, by the astronauts
of the accelerated rocket af t=0 and x=0 (event O). The
occupants of the spacecraft see the object falling (worla
lines of the phofons with the ) and the last photon seen
will come from H. Thus the age of the falling object will
seem fo them to freeze, as if its fime stopped after having
aged of ty. But, from the point of view of the object, the
time continues to pass and no horizon wall exists. Simply,
the horizon defines the place where the causal link
between the object and the rocket is broken. Even a
photon sent fowards the rocker beyond the horizon will
not be able fo join it (3»). At O. the spacemen lef fall a
second object. This one has a constant velocity in the
reference frame of inertia of the first object and
Tou=Tou, =ty The first object that the travelers see falling
in free fall is the Earth itself that they "dropped" af their
departure.
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Minkowski diagram in the non-inertial
frame of the rocket:

Cmmcamems==—=zo2
~—+

in doffed lines, the worldiines of
photons that pass through O:

dX
Bir'gh?:ﬁ

=+(1+X)

ond T, =*In{1+X).

For the object in free fall, X '=0 in the
galactic frame, with the change of
coordinates X'=(1+X)chT—1, we
2ty  obtain:

N-O-Z+4OH

o
T = argch ﬁ]

For the proper fime of the free falling
object we have a quarfer circle.

Tty
Free £ e- Minkowskian
2 local observer:
[»]
=1 . .
= o8 dty,=1+X)dt
@CE&" F
. B vk =7 -
77 (1+X)
-dy du B
0 X ;o
’éé;;;;ES\‘ uiwn
. e D —
“f%o =—y1-(1+X)?

In the local refe-
rence frame of

inertia the velo-
city of the object increases continuously from zero to c.

The curve has been drawn in light gray on the velocity
curve page 391 (arc of circle).

N T
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3 - Analogy with the fall info a black hole:

1V oL oL v
- Lir,v)= _ L——v=cst —=—
a (r V) g gC2 8VV CS ov gLCZ

B Is

Velocity: L+P—=cst with p=~ and g(r)=1--2
gL ¢ r

Determination of the constant for the initial conditions of
arelease: att=0, r>+w, =0, L(+0,0)=1 & cst=1.

Then: gL2+I32:gL Gnd g2L4+2gBZL2+B4292L2

g'-2g'p*+p*+2g°p’ —2p*+p'=g’~gp’ and p=-gVi-g
Expression of the velocity:  v=—c gz( 1- g)

Calculation of the acceleration:

dv_dvdgdr _ 2g-3g° (1-g)

2
— = = v

dt ~dgdrdt  2/g(1-g) Ts

4
dv c

Acceleration:  —-=
ccelerarion dt _4GM

g(2-3g)(1-g)

The acceleration v is null when g=2/3. As expected, since
the velocity is zero at the start, at 1=0, and tends to zero
when t tends to infinity, it passes through a maximum:

v —L0238%c at  r(v,,)=3rg

max — 3\/5

The speed af light in r(v,,) is 2/3 ¢ and v, =V, /V3.
Speed of the faling object for a local Minkowskian
observer: v, (r. )=c/vV/3=58%c.
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Metric factor g(r) :

0.8
0.6
0.4

0.2

1 3 5 7 9 11 13 15 17 19
rrg
The meftric of the Schwarzschild reference system s
expressed with the factor g(r)=1-r/r .

Velocity of fall of the object v(r) :

Curve of the falling velocity of an object released at rest
from infinity of a massive star. For an outside observer, the
object starts to fall according fo a classical motion
(grayed curve) to then reach its maximum speed and
have a zero speed on the horizon in the case of a black
hole (star of radius less than rs). The maximum speed is
reached if the star has a radius less than 3rs. This speed is
the same for any star and does not depend on its mass.
We have fraced in dofted line the coordinated velocity
of light in this non-inertial reference frame. We have in
the Schwarzschild coordinate system v, (r)=+(1-rg/r)c.
Here |vigl<Cc and the speed of light cancels on the
horizon. The speed of the object is less than the speed of
light and equals it at rs .
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vic

-0.1
-0.2
-0.3
-04
-0.5

-0.6

rrg

Acceleration of the object a(r) :

0.1

dv/dt /ag

o

0.1
1 2 3 4 5 6 7
rirg

The acceleration is zero at 3rs. In gray the acceleration in
Newrfonian gravitation.
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rirg

R

We introduce dimensionless quantities:

2

=
o

r=", 1=L, A=®B_T i ;=" and a=S
rs t dT as ST ¢ r
1)1 _ 1 1(3 )
=—|(1—-=|—=— and A= 1-=||=-1
=gl e amamH7
In Newton's gravitation:
1 >, GMm \/2GM 1
—mv — =0, v=-— and f=——7,
2mv . - P TR
mfﬁr:ﬁ:—iGAgmﬁ}, f:—G]zVI and L=-— 12.
r r as 2R
b- Equations for numerical resolution:
dR FodyY
=—=Y —=—=F(R
b dr - ag dT (R)
Distance
9
8
7
6
5
4
3
2
1
0
0 5 10 15 20 25 30 35

Coordinate Time T=tftg

From the external Schwarzschild point of view the falling
object takes an infinite time to reach the horizon in r=rs. In
gray the classical curve.
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Coordinate Velocity vic

Velocity of fall v(t):

5 10 15 20 25 30
Coordinate Time tftg

The body gains speed during its fall up fo 3r. From a
distance of 10rs, it has then elapsed approximately 21 ts
before reaching this maximum. This maximum of 38% of ¢
reached, the speed then decreases until it cancels on
the horizon. The maximum velocity is independent of the
size of the black hole, it is not the case of distances and
times. For a super-massive black hole of 40 million solar
masses, ts is about 6 minutes and 35 seconds. In dark gray
the velocity curve according to Newfon's laws. In dofted
line the speed of light in the Schwarzschild coordinate
system.
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Coordinate Acceleration dw/dt /asg

Acceleration a(f):

g
=
=

o
o
o

o
=)
@

o
]
=

o] _-/

[=]
o
=

0] 5 10 15 20 25 30 35
Coordinate Time tftg
The Schwarzschild coordinate acceleration becomes
zero, then changes sign, forms a peak and fends towards
zero at the horizon. In gray the classical curve.

For Newton: %:— 2GM, Jrdr=—v2G M dt

r T)

W [N

N w

r 3
[Vrdr=—V2GMt and R:(ROZ—

2
c- Proper time: r:f g—ﬁ—dt:fgdt
g
1
=t -+ dFR:—tsfx/ﬁdR:g(Roe”z—l)ts
R 2 3

For example, from the maximum speed, at r=3r;, to the
horizon in r=rs, a proper time of t~2.8t elapses. It is inte-
resting to note that the singularity on the horizon has
disappeared. We can cadlculate the proper time needed

0
to reach the black hole cenfer: r:—tsf \/ﬁdRzéts ,
1
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about 4 min 20 s for the super-massive black hole of 40
million solar masses. The person in free fall does not readlize
that she crosses the horizon, but beyond that point she
cannot exit the black hole and her causal link to the
outside world is broken. The outside observers will see the
free falling person slowly stop on the horizon and his time
freeze af the proper time of passage.

d- Local observer. dt,, =gdt. dr,, =dr/Jg

ATy _ B B 1
ik = == - and v (r)=—c
P dtyiw 9 |Blighz| \/E Mmk( s)

In the local and instantaneous inerfial frame the speed of
the object reaches ¢ on the horizon. The curve has been
drawn in light gray on the velocity curve page 401.

e- Comparison to experimental data:

Theory: for a static black hole and a free fall from infinity

without initial velocity ﬁ:(l—l L

R|VR

Experiment:
For R=20: f=~0.21 fo compare with 0.3 measured.

For R=200: B=0.07 fo compare with 0.1 measured.

The black hole concerned is rotating and the matter in
free fall can have an initial velocity. The results are
consistent for the order of magnitude and even in value.
There is an uncertainty on the radius and in theory Vmex
can reach 38 %c which is consistent with the experimental
30 %. If we consider the speed of light variations between
the non-inertial Schwarzschild frame, and the local
Minkowskian one, the differences are not significant,
because the r's are large compared 1o rs.
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5. Fall of a blue ball Exercise p167

The first blue ball released in free fall is the planet Earth at
the departure of the rocket. The behavior will be the
same for later releases. Our planet, observed from the
spacecraft, will reach the half of the speed ¢ after 10
months at 0.3 Ly., when the fime tends towards infinity it
will sfop and freeze at one light-year.

Itfs color is given by the formula of the Doppler effect
established in the exercise Reality show on page 129:

at
— C
hp=Mh e

Our beautiful blue planet will be perceived as red after 8
months of travel. If, instead of releasing the blue ball in
free fall, we hang it from a rope, it will also redden with
the length of rope unwound, but in a different manner.

6. Trajectory of a ray of light
in the Einstein's Elevator Exercise p167

1 - Position x of the box in the Galilean reference system:

al?

2

X=a x=at x:lat2 tFZL/C Ax=—
2 2c

2
y=ct x(y)=—ﬁy2 y(x)= —zcax v(x)=Vc'~2ax
c
2 - Special Relativity. Change of coordinates between an
inertial reference frame (ct', x, y) and a uniformly
accelerating reference frame (ct, x, y) (exercise on the
Rindler metric):

404



'=ct'=y= x+§ sh at
e A L c
2 2
x'=0=|x+|ch at)_<
a c/| a
ch(at/c)= CZ/ZG sh(at/c):%
x+c'/a x+c'/a
clad—y'=(x+c*la}  y(x)=Vc'ld—(x+ca)

X(y): /C4/a2_y2_c2/a AX: /C4/a2_L2_C2/a

2

C
Ax=—
a

1- lim (Ax)g,=(Ax)

L<d,

Newton

For the coordinate velocity of light in R non-Minkowskian,
we can also directly use the metric:

dt=0 and v(x):ﬂzc 1+a—§(
dt c
2
c at
t)==—th| — . 1
y( ) a c y:Cc?
Direct calc.: A1 >
9 ch CCI— ch’
2 .2 C 2 2 aX2
v=x+y =—(1+sh’)=c|1+—
ch c
c’ X
3 - Dimensionless quantities: dy=— X=— y=">
a dy dy

2
Newfon : X:—% [3:1:\/1—2X
c

Special Relativity:  (X+1F+Y°=1 p=1+X
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Irajectory of a ray of light

>

B=m/2 yidy
_.L 0.2 0.4 0.8 1

-1

The ray follows a quarter circle of radius dy horizon
distance, and center (-dy, 0). The velocity of the photon
decreases until zero, and, in an infinite time, the photon
reaches the position (-dy, dy). In the Newtonian approxi-
mation the trgjectory is parabolic, the deviafion is twice
as small at dy, and the speed fends fo infinity.
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Velocity of the photons in the box

1.8
16
14

1.2

1 vignfc
0.8
06
0.4

0.2

-1 -08 06 -04 02 0
xfdy

The velocity of the photons initially equal to ¢ decreases
linearly until it becomes zero on the horizon. On the
contrary, in Newton's case in gray, the velocity increases
by addition of the velocities and fends fowards infinity like
that of the box with respect fo the Galilean reference
frame.

7. Spherical coordinate system Exercise p 169

In addition to giving useful tools for physics and astro-
nomy, we infroduce the notion of solid angle — a very
physical approach that is rarely explained. We often limit
ourselves to plane angles whereas the world is in 3D.

or 7 or

Xx=rsinBcosq ar % %

1- 7='y=rsinBsing U=r—=7 U=Tor Ye=T oz
l or or or
z=rcos0 ar 70 B
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Uy=cosOcos i +cosBsing j—sinO k

U, =sinBcos @i +sinOsing j+cos Ok
U,=—singi+cose j

i =sinOcos ¢ Ui, +cos 0 cos @u,—sin @,
Jj=sin0sinq U, +cosOsin g U, +cos @u,
k=cosOu —sin0Ou,

ZA:AX?+Ay?+AZ_I€:ArLTr+AeJe+AWJW

A,=A,sinBcosgp+AgycosBcos p— A, sin ¢
A=A, sinBsin g+ AycosBsing+A cosg
A,=A, cos0—Agsin0

A,=A,sinbcosp+A sinfsing+A,cost
Ay=A, cosBcosp+A cosBsing—A, sin6
A,=—A, sing+A cosg

_ 01, o, Lo Lo
durzmde 3 do=U,A0.dO+0, Ai.dg

then dr=dri,+rd6 Uy+rsinfd @u,.

2n

[ do=4xR’
@=0

3-s=[ds=|f RdeRsinedcp:sz dOsin®
6=0

R

V=f dVZJH drrdBrsinbd o= f rzdr><4n=§nR

r=0

3

4-a-b All of space is viewed under an angle of 4w ste-
radians (surface of a unit sphere). One hemisphere under
27t steradians. From one corner, one eighth is perceived

hence n/2 steradians. Under an angle 2o

a 2n
SR:1=J‘ sin0d 6 f dp=2mn(1—cosa)

0=0 =0
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c- Probability for an isotropic distribution of stars:

_ 2X2m(1—cosa) _

p=1 e =coso.  p(a=80°)~1/6
.1. Change of basis Exercise p243
ox""
2, =N d Ay="+
e, L€', an = ay
o) (gt
S Sh(c_) T'=(1+X)shT
1 - Rocket: . ) X'=(1+X)chT—1
x'=|x+& ch(ﬂ)—c— B ¢
c g
with x=9% ong 7=9"
C C
oct' 1 0x'
A’y==—=(1+X)chT, A'==—=chT ..
V=g SUHX)hT. A==
and  A¥= (1+X)chT shT
(1+X)shT chT

=(1+X)(chT €' +shTe¢ "))

eO
‘¢, =shT'e';+chTe",

The basis is orthogonal and we find the components of
the metric tensor:

o

ey

o=(1+X P (chT?g',,+shT? g’ ,+0+0)=(1+X)’=g(x)=g,,

&, €,=(1+X)(shT chT —shT chT)=0=g,,=g,,

€, e =shT’g' +chT’g' +2shTchT g',=—1=g,,
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¥,~ 1.62%,—0.62¢"
For T=-0.4 and X=0.5 : [fO b2e,—0.62¢",
e

=—0.41¢ ',+1.08¢ ",
Lengths and angles on the euclidean sheet:

1€ ol fuctiae=1.73 (€,,2"y)=+20.8°

~ and
|| e 1||Euclide: 116

(€,,2',)=—20.8°

ct' 2

The basis vectors associated with the time coordinate of
each reference frame are fangent to the worldlines of the
particles at rest. They are time-like and point to the future.
The reference system is synchronous: goi=0 with i=1, 2 or 3.

ct'=ct e 00"
1= ap -

2 - Disk: N 99 _o
oct ¢

2
0, A%

p'=p
0'=0+wt
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1 0 0 EO:E'O+?? )
then A= 0 1 0| and {3 =3
1 1
w/lc 0 1 2,=%,

The basis is not orthogonal and the reference system is not

synchronous because:

p’w

S N = —_ r—

€y €=gdpn="9 n=—"
0 2 02 c 22 C

#0

We find the components of the metric tensor:
2 2

N — 2(,0 ' (Dz =1 pw _
0 €0=9 ot 9 02+?g =TT 2 =Yoo

~

o

In the Minkowski reference frame (ct, p, 0) of the inertial
observer, the worldlines of the particles at rest in the
rotating disk reference frame form ascending helices, with
constant pitch and radius p. €, is tangent to the world-
lines and oriented according to increasing proper time.
Here, the vectors of the spatial basis (€, 2, 2,) are not all
orthogonal to the worldlines of the particles at rest that
define the disk.
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2. Riemann curvature tensor Exercise p243

1 -a- Rocket: ¢,, is here diagonal, thus g"'g,,=d"

becomes g™ g,,=0",=1 and g"'=1/g,,.

L

90=9. 91=95,=95="1, 900:1/91 91129222933:_1-

b- The only non-zero derivative term that can appear in
the connections is 0, g,, =g '. Moreover, since the metric is
diagonal, we have for the first factor g**=g"* The only
non-zero connections have two O0's and one 1 as indices.
As there is symmetry on the last two indices there are only
2 possible cases :

r

1 1
rl00:_gll(aogm"‘ao910_61900):__91181900:g_

2 2 2
F =T 4= 6" (0,9u+00 Gor—0u o )=5 6" 01 Guo="
01 10 ) 1900 0401 03401 b) 1900 2g
c- Antisymmetry: R%, =0 and R%, ,=—R%,..

No indices 2 or 3, otherwise the tensor component is zero:
Zero connection coefficient or zero derivative (no
dependence in 8 or 2). Only indices 0 or 1.

. 0 1 1 0
It remains: R, R ., R o and R,

(o3 o o o o
- 30,1"'F GOF m_r o1r BO

the first term is zero T’ amf% ;=0

0 0 0 o 0 o
R, =0-T oo,1+r col 0= 51T g
the second term is zero,

o _10 0 0 1 0 2 0
r Ol_r OOF 01+r IOF 01+F ZOF 01+F
=0+0+0+0,

last: T°_T°,=I",,T°,+T°,T",=0,

d, 0 3
35T a0 30F 01
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=> R0001:0-

R' ,=0-T" +I' T° —T" T =0-0+*x0—-0x*

=> R'\,=0,
Rloolzo_r100,1+r100r001_Fl‘nroooz_gz +%ng—g
2
2 2 2 1+a_§
Rloolzl(_g”"'g— =1 —Z—C}‘+4—C}1 ¢ -
2 1+C—2
1
=> R o=
0 0 0 o 0 o 1 gYIg_grz g,Z
Ry =0—T" o+ 4ol y =T 5T 10=" T +0_4—92
=> R0101:0-

Conclusion: in the reference frame of the uniformly
accelerated rocket, the curvature tensor is identically zero
because all its components are zero. This is logical,
because if a tensor is identically zero in one reference
frame, it is zero in all reference frames (whatever the
changes of coordinates made). Indeed, we pass from the
galactic inertial reference frame to the rocket reference
frame by a change of coordinates (given in the exercise
on the Rindler coordinate system), and, in an inertial
reference frame the curvature is zero (all the components
of the metric tensor are independent of the coordinates).
Finally, the spacetime of the rocket is flat, which does not
prevent the clocks from being out of sync with each
other, and the photons from having curved frajectories.
Let's say it !
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2 2 2
p w p w

900:1_7’ Jdoo=— c 922:_92 and g, =g;=—1

The metric is diagonal for 1T and 3: gn=g33=— 1.

00 02 0
v " 9 Getg gn=0 =1 20 2
g""gv.=0", + =1
googoz+go2922:602:0 g 9ptg 9y
2 2 2
00 p 2P W
g (1—— —-g =1 00 _
¢’ ¢ g =1 2 o 1
) 2__ W g —?——2
_goop w_gozpzzo c Y
1 o @ 0
C
- 0o -1 0 0
g = )
o o 1y,
c C p
0 0 0 -1

[S]

W )
b- algoo:_zp?l 81902:_297 and 0,g,=—2p.
18 connections with 0, 1 and 2:

1 1
FO ‘M:E Oo(av gOu+6M90v_80 guV)"'E go2 (avgz.u"'a.ttng_azgu\')

2
I’5,=0 ro01:%gooa1goo+%gwa1gzo:_pw +0 8% g
C c

r‘',=0 1°,=0 TI°,=0

22

1 1 W
r’ 122590081 goz"‘E 902 819222_%"'% =
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1 w
I1100_ Egnalgoo_ 2 rlol_o
1 1
I‘102:_591161902_ b r :_591161922:_9
, _1

1
Zo(avgou"'augo\/_ao guV)"’E gzz(avgzu"'a.ugh_azgpw)

2 1 p(D
M =225 g +=g¢20.g9, =LY [0 _1|PO_o
10=59 %190t 59 0195 E < ol p
1 1 o (o 1) _1
r,= 2061902"' g°0,9,= b (1)_2__2 P=p
A o\t p
Resulfs
pw’ 1 pw 1 2 2 1
1 _ _W
== o = [p==p T 10‘& r 27P

c- The tensor components with an index 3 are zero.
No connection with the first index zero: ROW,:O.

2x3x3=18 components to test.

1 o —_ W 0 0 _
001_0 r 00,1+F OOF 01_0__2_p?__0

c pc
Rll()l_o r 101+r aor rlolrolo 0
Rlooz_o 0+I" OOF —F azr =0
R1202_0 O+F 2_F o2l 2020
Rl 121_0"'F olrolz_rlozranzo
1 o 1
R 212—F 20,1~ 0+0-0",, 21:_1+pﬁ20
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R1120:0_0+r102r010_r1oorolz__%"'%:o
1 _r1 1 o 1 o _ w _
R 012_r 02,1_0+r clr 02 r GZF 01 _?+F_0
1 _ 1 o o W, 0_
R 210_r 20 1_0+rlolr 20 Floor 217 ?"'?_0
2 _ 2 2 o 2 o __
R 001—0—F 00,1"'F OOF 01_F o1r 00_0
2 2 2 o 1
R =0—T" 5, #0-T";, " (= g) pﬁ—o
2
2 2 o 2 o __ o Pw 1pw
R 002_0_0+F GOF oz_r UZF 00— ET"'ﬁ 2 =0
R?,,=0—0+I'?_T°,—T? T°,=..=0
2 _ 2 2 I 2 o _ _
R 112_F 12,1_0'*'F clr 12_F OZF 11_'"_0
2 71?2 2 o 2 o _
R 212_r 22,1_0+r GIF zz_F GZF 21_0
R2120:O—0+F202F010—I‘ZUOFUHZO
2 12 o o _
R 012_r 02,1_0+r2(71r oz_rzazr 01_0
2 12 2 o 2 o _
R 210_F 20,1_0'*'F clr 20_r UOF 21_0

Conclusion: in the proper frame of reference of the
uniformly rotating disk the space-time curvature is zero (as
expected). In a next exercise, we will see that this is not
the case for the spatial curvature.

2 -a Spherical body: metric diagonal

goozgzef, gn=—1/g=—e7f g22=—r2,

g°=1/g=e!, g'=—e, g”=-1/r", g®=-1/(r’sin’0).

2 .2
gy =—r"sin"0,

b- g'=f'g and g"'=(f""+f"?)g==2rdr’. ...
Connections: r’,=f'12 T',=—f'I2
r',=e’fi2 1*,=r’,=1r T1',=-rg

r',=-rgsin’0 TI’,=—sinOcosd TI°,,=1/tan6
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c- R’ =I°, ,—I", +T° [ -I° T°
R’ 0 =0—f""12=(f 12" ~(f"12] =—(f"+f'2)/2=—g"/29

0 rs rs
_— 9 d A —_—
3 an Ryp1=gou R 101=Ggoo R 101— 3
gr r

101

Conclusion: there is a non-zero component of the curva-
ture tensor, so spacetime is curved for a spherical body.
Curvature is an intrinsic property of every spacetime. The
space-time described by the Schwarzschild metric will be
curved whatever the reference frame of observation.
Nevertheless, in case of non-nullity of the set of compo-
nents, the expression of the components of a tensor
depends on the coordinate system. We can obtain an
invariant quantity by forming a scalar. We show that:

Bu v 2 6
R,p RPY=12r%r®  (Kretschmann scalar).

We see that the singularity in rs does not appear, on the
other hand, the singularity in r=0 is visible. The central
singularity is essential because it is present in all
observation frames of reference.

3.1- A non-uniformly rotating Disk Exercise p245
.2 : X
1-p?L o —p'2 1 0o -~
p e b c
guv_ 0 -1 0 gH\: 0 -1 0
25 2 A o9 A1
Y c 0 Y c 2 pz

2

Always 81900:—2p—, algozz—Z% and 0,9,=
c
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To which we add: 9y ge=—2p"22 and 609022_92%-
C

We check, one by one, the previously calculated
connections and we notice that they are not modified:

_ PR o _ ph _ _ i 1
1—‘100__ e 1—‘02__7 Flzz__p leo—p—c F212:

P
o _ 1 oo 1 o
r 00—59 (aogoo"'aogoo_aogoo)"'zg (60920"'80920_62900)
1 Ah A 2k
FO002590060goo"'gozaogzo:_pz_z"'_pz—:() ......
C C C

1 YS!
F20025920609004'92280920:;92 2 _(_2__2)92
c ¢ p

...... only one new non-zero connection: FZOO:L.
c

2 - Similarly, we do not transcribe here all the calculations,
but all the components of the curvature tensor are
indeed zero.

3 - Whatever the change of coordinates, if all the
components of a tensor are zero in a reference frame R,
they are zero in all reference frames R":
R’"ByﬁzA“MA[&VAypABkR”VM l“'‘“‘w;tA‘“‘MABVAQ,‘)I““Vp

So as expected the tensor is null, since we start from a
Minkowskian frame of reference. We take this opportunity
to point out that not every object with indices is a tensor.
For example, the connection is not a tensor. It is null for all
its components in Cartesian coordinates in R, and non-
null in R"in polar coordinates.
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4. Spatial cuvatures Exercise p246

1 - Rocket: The reference system is synchronous — no Cross
terms in the metric between t and the space coordinates
X, ¥y and z. Space is disjoint from time, and we directly
recognize the Euclidean metric:

d’=dx*+dy’+dz’
Flat space.

2 - Spherical body: Here again, the system is synchronous.

Spatial metric: dI'= L i ert a0+ sin0d ¢
g

1/g 0 0 g o 0
;= 0 F 0 y'=lo 17 0
0 0 r’sin’® 0 0 1/(r’sin®0)

. , 1 71 71! 1 o _ 71! o
Calculation: R™,,=I"",, =T, 1+, T",—T",T'",

1 1
Flyziyn(aj)’u"'ai Ylj_al }’ij) r122:_§gal Yn="T4g

1 g
nzzgalyuz—g r’,=0 1’°,=0 Tr',=0

1

r

1 1 1
r221:5Y2261Y22:pX2r:; Iw321:0

1

r
=> R 212:—g—rg'—O+rg’/2+g:—rg'/2:—2—i;'&0-

Curved space.

3 -a- Disk: The reference system is not synchronous: g,,#0

9o d
b- Y11:_gn:1 Y12 = O; 02:0 Y13:0 y23:O y33:1

00
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P w
_ oo c 22
Yo="gnt—=p “+ z—Y P
Joo p
1-——
c
ith the L tz fact Y= L L
Wi e Loreniz tactor: -
\/ plo’ \/1 B’
I——;
(8
1 0 O

Spatial metric:  y;=|0 y2p2 0
0 O 1

c- The reference system is stationary.

0=2xn 0=2x

b f ¥ndo yp [ d6

B: p = go =ymn (aftfixed d6=d6"
2 [ vyndp 2[ dp
p=0 p=0

p
B>n : the space is non-Euclidean, it is curved.

We find again the intuition of Albert Einstein. Because of
the confraction of the lengths due to the speed on the
edge of the disk, the experimenter on the disk must
fransfer his unit ruler more ftfimes than the inertial
experimenter to measure the perimeter. On the other
hand, there is no contraction along the radius and the
two measurements are in this case equal. Ehrenfest's
"paradox" is solved.

Curved space.

d- Rlzlzzrlzz,l_r 212"'F F -I 02F021

T 1 T
Y=pBY 0, v,=2¥p+2yy'p=2py"
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11

Fijzayn(anIi-'-aiYIj_alYij) Fluzo F222=0 r’ =0

22

1

1
I 22:_53’“61)(22:_9)/4 rllzzO

2
Y

1
_YZZ 813’22:? F312:0

2 _
I121_2

R'u=—y'—4py By +y ==y (1448 y —y')=—3p*y
It is the only non-zero component taking intfo account the

symmetries. The curvature tensor is zero at the rotation
axis.

e- Rlzlz:}’anzlz: -3 62 YG

K= 1 _ Rpp —_3 Bzy4:_3%2

- - — ‘<0
R,R, Y1 Yo pZ c ¥

The radii of curvature are therefore of opposite signs (as
on a mountain col, a horse's saddle or the inside of a
torus). The curvature increases away from the axis of
rotation as y* (in absolute value).

On the surface of a sphere, the curvatures on two
perpendicular directions, meanwhile, have the same
signs:

1
dl=g(x,y)d’+g(x,y)dy*  g(x,y)=—F—5=7
Lo Xy [ h
4R’
yN:gO) ay =6y :——X ay :ay =— y
ij 0 g 1911 1922 R2h3 2411 24922 th3
_ X 2 _ y 1 __ X 2 __ )
'y=—5- TI’=——%— T=—5— IY=
Y 2R?h 27 2Rh 2 2R YR
1 _ y 2 - X
® 2R’h 2 2R



1

1 1 1 1 o
R =T 5 =T 5+ T =T ozr 2=

R’
1 1 1
— K= =—>0
Ripp=yuR 212 K R.R, R
5. Pair production Exercise p248.
p’=E/c
Py Pp
At the treshold:
N y=2
Dp
........................... el
A .
ﬁp /;(\\(’\\ P
A \
nmc \‘\
N
Py
p1
myv
6. Wave equation Exercise p249.

I

do =29 ax42% 40 =29 4y —var)+ 29 4

ox' ot' ox' ot'
0 0 0
do'= o dx+ 5t Vax dt}

422



then a_:a_ a_ a__va_ and p= (p

ox Ox' ot ot'  ox'
ach_iach:ach'_i(a _,.0
ox* c*ot* ox? c*\ot’  ox'
¢’ 2v &g’ 10"

+— [ — =0
ox? " o @ o1

¢'=0

1__

This equation differs completely from the d'Alembert
equation. The propagation equation is established in the
reference frame where the propagation medium is at
rest. For example, the d'Alembert equation of the sound
wave is valid in the reference frame where the relative
wind is zero.

0 0 0 0
2 - =— = ! !
d ade+actdct 6x'dx +6ct'dCt
— 0 (dv— 9 _
d —6X,Y(dx Bdct)+at,Y(dct Bdx)

_y| 0 g0 0 _g0
d _Y(ax' B@t')dx+y(8ct’ Bax')da

9 _y 9 _y )
oct 60t 8x 0x 6x oct'
S .0 9.0
oy 0y’ 0z 0z
DE 0
{0 L0 V.8 o o o V| _
ox’ Bact')+ay'2+az'2 e Poxr| [Fx=0
y*(1—p?)=1 and double products are eliminated:
O"E,=o0.
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For the components along y and z:
LJE,=0 and [IB,=0

d 2 d 2
S M
[ ox' ' oct' )

oct’
(M-Pc@) gives [1' E, =0 and so on for the six equations.

Y(Ey'+BCBZ’):O

2

y(B,+BE,./c)=0

6Ct

In this case we have invariance of the wave equation,
the speed of light in vacuum is the same in all reference
frames of inertia. The aether, the supposed medium for
the propagation of light, does not exist.

7. Schrédinger equation Exercise p250.

1- Let us start with the Schrddinger equation in R and
show that it is always verified in R:

owv' _ h o*y , 0 0 0 0 0
with = =

” _ o _o _
: at'  2m ox" ot' at+vax ox' 0x

: LiEe—px)
oW (zEleramp) 7

ot | & ot
' (Et px)
owv' _ lqu_l_alp
ox | n ax
L |[1E ow¥ el d
Al —WP+=— ~1P
then 1 l( p + ot +v h ax
2 . .
__ P |[_ipow W\ ip[_ip ., 0%
2m h 8x ox’ ] & h 0x
and —E‘IJ+1halp+vplll+1hvalp
ot o0Xx
lhalp ha\pp%haw
0x 2m gx* 2m 0 X
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oW __ g

Eventually we well have: = .
y at 2 m a XZ

2 - Lorentz transformation of the coordinates:
I

Y'=——-
2m Y

2

iny a—+CBS—X a—+[5a— '

ot ox  Oct
In the left member we have only first derivatives, and in
the right member we will have only one ferm with a
second time derivative, which cannot cancel, whatever
the choice for W'. The Schrédinger equation does not
work for relativistic particles.

8. The electromagnetic field Exercise p252.

1- Temporal component:

0
CZ}?C :F()v jV:F00j0+F01 j1+F02j2+F03j3

.0 . .

i=j"=(qyc,qi) Jo=i" Ji=—]

E E
dft/C:O+ — (—qu*)+7yquy+qEzuZ/c
dE = - dE =
. -4Ed or —=qEV

We find the power of the electric force. The magnetic
force does not work.

Spatial components: Z—i =F"j,

1
%=F1°J‘O+F“11+F”J'2+F1313:qyEX—BZ(—qu’>—Byquz
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2- F'™=A" A", F*

E 1

X

_ 110 __ 4 1 0 10 1 0 01
- =F""=AN AN ,F +A A |F
(only non-zero components)
EY

X

E E
=y’ +p’y* (=) then E'=E,
C C c

E’
N _y:F,20:A22A00F20+A22A01F21

C
Ec’yzy%_[gyBZ then E' =y(E,—vB,)
. EC'Z:F'3°:A33A00F30+A33A01F31
EC'ZZX%_BY(_By) then E',=y(E,+vB,)

. B'X:F 132:A33A22F32 Then B,X:Bx
o B',=F"'=A (A F7+A A F”

E, : E,
B',==By(-—)+yB, then B',=y(B+p—)
o B ,=F"'=A*,A"F*+A*,A" F*"

E E
B’Z:—ByTy+yBZ then B'Z:y(BZ—BTY)

The transformations of E and B are very different from the
Lorentz transformation.
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E 'X = EX
E' =y(E,~BcB,)
Transformation
of the E',=y(E,+pcB))
electromagnetic field
B 'X = BX

B',=y(B,+BE,/c)

B',=y(B,—BE,/c)

3- Fw:gwgvﬁFO‘ﬁ. Only the diagonal terms of the
metric are nonzero, hence: F,,=g,, g, F"". They wil
therefore differ, at most, by one sign. The tensor remains
antisymmetric and the diagonal elements zero. The
magnetic block (3x3 submatrix) remains the same:
Fij:giigijU:(_l)(_]-)FU:FU
The electric blocks change sign:
FOj:googijOj:<+1)(_1)FOj:_FOj

, E E E
c Cc C
E
-=x 0 -B, B,
F=F = ¢
wv E
-~ B, 0 -B,
(o
E
—— _B, B, 0
C
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4- e Invariant F*'F,,: 16 components including 4

nulls, remaining 12 and 2 groups of 6 alike.
FWFWZ
01 10 02 20 03 20
F Fy+F Fy+F Fo+F Fy+F Fy+F " Fy

+ F12F12+F21F21+F13F13+F31 Fy +FPF,+F¥F,,

2 2 2

FF +2(B,+B,+B,")

wT

=2
. _’2
Invariant: B"——.
c
. § B

o Invariant €Y*PF, F 4 the fensor €"*“" has 4°

components of witch 4!=24 non-zero.

€ F, Foyp=

0123 F01 F23+€0132 F01 F32+€0213 F02F13
+€0231F02F31+60312 F03F12+60321F03 F21
+e 1023 F10 F23+61032 Flo F32+61203 F12 F03

1230F12F30+€1302 F13 F02+€1320F13 on
+ 2103F21F03+€2130F21F30+€2013F20F13
+€2031F20F31+E2310F23F10+€2301F23F01
+€3120F31F20+€3102 F31F02+€3210F32F10
+€3201F32 F01+e3012F30F12+e3021F30 F21

Each component appears eight times: the antisymmetries
on each F,, compensated in sign by the €***, and the
interversion of the two F,, which corresponds to two
permutations in the €*¥*?. There are thus only three types

of components:
¢"*’F,F,=8(—-E,B,—E,B,—E,B,)lc

X
Invariant: E-B.
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. . —_ 2 —_ —_
Lorentz invariants B —— E-B

5 -a- The correction is succinct because the solution is the
one given in an electrostatics course.

For an infinite plate of surface density o we have the
electric field at the intersection of two planes of symmetry
of the charge distribution and hence along z. We choose
the usual Gaussian surface to find the field. We apply the
principle of superposition with a second plane of opposite
charge distant from e. Conclusion: the electric field is zero
outside the plates and is equal inside:

E=-2i

€ u,
0 0 0 olec
= 0 0 0 0
0 0 0 0
—ole,;e 000 0

(zero tensor outside the plates)

b- Appears in R’ the surface current density _jS:—OV on
the upper plane. The magnetic field is along y because it
is perpendicular to the plane of symmetry of the current
distribution. We first apply Ampere's theorem to the upper
plane only. With the usual rectangular contour we find the
field. Using the principle of superposition we find a zero
magnetic field outside the plates, and inside we have:

-

i -
B'=—u,0ovu,
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0 0 0 olec

prov—| 0 0 0 —u,ov
0 0 0 0
—ole,c wyov 0 0

(zero tensor outside the plates)

c- We use the field transformation formulas that we have
previously established:

7=

E
E'=yE, ond B ,=yB—=yv Co=—yu,0v

€,C
0 0 0 yolec
F,uv: 0 0 0 —YW,O0V
0 0 0 0
—yole,c yusov 0 0

The result differs by a factor y. For a relativistic observer of
R' the lengths of R are contracted by a factor y along x.
Thus the surface elements, which contain charges aft rest,
are contracted and the surface density is multiplied by .
Similarly for the current density. This explains the expression
of the tensor: o' =y 0.

Lorentz invariants:

=2
Bz_i_o_ o\V__ o

2 €cC - 2 2

C 0 GOC

2 2 2 2 2
=02 E'"_ o oO\V__ o 2 2__ O
B"—=—=yB—| — [y —| == 3V (1_f3 )——ﬁ

c €,C €,C €,C €,C

For the second invariant, it is zero in R because the
magnetic field is zero, and it is zero in R' because the fields
are orthogonal.

6- In the reference frame R’ where the charges are at rest,
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the charge volume density is lower by a factor vy
compared to that shown in the lab reference frame
where the charges are moving. We apply Gauss'
theorem. The electric field in R has the expression outside
the charge distribution:

2
b= ner- . - >
E'=— u, (@=—-e) and B'=0.
2ypE,
> ner2
In the laboratory reference frame R : E:—2 u,
P&

In this frame the charges are in motion and an orthoradial
magnetic field appears. v=vii, and the current is along
—1,. The magnetic field therefore rotates in the retrograde
direction. For the norm of the field we use a Lorentz
invariant:

o EZ . E,2
2 D2
B'——=B"——;
c C
BZ:Z_E'ZZ ner? zl_i: nevr’ |
& c® \2pec vy} (2ype,c’
2
- nevr
Finally: B=—"" " &
2yp
9. Maxwell's equation Exercise p255.

1 -a- Newton's second law: md=F. In classical mecha-
nics, mass and force are invariant: m=m' and F=F" The
acceleration also does not change, because, for a
Galilean transformation, R' is in uniform rectilinear trans-
lation with respect to R: V., ,=cSt and d=d". Thus, in the
new reference frame of inertia R, Newton's law is also
verified: the force exerted on an object gives it an
acceleration equal to the force vector divided by the
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object's mass. Note that this is not the case in a non-
galilean frame of reference, where, for example, an
object can set itself in mofion without any forces being
exerted on it (through what are sometimes called fictitious
forces of inertia).

b- The magnetic force is not invariant under the Galilean
transformation: v#v'. We then consider the sum of the
electric and magnetic forces, called the Lorentz force,
which we believe to be Galilean invariant. In return, the
fields depend on the reference frame:

E'X: X

E'yZEy—vBZ
E'=E+V,AB E',=E,+VB,
L. and
B'=B B'x: X

B'y: Yy

B'Z: z

On the left are the transformation laws in vector form
which are general and apply to all Galilean transfor-
mations. Those on the right correspond to a standardl
transformation to which we can always return by a
suitable choice of axes. From the relativistic field transfor-
mation laws given on page 427 we find the right expres-
sions by making ¢ tend to infinity.
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c- Second equation: the divergence of the magnetic
field is zero, which means that there are no magnetic
monopoles.

The magnetic flux is conserved on a field tube.

It is clearly Galilean invariant because the nabla operator
and the magnetic field are invariant:

—_

Conclusion: V'~B’=_V>-I§=O.

First equation: V 'AE'=— 0B

%Ew;(?B)-B(Va)ué-?)vg—(V;V)Taz—%_f—(v*-V)B
The curl of the cross product gives 4 terms: the first is zero
(V-B=0) and so are the next two because Vv, is a

constant vector (all derivatives are zero).

Conclusion: v/\ E— — 8_B

ot

d- Third equation: local expression of the Gauss' theorem.
The divergence of the electric field is zero in the absence
of charge, the electric flux is then conserved.

§-E+§-(V*8A1§):‘v’-ﬁ+1§.(‘v’ 7.)-v.(V AB)=0

VAv,=0 and _V’/\EZ_V"/\E':MOEO%
Conclusion: V-E= Wo€oV," aab; #0
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Fourth equation: local expression of Ampere's theorem.

T ARy OF

V /\B _Moeo atv
= T P
V/\B:MOEO a+ve'v (E+ e/\B)

-

S OE
VAB:MOEOE*‘MO €

— —

VEA%—?+(VE'V)E+(V8~V)(VEAB)

We have three extra terms. To prove that their sum is not
identically zero, we just need to find a special situation
where this is the case. Let us consider a standard

transformation, in this case (v,A ) =0 and:
OE,
+Uy € V——.

ox
The last term has no reason to be identically zero.

VAB) =

OE
MoCo'5r

X

Conclusion: _V>/\}§¢u0e0%—]f.
2 -a- We can consider the standard Lorentz transform
without losing generality.

.—V>'—-ZGBX+8By+aBZ
0x 0y 0z
o O [0 _Ba o _ o 5 0
oct Y\ Pox ) ax Ylax Yae/
o _0 g 0 _0
oy 0y’ an 0z 0z'"
= - 0B', 0B’ o(B' —BE'/c) o(B' +BE'/c)
.B= X _ X Y z z Y
VeB=y| 50 Bact')er oy ¥ a7

= = = - OB', |0E', OE'
B: V_B’_ X+ z__ Y
VB=yV Bovy| S [ay, = )

The first term on the right is zero and the second term also
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because it is the x component of the first Maxwell
equation.,

Conclusion: v B=0.

ot

:ya(E z_B'CB y)_ya(E y+[3’CB z)+
oy oz

= - 0B\ OE, OE,6 0B
o [VAE+9B| 08 02y 05

(V * ) 5y oz ot
0B, 0B,
ot' ox'

v'AE’+aB ) =0

=—yvV"B'+
yvV'"B'+y T

y

t 0z ox Ot
_aE'x 2 a a ' '
"oz ax'_ﬁaa'yEz_BCBy)
0 0 , '
+y2 at'_VW)(B y_BE Z/C)
aEYX 'Z T
= (1) S (1B 24040
:(_V"AE#aB' =0
ot' ),
= . 0B\ OE, OE, OB
ANE+Z= Y Xy
(V ¥ tl ox 0y @ ot
_2[0 0 , . _6E'x
_y axy 66Ct')(E y+[3 B z) ayr
0 0 . '
+y? 5 V3 )(B +BE",/c)
OE' OE' OB’
— P2 2 y X P2 2 z
:(6'/\13“4—83' =0
ot' |,
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Conclusion: v/\ E:— 6_B

ot
o V.E= %ix+ﬁa]i}y+%]iz
_V>.E= aa]i:X_ﬁ(th'lx)wa(E'gfch'Z)\Ly a(E'Z(;ZB,C B'y)
P

The first term on the right-hand side is zero and the
second ferm is also zero because it is the x component of
the fourth Maxwell equation.

Conclusion: ?-E:O.

e The verification of the Lorentz invariance of the fourth
Maxwell equation is left to the insight of the reader.

b- Conservation of charge equation: 9, j*=0.

with  J=p,U=(pc,pV) and p=yp,.

Demonstration: 9, j“:%+ V-(pv)= Z—Ft)-'-?._j:

c- Lorentz condition: 9, A"=0.

oVlic

Demonstration:  9,A"=
‘ oct

+V,?\:i2 a—V +V.-A=0,
Let us propose the following antisysnmetric tensor:

Y=g" A" -0 A"

Demonstration:
0A" 0Vlic

01
o« F''=0"A"-0"'A"= 8Ct+6x
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moreover E:—vv—a—A then F"'=——2%
ot C
0A” 0A" &

e« F2=0'A2— 0% Al=—
ox 0y

and so on

d- 0, F""=ugj'=uopc=0,F" "+0,F"’+0,F"
0,EJ/c+d,E [c+0,E,/c=ple,c and v']:f:p/eo.

«0,F"'=u,j’

0, F''=u,j*=0, F"' +0,F*'+ 0, F*'
~04E,/lc+0,B,—0,B,=u,j"

1 OE

(V/\B) Mojx

= - - 10E
AB=y, j+—=—
\ c? ot
e- o F +3'FY+"F'=0 & i#]
0'F**+0°F"+0"F'*=0=0"E,/c—0"E,/c—0B,

.z 9B, -_ 0B
=—(VAE),——+
(v )Z ot V b= 8t

° 81F23+82 F31+83F12:0
~#"'B,~'B,~"B,=V-B=0
f-0,F""'=0,(0"A"—0"A")=0,0"A" =09, A"=n, j"
0,0"A’=0"9, A"=u,j’ and a(a“A"—a"a A'=u,j
1 vg) L

Then: |:|V—i
ot

0
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And: OA+V[L Y.V .4

=u.j
Cz at IOJ

-

With the Lorentz condiion: [1V = E% OA=u, ;.

-V

Covariant form: DZ\:M(J and 0,0"A"=u,j".

3- Gauge: Vf A' =A+0,f
Then:
F''""=0"A""—0"A""=0"(A"+0'f)-0"(A"+0"f)
F'"=0"A"—0"A"+8"0"f—0"0"f=F"
The field tensor is not modified.

The Lorentz condition 0, A"=0 gives:

0,A"=0,(A"+0"[)=0,A"+8,0'f and  OIf=0.
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1. Units Exercise page 273

Units of P: [P]:W:%

2¢" H|_C’’N*_C’s'NJ_C* J
3¢ mg'kg2 m* ng S mNS
N 2
with - N.m=J and kg_.zm:N Moreover }z n;
S 4me, C
then we obtain the good expression:
1 2 , éa
= — a= 3
4me, 3¢ 6me,C
2. Relativistic equation of motion Exercise p273
dp, _d v fol, v
=—=—|m—== and a,=21-—=2
=4 dt\/VZ YTl e
1—2%
C2
3. Radiation damping 4-force Exercise page 274
dw" u'u’dw, dw" u'uu’ dw,
1- — W= u,—— =0
de cc dt | " dx c dt

2

w o~ o~ w _ Wi Vv__ v
because u'u,=U-U=c” and a"b,=g,,a"b’=b"a,.

9. gl=_L 2’ [dw! u'u’dw, u'u'dw, a=y(c,v)
T d4me 3l dt 2 dt P dt RN
dw' ovdwg  ovidw, dw' 2,2 2, dw’
— — — — — 1+ —
iv Yede Y adr o ddl YE)-y B



a
wey— ==y y+yal=y'a(p’y'+1)=y'a
dw d(y4 ) sda 5. zvaz
4 +y —|= +4y ——
Yo —yl4y' S yayd V|aray s

u’=yc W°=yd(yc)zy(%ys)zy4ﬁa

2 2 2
v da 3 4d 4. .
4y —5 ¥y +y —+y Pa
C c
2

=y (1+4y2l32)%+l3d

1 1
dw uu'dw, _
dt C2 dt

2
=y’||a+dy' 5 (1+y BY)—y’p (1+4y2{32)%+ﬁd
2
=y5 a+3 2%)
c
1 2 s 2va
= = +3 Al
dme, 3 7Y Y yf
4. Four-potential magnitude E. p274

In the Minkowski plan with the signs that correspond to the
example of the course:

¥=r(1,-1) U=yc(1,-p) 7T-U=ryc(1-p) u-u=c’

> (1+8) o = ld 1 ]1+p
A
r’(1-p) 4re,r | 1-B

q
4me,

A-A=
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1. Figures Exercise page 305
e v=61,000 km/h, d=4ly. t=d/v

dl g 3.6
t =2=4x3.10"—=
a B 61000

~70820 yrs

« E=15.10"°x42.10’=63.10"J/ yr
1 E_163.10"
=——==——"-"-=3500kg/
"2 2 910" e
* The interplanetary antiprotonic flux is the
same in the whole solar system. R is the radius
of influence of the magnetosphere of the star:

D heliosphere — D
47 R ° 47R

heliosphere planet

planet

For a heliopause at 100 astronomical units:

2

6
~91 100x150.10

45X69911

R,

45R,

D, =D,

2
) ®,~207.10°kg/ yr

Outside the heliosphere the cosmic radiation
is more important, because it is not repelled
by the Sun. If we evaluate towards the
maximum of the curves to 2 Gev:

Dinside(man)=0-015 (m*. s .sr. GeV )"
Dinside (mim)=0-022 ( m.s.sr.GeV )
Dinside (moy)=0-019 (m”. s.sr. GeV )
Pousside =0.034(m’.s.5r.GeV ) !

cc%).um»;dezl-8 Ond (Dout: 370 000 t/‘yr '

441



2. The distances of stars over time Exercise p309

Distance (ly)

Times[l(I:OO ¥rs)
Lo oo o] o

-20 -10 0 10 20 30 40 50 60 70 80

v=34km/s V,n=23km/s vy, =17kml/s

3. Sling effect Exercise page 309.

- Composition of velocities: v, =v,+V,

.=Vx(M) : "absolute" velocity.

V.=V, (0")+QAO0 " M=v,(0'): coinciding velocity
(the planetocentric reference frame is in circular
tfranslation with respect to the heliocentric reference
frame).

v, =Vg. (M) : relative velocity.

Hence the expression of the heliocentric velocity of
the spacecraft: v=v,+vy,,.

r
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On the graph provided by NASA, the trajectory of
the probe is represented in the reference frame
which has for origin Jupiter and directions of distant
stars supposed fixed. This trajectory is hyperbolic,
symmetrical and the planetocentric velocity of the
probe V,,, is tangent to this frajectory. The time of
the deviation, the heliocentric velocity of Jupiter
can be considered as a constant vector:

C V_bS/J
—
—_ VS_}'_J
V) \_x
(X.i B -

—

We estimate o, and o on the graph. The straight line
D, is placed along the asymptote estimated in +o.
The straight line D, is the central axis and the second
asymptote D; is obtained by symmetry. The angle
between D, and D, is estimated at 41°. The
deflection D is therefore about 98°.

The heliocentric motion of Jupiter is supposed to be
circular, so the velocity of Jupiter is orthoradial along
Ds and perpendicular fo the line D, aligned with the
shadow of the Sun at large distance.

Angle between Dsand Ds: o, ~61°.

Angle between D, and Ds: o, =~21°.
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© NASA

.
»on  ath 500

Thousands of kim

1ea 230

Geometric resolution:

We will carry out a graphical construction with a
graduated ruler, compass and protractor. The results
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are shown on the drawing.

Graphical
resolution

445



Analyftical resolution:
Let's apply the trigonometric properties of triangles:
AB-AB=AC-AC+2AC-CB+CB-CB

2 2 2
then: v, =v,"=2v,vg cosa,;+vy,~ (1)

and: va:vJ2+2vvajcos ocf+v5J2 )
2 2
c,v. +C.v
cl+c(@) ¢ vy, =Ly 2
Ci+¢y

After some calculations, we obtain a quadratic
equation with respect 1o vf2 and finally:

Vi= \/vi2+2 (Ci"'cf)vj[civfi\/viz_siz v, ]

Limit case: o, =a,=0

Case of maximum deviation / half turn: D=1,

We obtain: Av=v —v,=%2v OK.

The sign changes depending on whether V. is in the
opposite direction of \7] or in the same direction.

When | shoot with a ball on the back of the train
when it moves away, the ball is slowed down (the
ball reaches the frain if v,>v ).

Limit case: o;+o=7 (no deviation)
ci+c,=coso,+cos(m—a;)=0 and V.=V, OK.

Numerical application:
v,=12.6km/s, v,=12.8km/s

then vf:24.4km/s ond Av=11.8km/s

Values consistent with those observed on the curve
on page 283.

446



b - We estimate the velocity at the periastron with
the average between M, and M, : v, =28 km/s.
In the heliocentric frame of reference:

2 2 2
Vp =V, —2vJvPJcos(%+6 +Vp,

and v,~37 km/s (as on the speed profile)

Theorem of angular momentum:

‘Z_O:F/\l'f:()'(cen’rrolforce) and G=mFAV=cst
t

then: bvg=r v, with v ,=v

o0

We estimate v, on the NASA graph and with the
conservation of mechanical energy we find v, and
then b:

1 , GM;, 1 ,

EVIQ —r—lg:EVw and b—v—SJr leRJ
r2 2
c- p= ?;MP’ ~11.5R,

At periastron 6=0, I, lpe & e—ri—lzl.3>1.

min

Moreover: 0, . =arcos|——|=~139°,

m

aso o+o,=2n-20, =n—D and D=~98°.

d - ¢« From the formula, we see that vy is maximal for
cr=1, so oy=0. The calculation then gives:
v,~24.8km/s and Av=12.2km/s.

Interstellar speed calculation:
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, 2GM,
VoS Vi T ~16.8km/s~60400km/h.

JS

Instead of 50,000 km/h for Voyager 1 (if it had not
then taken advantage of Saturn).

mM mMg
=-G
Dy 2a

o Ellipse: %mvf—G

2
1 1 Vi 6
— = th ~ . .
2a- D, 2GM, en a=~763.4x10 km

Speed on the ellipse at the level of the Earth:

L—zi ~40.049km/ s

TS a

v:\/2GMS

For the semi-minor axis: b=+ pa

2.2

_Dg'v
P=Gm,
For the angle: cst=L/m=Dg,;v,sin0=Dg.v

then  b~454x10°km.

. Dy v
sin 0= and 6=36.5°.
Dg;v;

At the Earth level: v,~30km/s then Av=10kml/s,
increase of speed necessary to leave the Earth
circular orbit. Kinetic energy provided by the Titan
rocket.

To increase the slingshot effect, we can think of
decreasing the angle 0. Hence a greatfer speed
given by the rocket to join a wider ellipse (case in
gray).
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On the other hand, as the speed at the approach
to Jupiter is higher, the angle o; will increase. For
example, if, with a larger amount of propellant, we
increase the initial Av by 1 km/s, we gain 4.2 km/s of
interstellar speed. The approach seems 1o be valida-
fed, it is much more interesting to use the propellant
at the Earth level than after (Oberth effect). We
summarize all the results on the next page. We
consider the optimal case where o, =0°.

By further increasing the initial velocity at the
departure of the Earth orbit, the trajectory is no
longer elliptical and becomes hyperbolic. At the
same time, the impact parameter decreases and
care must be taken not to collide with Jupiter: rmin>R,.
The Av is thus limited to 4.8km/s: the probe already
goes much faster than the Voyager probes.
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+| a b ot | O vy | % v AV|V, |0

km| (10° | (10° R) | O | km | ) | (km |(km| (10° | km
/s | km) | km) /s) /s) | /9) | m/s) | /h)

763 454) 23| 36.5| 11.4] 62.4| 23,5 109 159

57
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e Mars: The planet has an orbital velocity of 24 km/s
and the slingshot Av could seemingly reach a
whopping 48 km/s. On the other hand, the mass of
Mars is small compared to the giant planets, and
since the mass of the planet is not concentrated in
one point, we are limited by the minimum approach
distance Ru. The Avyng is under the best conditions a
small 0.6 km/s.

e Modeling Voyager 1: The spreadsheet gives us a
good correspondence with the historical values. Our
simplifying assumptions are thus validated: helio-
centric motions of the planets, coplanar orbits,

Hohmann orbit (minimal energy to be provided).
File: www.voyagepourproxima.fr/docs/FrondesVoyager1.ods

e Project Voyager3: We have chained the 4
successive slingshot of Jupiter, Saturn, Uranus and
Neptune. By optimizing the approach distances,
with a surplus of 4.8 km/s at the level of the Earth, we
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reach 140 000km/h. More than twice the speed of

the historical Voyager probes.
File: .../docs/FrondesVoyager3.ods

e A simple solution that does not require additional
fuel: the last sling is used to deviate the frajectory. By
a tiny correction, just after the penultimate slingshot,
we can freely choose the future impact parameter,
as much in value as in direction. We could thus
target a star outside the ecliptic plane:

s
S

K

There is one limitation, however. the minimum
approach distance. For the same approach
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distance, the faster the probe goes, the smaller the
deviation. On the contrary, the deviation increases
with the mass of the planet and its density.

To reach Proxima the deviation must be between
40° and 140° depending on the position on the
ecliptic at the time of the exit:

Voyager 3

S
400\ Ecliptic plane

Y - {
Proxima %

At the level of Neptune the speed of the probe is just
high, nevertheless Neptune is more massive and
dense than Uranus. Let's have a look on our spread-
sheet to see what the numerical value is: we obtain
a deviation of about 20°. This is not enough to go to
Proxima. We give a non-exhaustive list of options:

- Could we get more slings fo increase this
deflection?

-The satellites of Neptune? For example,
Triton, the most massive and dense, would give only
one tenth of a degree of additional deviation. The
same for Pluto, or the asteroids of the Kuiper belt
(located after Neptune between 30 and §5 au). The
masses of all these bodies are too small. Unless we
string together dozens of small slingshots?
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- A 2019 study hypothesizes the existence of
Trans-Neptunian primordial black holes at 300 au
(see exercise pP329). These small black holes of &
Earth masses would give a more than sufficient
deflection, up to 145¢°.

-The hypothetical planet 9? To explain
certain anomalies in the trajectories of planets, there
is the hypothesis of a planet of five Jovian masses at
8000 au. The deviation could reach 115°,

- Do we need to change the global pattern of slings
and propellant use?

- To obtain, at the level of Neptune, a higher
deviation, we can remove the impulse of 4.8 km/s at
the Earth level. The probe arrives more slowly and we
obtain then a deviation of 30°. This is better but sfill
insufficient.

-We can limit the slingshot to the Jupiter-
Saturn pair. Jupiter for the speed increase and
Saturn for the deviation. For Proxima, we must then
use propellants to reach 137 000 km/h. The mass of
the whole becomes more important.

On page 328, thirteen nearby stars are represented
with their characteristics.
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o We will investigate the possibility of a gravitational
slowdown of the Voyager 3 probe using the four
currently known components:

The star Alpha Centauri A: Ma=1.1Ms, Ra=1.23 Rs.
The star Alpha Centauri B: M=0.91Ms, Rz=0.87 R,
Distance befween the two stars: Dag=23 au.
The star Proxima Centauri: Mc=0.123Ms, Rc=0.141 Rs.
Distance between Proxima and AB: Dp.as~13,000 au.
The planet Proxima Cent. b: Mpp,~1.27M;, Rep,~1.08 R:.
Distance: Dp.p,~0.0485 au.

Finally, we have two rather distant subsystems: the A-
B pair and the star-planet pair. Let's imagine that the
probe goes back and forth between these two pairs
to slow down and finally orbit around one of them.

— A-B: Let us consider, first of all, the two stellar
components Alpha Centauri A and B. These have
masses similar to our Sun. To simplify, we can model
by a system consisting of two stars in circular motion.
The two components rotate around their barycenter
G middle of the segment [AB].

Kepler's law for the fictitious partficle M (formulas
page 98):

3

a : —
F:4SZM with — a=GM,M,
M, M * G(M,+M
Moreover u=—="-2-then R—Z:(A—ZB>
M,+M, T 4

Aso AB=GM ond R=GM=D,,,
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e 47’ D,y g yo27R_ G(M ,+M,)
G(M, +M,) T D,;

v is the speed of the fictitious particle.
Let's determine va and vg :
ca=— o
M, +M,
NA: T=78yrs, v=8.82kml/s,
v,=3.99km/s and vz~=4.82m/s.

MB
=—vV
M ,+My

GM and v,

For a U-turn, one must slow down with one
component and accelerate with the ofther,
however, it can be arranged so that deceleration
prevails:

Probe

QL Ay=+3.2km/s

Slingshot U-turn using a binary system. With a single star,
we can not make a perfect half-turn, it will always lack a
few degrees. To form a couple, we can also use a gas
giant. Here, the Aloha Centauri A / Alpha Centauri B

system for Voyager3 with an inifial speed of
140 000 km/h.
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— P-Pb: Let's deftermine the velocity of Proxima in
the frame of reference of AB. The star Proxima is far
from the system AB and has a small mass compared
fo this system. We can thus consider the stellar
system AB punctual and fixed in G=A=B. The formu-
las are the same as before, replacing Dag by De.as:

NA: T,=1milionyears, Vp=0.37kml/s.

Period and velocity of the planet Proxima b in the
Proxima reference frame (in this case G=P) :

2 3 GM
T:\/M and  v=y P
GM, Dp_,

NA: T,~1ldays, v,,,~47.5km/s.

We can consider the star as fixed. Here, the turn
around is not possible, because the planet is not
massive enough and the deviation that it gives to
the probe is oo weak to complete the turn around
started with the star.

— Conclusion: With the known components, the
singshot effect cannot slow down the probe
sufficiently. Butf, there are most probably many
Jovian components that will be discovered later and
that will allow the probe to be put into orbit using
little propellant.
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We can broaden our view of the slingshot effect by
reversing the direction of time. For example, for the
frain, by reversing the arrow of fime, the ball arrives
at 130 km/h on a train that is going away in reverse
at 50 km/h and the ball returns to the child's hand at
30 km/h. This is a feasible experiment. This is why the
slingshot effect can speed up as well as slow down.
If we rewind the movie of Voyager 3's four successive
slingshots, it arrives from the inferstellar medium to
slow down with Neptune, Uranus, Saturn, Jupiter,
and finally decelerate by 4.8 km/s using propellants
to orbit the Earth. There is a good chance that the
probe, when it arrives at a distant star system, will
proceed in a similar way.
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4. Numerical simulations of the slings
Exercise p313.

1 -a- Kepler's laws:

2 2
r

=V
= [nin Vimax 149507901 890
P="Gm, m

e=L__1~0016382

min

r =P _1-151998002652m

max_l_ -

r .
v, =y ~29310.644m/s

min
rmax

r__+r._.
a :% ~149548 038326 m

27

VG M,

Note: these values are not fully consistent with other
known values (1=365.256 days, rma=152 097 701 km
and Vyin=29 291 m/s) but we wil take them as
references to test our numerical methods.

T=

a’*~365.011days

1-b- Earth-Sun: We take, as an indicator of the
global error, the distance to the Sun after one
revolution. The laws of physics impose to come back
to the same point. When the Earth has made a
rotation of 360° we obtain the percentage of global

r. —r
eror % e, =—"—"° (10,~1.47x10"m):

rtheo
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Step r=vx*+y? | %e/tum | AE/kg/yr
h=1day 1.768x10"'m 20.2 % +68 MJ
h/2 1.624x10"'m 10.4 % +39 MJ
h/4 1.549%x10"'m 53 % +22 MJ
h/8 1.510x10"'m 2.7 % +11 MJ

The trajectories for h, h/2, h/4 and h/8:

1244 days 622days

To answer the first question, it is clear that, for h=1
day, the simulation is absolutely unsatisfactory. We
should obtain a closed trajectory which returns
exactly on its steps. Everything happens as if the
mechanical energy of the system increases instead
of remaining constant. Nevertheless the error
decreases linearly with the step size.
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Let us note T the duration of the numerical experi-
ment, here the period of revolution, and n the
number of steps. we have then: h=I/n. n corres-
ponds to the necessary numerical work. The global
error evolves in 1/n. This linear variation is charac-
teristic of first crder methods.
For h=1/8 day, the errcr remains consequent:
Moo= 154.3%10°%kM, vimin=29,083 m/s and the year is
about 372 days...

v, At the first step, we notice that

y=10.10%km & M, the speed of the Earth increases,

¥ times 10

f,

which is physically impossible
since we start from the peri-
helion. According to the law of
areas, the speed must decrease
on edch ftime interval until the
aphelion. However, on the first
step, the orthoradial velocity has
not been modified. It is the force

y=0 km
et M, that modifies the velocity vector

and we have considered this force to be constant
and equal fo that at the beginning of the interval. In
fact, over a step, the position, as well as the force,
vary contfinuously.

We propose a moedification of the method, we take
the beginning of the interval to estimate the compo-
nents of the velocity and the end of the interval for
the positions. We could thus globally compensate
our errors, because we use, in a loop from one rank
to the other, the positions 10 calculate the velocities
and the velocities to calculate the positions:
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Vx,i,n+1:Vx,i,n+Fx,i(Xj,n:yj,n)At Xi,n+1:Xi,n+vx,i,n+1At

Already for h=1day, the error becomes much
smaller:

Mmax=152.4x10°KkM, Vmn=29.240 m/s and the year is
about 366 days (anomalies: rnex and Vi, do not
occur after a half turn, nor at the same time).

For h=1/8 Aay: Ime=152.004x10°%km, Vmin=29,309 m/s
and the year is about 365.0 days.

Improved Euler Method
Step r=vVx’+y’ %e, /turn | AE/kg /yr

h=1day | 1.47097506026x10'"'m | -0.00039 % -149]
h/2 | 1.47098004533%10'"'m | -0.000047 % -281]
h/4 1.47098066041x10"'m | -0.0000054 % -8.31J
h/8 1.47098073350x10"'m | -0.00000044 % | -3.47J

The improved method is impressive, for a finy
modification of the calculation method, we have
results, certainly still insufficient, but much better for a
numerical work eight times lower! The error does not
evolve linearly anymore, we are gefting closer to
what is called the midpoint method where the error
decreases with the square of the numerical work.

In conclusion, the calculation method used at each
step appears 1o be a key element, more important
than the raw computing power. We will therefore
infroduce a higher order numerical method.

File: www.voyagepourproxima.fr/docs/Terre-Soleil-Euler.ods
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2 -a- RK4:

dx _ _ dy __ _
E—A(X’Y:Vx"’y)—"x, E—B(x,y,vx,vy)—vy
dv, X
g P e = O M T
dv
_ _ y
d_ty_D(X’y’vX’vy)__GMW

AIZA(Xn’yn’vxn’vyn) B1:B(Xn’ynivxn’vyn)
Clzc(xn’yn’vxn’vyn) DIZD(Xn’yn’vxn’vyn>

h h h h
AZZA(Xn+EA1’yn+§B1’Vxn+§Cl’vyn+§D1)

h h h h
A3:A(Xn+§A2’yn+EB2’vxn+E CZ’Vyn+ED2)

D,=D(x,+hA,,y,+hB;,v,+hC,,v, +hD,)

X

n

"= xn+g(A1+2A2+2 A+A,)

v zvyn+g(D1+2D2+2D3+D4)

yn+l

b- Forh=1day, h/2 and h/8: Imu=151.998x10°%km,
Vmin=29,310.6 m/s and the year is 365.01 days. In
accordance with the data entered.
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Runge-Kutta 4 Method
Step r= \/XzTyz Yoe; [ turn AE /kg /yr
h=1day | 1.4709807807x10"'m 27x10° -120 mJ
h/2 1.4709807603%10"'m 14x107 -3.7ml]
h/4 1.4709807499x10"'m 6x10” -0.11 mJ
h/8 1.4709807447x10"'m 3x10° -0.006 mJ

This method largely outperforms the previous ones.

File: .../docs/Terre-Soleil-RK4.0ds

We were interested in the variation of distance over
one revolution and the variation of mechanical
energy over one year. For a mathematical study of
the error, we perform an experiment of fixed
duratfion T, then we increase the numerical work n
on this interval [0, T]. And to calculate the global
error, we must compare the numerical value with
the theoretfical one at t=T. However, we have not
determined the expression of r(f), but only r(). For
the mechanical energy, it is much simpler to
compare to the theoretical value, because the
theory imposes a constant energy. SO we compare
the initial value of the energy to that at an arbitrary
T. Here we have chosen T= 365 days on the graph
that follows.
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log AE

Comparison of the step-by-step methods:

8\
Euler

6

4

2 EuTer 1n rovied

0

-2
RK4

-4

-6

25 26 27 28 29 3 31 32 33 34 35
logn

We plot the decimal logarithm of the error versus the
decimal logarithm of the numerical work. On the left, the
values for a step h of one day and a duration of 365 days,
i.e. approximately one year (n=365). Then the points for
h/2, h/4 and h/8 (n=730, 1095 then 1460) still over one
year. The more the numerical work n increases, the
smaller the error, and the faster the method is of higher
order. For the Euler method the error decreases linearly
with the step, here, over a decade, the error decreases
by a factor 10. We see that the improved Euler method is
indeed a method of order 2, over a decade, the error is
divided by 100. For Runge-Kutta of order 4 we have a
factor 10°.
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3 - Voyager 1.

4 70ELL

4.65E11

4. 60ELL
-6.50E11 -6.45E11 -6.40E11

The ftrajectory of the Voyager 1 probe seen in the
heliocentric reference frame. On top, the departure at
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the Earth level, followed by the slingshot at the level of
Jupiter, then Saturn, to join then the interstellar medium.
Af the bottom, the slingshot effect appears clearly af the
level of Jupiter. Unlike the frajecfory in the Galilean
reference frame centered on Jupiter, the heliocentric
trajectory is not hyperbolic.

Speed of Voyager 1
45000

40000
35000
30000
25000

20000 k\\\\\}\\”“-h‘___*h“__‘_

15000

Heliocentric Speed in m/s

10000
2 20 200 Timesin days 2000

Mechanical Energy of the probe

2.0E+11
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1.0E+11 ‘—,
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Angular Momentum of the probe

o 1BE+19
S 17E+19 ‘
156418

1.3E+19
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We find the characteristics of the mofion of
Voyager 1 in agreement with our results with Kepler's
formulas and the historical data provided by NASA.
For Jupiter, we have the values of velocities at the
beginning of the slingshot, at the peak, and at the
end of the slingshot which correspond.

Between two slingshofts, there is conservation of the
mechanical energy and angular momentum with
respect to the Sun, the values are in adequacy.
Between two planets, the probe can be considered
as isolated, hence the two conserved quantities. On
the other hand, at the time of the deviations, there is
a transfer of energy between the probe and the
planet. For example, the probe receives kinetic
energy from Jupiter, so Jupiter slows down, but,
given the mass of the planet compared to the
probe, it is undetectable. At the moment of the
intferaction between the probe and the planet the
mechanical energy and the angular momentum of
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the two bodies are conserved in the heliocentric
reference frame.
To perfectly chain the two slings, without trajectory
correction, a very fine adjustment of the initial
conditions is required.
Concerning the step, it would be very expensive, in
computing fime and quantity of data to be
memorized, if we maintained it constant. We have
chosen a step of two days in the interplanetary
space, of two hours at the approach, and of one
minute at the slings level. The step is automatically
adapted according to the distance to the planet
and the speed of the probe. It is an adaptation
operated "by hand", the method is not general but
adapted to this particular problem. There are
adaptive step by step methods. The most classical
one consists in estimating the local error at each
step. Also, we could adapt the step according to
the radius of curvature and the speed of the probe.
Indeed, any frajectory is locally, in the vicinity of a
point, contained in a plane, called the osculatfing
plane. And the parficle moves locally according to
an osculating circle of radius R, called radius of
curvature. We could consider that, at each step, in
order to follow the curvature, the particle should not
cover a too large portion of the circle. An adaptive
method could impose an angular step A8 rather
than a temporal step h:
dv. V' . _s R=

g TR dv |2 a v



and finally h= RAO :

\%

We did not implement this method, however, using
these formulas, we have calculated A8 at each step
to control good tracking and we have angles at
most 1.5 degrees. First of all, this adaptive method
would not be suitable for a 3D mofion where the
osculating plane can change permanently (as for
the helical motion of a charged particle in a
magnetic field), moreover, the step from n to n+1 is
evaluated from the situation at #,. But many
unexpected things can happen between 1, and f,,;.
For example, during a step of two days, a planet or
an asteroid can appear from "nowhere". We did not
do it, but as here we know the position of the
planets, we could anticipate, at each step, the next
step. This would make the calculation lighter.

Comparison of the constant step RK4 with the variable step RK4:
For our resistance test, we took the Earth-Sun system with a
perigee starting velocity of only 12.5 km/s. For all three numeri-
cal experiments T=1825 days ~ 5 yrs.

Top: h=1 day, n=1825. Unstable.

Middle: variable h, AB=3°, n=1533. Stable with lower n.
Bottom: variable h, AO=11° n=353. Unstable.

469



470



The RK4 scheme for Voyager 1 with its 12 degrees of
freedom:

dxy _
dt _A(XV’yV’va’vyV’XJ’yJ’va’vyJ’XS’yS’vxS’vyS)_va

Xy —X;

’ ((XV_XJ)2+(.YV_.YJ)2)

dv,y

= =C(DOFs)=—GM GM

2 yi)yz B

Vn+1_XV

n+g(A1+2A2+2A3+A4)

h

v v 6(L1+2L2+2 L,+L,)

ySn+l ™ ySn+

The functions have been placed in a macro in Basic
language.

File: Voyager-1-RK4.0ds

4 - The Voyager 3 Project:

The route of the probe and the speed curve have
dlready been given during the conference page
288. We also note an excellent agreement with the
file FrondesVoyager3.ods After 27 years, we have an
interstellar speed of 39,300 m/s or 141,000 km/h.
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We made a trajectory correction of 331 m/s at the
periastron of Uranus.

5. Calculation of propellant masses  Exercise p320.

1 - The system {astronaut + wrench} is isolated. It
follows from this that the conservation of momentum
in a galilean frame of reference. Let's take the
barycentric reference frame, inifially the whole is
motionless, and then each part goes in the opposite
direction. We must throw the wrench, as hard as
possible, in the opposite direction of the station:

0=mV+MV and v=%V:0.36km/h

On the other hand, mechanical energy is not
conserved. In this case the internal forces between
the different parts of the system also intervene. The
work of the internal forces is null for a solid where the
distances between the different parts remain
constant. The mechanical energy counts the
macroscopic potential and kinetic forces. Here the
kinetic energy is initially zero and then increases. The
kinetic energies of the wrench and the astronaut
have different values:

Ll

m
castroZEMv VZ:_E

- 2 M M c wren.
The momentum is proportional 1o the velocity, while
the kinetic energy varies as the square.

E —lmVZ & E

c wren._2

2 - For a rocket the mass is ejected continuously
and the mass of the rocket varies over fime.
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Nevertheless the principle is the same for each fime
interval: 0=dmv,+mdv

and Av:fdv:— d—mveZ—vefd—mzv In
m m

We well find the rocket equation.

Flow of propellants: D=dm/dt=—malv,.

For the photonic rocket: E:pc:mc2 then p=mc,
where m is the mass of matter and antimatter which
are annihilated. Finally we replace the ejection
velocity v, by ¢. After calculation for non-relativistic
velocities:

al

:mUB:mU?
a

Av ) d

—_ c
my,+m,,=mg;le" —1

In the first sum we have the masses of matter and
antimatter that annihilate, and if we add the
efficiency r=0.1:
~ mU dal

AM_?T_G
For 35,000 years we find 460 grams, but in fact we
need twice less because the probe has already
acquired half of the speed by slingshot effect.
If the dilation of time cannot be neglected it is
necessary to consider the proper time because we
are in the reference frame of the rocket. But even for
a 50 years trip, time can sfill be considered, in a
good approximation, as absolute.

(my : payload mass)

3 - The voyage to Proxima at constant acceleration
gives, for an arfificial terrestrial gravity, a halfway
speed of 95 % of ¢ and a y of 3. Clearly we cannot
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do without special relativity. We reason in the proper
reference frame and during dt the velocities remain
classical. Proper acceleration and momentum
conservation:

d
a=d—¥=g, 0=dmc+mgdt oand D:Z—T:—%.

m;

my

In

We integrate: t:fdr:—Efd—m:Q :
g - m g

gt
e —1
2

Then: m,, =m,

The kinematic study gives t=6.84 yrs for a round trip
(chapter: Accelerated mofion). For a photonic
reactor with 100% efficiency:

One way: My, ~18m,,.

Round frip: m ,,,~666m,.

The quantities of anftimafter are important here. For the
same travel time and the same payload, a manned trip
at constant acceleration requires more energy than a frip
at constant speed (as for the probe). Propellant used at
the beginning produces an increase in speed which
benefits the whole trip, whereas used a little before the
halfway point it will hardly be used, because it will start,
just after, the deceleration phase. To respect the
tolerance of the human body to the g, while minimizing
the quantity of propellants used, we can vary the
average acceleration of the vessel:
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Vovyage with variable acceleration

I¥ period (speed up): average acceleration 2 g.
Activity: 12 hours at 1.2 g.
Sleep / Rest: 12 hours at 2.8 g.

2°™ period (until turning over): av. acc. 0.3 g.
Activity: 8 hours at 0.9 g.
Sleep / Weightlessness: 16 hours at zero g.

2
T:T1+TZ D:D1+D2 D1:C_
9

]‘+[3mux ]‘_ﬁlmax
1_ﬁmax 1+Blmax

=——1In
29,

m; — P
m

1 1

D,

) 9.0t T,

% V1-B, V1B,
If ©;=0.5 yr then D;=0.3 ly and ;1 ma=78%C. With Brmax=88 %,
D=2 ly and t=1.6 yr. Significant fuel economy:

1/2

One way: My,~8my, Roundtrip: m,,~134m,,
The outward journey to Proxima lasts 3.2 years for the
astronauts. The maximum speed is much lower: this allows
to decrease the size of the front shield of the rocket which
protects from the collisions with the particles of the inter-
stellar medium. This medium is very diluted 10 kg/m® but
at relativistic speeds the energetfic contribution of the
impacts is to be considered (Exo Bouclier de protection of
the book of Semay).

4 - Voyager 3 Project. We will consider two cases,
the one of the flyby, and the one of the orbiting.
Flyby: the speed of the probe must be increased by
4.8 km/s. Let's take 5km/s to foresee also the
corrections of trajectory:
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mqe+m,

Av=v,In

Av
e’ —1
s

NA: ms=800 kg, Ve=4km/s and mMgepe.=2000 kg.

and m,=my

Orbiting: if the situation is symmetrical, we can
double with Av=10 km/s, half to accelerate and half
to slow down.

We summarize the values in a table:

Av Mprobe Mypropel. Miotal Rockets
Skm/s| 0.8t 2t 3t Ariane 6, Falcon 9, etc.
10km/s| 0.8t 9t 10t | Ariane 6, Falcon Heavy, etc.

20km/s| 0.8t 119t 120t |Saturn V, StarShip.

10km/s| 12t 134t 150t | StarShip.

6. Planetary alignments Exercise p321

1- eA(t):wAHeA(O), origin of dates on an alignment
0,(t)=wgt+60,(0)

0,(0)=0,(0), next alignment t=T ,;:
2n 2w

T, T

0,(6)=0,(t)=2m=(w, )T 1= T

AB

A B

2. T,=T,T/(T,—T,;)=1.092yrs=~1yrim,
After one revolution of the Earth, Jupiter will have rotated
one twelfth of a revolution.

Next Sun-Earth-Jupiter alignments:

20/08/2021|27/09/2022|03/11/2023|07/12/2024 | 10/01/2026
10/02/2027|12/03/2028 | 12/04/2029 | 13/05/2030| 15/06/2031
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19/07/2032

25/08/2033

02/10/2034

08/11/2035

12/12/2036

14/01/2038

15/02/2039

16/03/2040

16/04/2041

17/05/2042

20/06/2043

24/07/2044

30/08/2045

07/10/2046

12/11/2047

3. T,=T,TJ(T,—T,)~19.86 yrs~19yr10m

The two large gaseous planets are aligned every 20 years
or so. The rotation of the Earth being much faster we wiill
have, over the same period, a correct alignment with four
bodies. For a quick search, we start by using an
astronomy software (Stellarium / Situation : Sun / Ecliptic
grid), and we refine with Miriade:

Sun-Earth-Jupiter-Saturn alignments

18/07/2020

60

22/03/2040
11°

20/11/2059
4°

Date 05/08/2080

4°

Separat®

4 - Tw=17147yrs and T /T ,~8.6=9.
We could therefore have a suitable alignment every 171
years. In 2162, the Earth and the four giants are grouped
on an angle of 60°. The previous alignment was in the
years of the launch of the probes Voyager 1T and 2.

7. Motion of the stars Exercise p322
1- Vie=Wod, Vie=MUsd, VISV Y,
vi=ud, W=
Particular units:
vf(km/s):;é)o;XlgTE)O S'It)gsxu(mas/yr)xdo(ly)
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v,(km/s)=1.454x10" w(mas/yr) d,(ly)
(same formulas along a and )

Speed of the star: v=y/v 2+v

aCenC: w=3859mas/yr v,,=—23.33km/s
v=4.75kml/s v,=23.81km/s and v=32.56km/s.,

Over a century, we can consider the apparent motion
constant and simply multiply:

Au,=u XAt  and  Aus=usXAt.

aCenC: Au,~—0h6'18""  Au,~0°1'17"'
a=14h23'25'" and 8~—62°39'29""

2- We note that the radial velocity, fangential velocities,
and proper motions vary with fime. At approach the
radial velocity is negative, it cancels at the minimum
distance, and becomes positive when the star moves
away. Conversely, the tangential velocity is maximum at
perihelion.

. _dSM
V= —

a- t:c_'st then d=SM=vt+5SM,

P=d, +25M, v+t & d(t)=ydS +2d,v, t+V'

dd(t)
Cdt

dyVro Vio
- 5 & dm:dOT'
1%

b- Perinhelion: =0 then ¢ =

aCenC: d,=3.10ly and t,=26,660yrs.

c- We will go through the Cartesian coordinates to return
to the spherical coordinates. For more coherence in the
book, we use the spherical coordinate system used in
physics. Few changes, nevertheless the notations are
different from those of astronomy, and, the colatitude is
preferred to the latitude (exercise page 169):
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N _ [d,| [xe=dysinB,cos @,
925_5 p=a dy=|0 |= Yo=d,sinB,sin ¢,
0

z,=d,cos 0,
Voo V= V,8in0,c0s @+ vy, COS 6, COS Py — Vv, (Sin @,
= Vao=""Vis0 |~ |V, =V, oS00, sin @+ v, cosO sing+v ,cosq,
00— Veao V,=V,€08 8= Vy,sin 6,

. |d| [x=dsinBcosp| |V, X,
d=|0|=| y=dsinbsing |=|v, |t+| y,
0

z=d cos6 v, z,
t+yo_ yl(t)
t t)=—2 ==
anq)( ) v, t+Xx, x(t)
v, t+z,  x(t)

aCenC: 602%—60:152.68" Py=0,,=217.43°

o |xe=—1.547ly v,=—9.44km/s
do=|y,=—1.184ly| and V=|v =22.15km/s
z2,=—3.771ly v,=21.90km/s

t +
tang, =" Y0~ 0329

xtm+x0
cos§ =Yzt 5g9
dm
Equatorial : Ecliptic:
a,~161°47" a,~=180°8'
9,~=—35°59’ d,~=—39°46"
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Graphs on the following pages

Distance of the stars:

The graph represents the evolution over 100,000 years of
the distance of thirfeen stars accessible with a ship
moving at a speed of less than 40 km/s.

The stars of Barnard and Teegarden do not appear. It is
frue that Barnard is only 6ly away, and moreover, it is
approaching us at high speed, and will be close in 10,000
years at only 3.8 ly. Nevertheless, the probe would have to
go at 115 km/s fo reach it at its perihelion, and then the
star will move away at too high a speed. As for Tee-
garden, itis located at 12.6 ly and is moving away from us
at high speed (positive radial velocity of 68 km/s).

Position of the sfars :

Evolution from today fo 100,000 years from now of the
equatorial coordinates of nearby stars in the sky. The
arrow indicates the position where the star is closest. The
gray line represents the current position of the eclipfic.
The celestial sphere is projected on the plane of the leaf
of paper in Mercator projection, so near the poles, the
trajectories appear stretched.
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8. Can a pair of primordial black holes

be used as a stargate?
Exercise p329.

1 - For the planet Mars, the slingshot effect is weak
because the mass is small and the minimum
approach distance is limited by the radius of the
planet. With a pair of PBHs, we have, at the same
tfime, a high orbital speed and an approach
distance that can approach zero. Let's express the
characteristics of the system with two bodies of
equal masses in circular orbits. We take the results
from the end of the exercise Sling effect:

M M 3
= e Mo gng a_2:G1V;I
M, +M, 2 > 2n

u

Distance between the black holes: d=a=GM

272d? 2na \/2GM
= and = =
d \/GM VAT T d

vji is the speed of the fictitious parficle and v=v ﬁ/ 2.

380 000 km | 10 000 km 1000 km 1 km 10 m

8.5 days 53 min 1min40s 3 ms 3us

1.6 km/s 36 000 km/h | 113000 km/h |0.3% of c |3 % of ¢

d=10 000 km: We arrive on the first PBH with a speed
of 100,000 km/h (Voyager 3 without propellant
boost). Let us take the case where the probe arrives
at 45° with the trajectory of the first PBH:
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A pair of fransneptunian Primordial Black Holes fo
accelerate a probe.

The probe first goes backwards, it is deviated of 120°,
and, has a speed of 138,000 km/h. It arrives at the
second PBH in less than 4 minutes. During this fime
this one turned of 26°. The second slingshot propels
the probe forward with a speed of 188,000 km/h.
Proxima is reached in 18,000 years. The minimum
approach distance for the second PBH is 66 km. This
is much larger than the Schwarzschild radius but
nevertheless the tidal forces are already important.
We will estimafte in the next question a minimum
approach distance for our PBHs of more than 60 km
so that a human can support the tidal forces.

For a probe, we can approach black holes a little
faster. Even if a probe can resist much more severe
constraints than a human being., we will sfill be
limited by the tidal forces that could destroy the
probe.
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d=10 m: Here we reach speeds close to ¢. We could
exceed 10% of the speed of light and reach Proxima
in less than 50 years. But a manned mission is
impossible because of the tidal forces, and even for
a probe it is not possible, the distance between the
PBHs is of the order of the size of the probe...

In conclusion: if such pairs exist they would be good
accelerators for missions, but not stargates.

Force:

L@

h

\\ L
L | G
Fp

\

Black Hole

Earth .

lllustration of tidal forces: Imagine yourself hanging from
the ceiling with your own mass suspended ar your feet.
You would only hold on for a short time before letting go!
In a spaceship, when going around a black hole, there
should be no forces on you, because you are in free fall.
As in the infernational space station where the tidal forces
are not perceptible by the occupants in weightlessness.
But when you are too close to a massive star, the
difference in gravitational force between your feef,
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directed tfowards the attracting star, and your head
becomes non-negligible: the gravitational field can no
longer be considered as uniform. For example, for Saturn,
a gas giant, foo close fo it, the natural satellites can no
longer exist and are crushed info rings. We have modeled
the astronaut by two masses one meter apart. The parts
of his body closer to the star undergo a higher
gravitational force.

Calculation of the differential tidal force:
GM ppyml/2 GMpp,m/2
2 (r +L)2

min

F,—F,=F,=mg=
min
L is very small in front of r,, then:
G M ppym -2
Frag=—— 1 1+i)
2 r

min

—_
L
—_
|
N
.
s =
=S
LA
—

rmin

9. Antiproton-proton collision Exercise p330.

1 - In the reference frame of the center of inertiq,
the fotal impulse is zero and the two protons arrive
one in front of the other with the same opposite
velocities. After collision, at the threshold for pair
creation, we have four particles at rest: the two
initial protons and the proton/antiproton pair.
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As the total energy is conserved:

2E=4E, 2myc’=4mc’. y=2 & Bzgzm%
Back in the laboratory reference frame, we
calculate the velocity of the proton on its target:

+
Iab:B 6_@299% and  ¥p="7.

14> 7

E=yE,=E+E, aond E, ,=6E;=5.63 GeV

2 - To begin with, a very energetic antiproton is
difficult to frap, hence the interest in first slowing it
down. If it first encounters a target and creates a
pair, the antiproton thus created will be much less
energetic. Its energy at the threshold in the
laboratory :

E=yE, y=2 and E,=E,~1GeV<6E,

We obtain antiprotons of kinetic energy six times less.
So we could use the p's of kinetic energy above 6
GeV tfo create E'S. We could create them in large
quantities, because protons have a flux 10,000 times
higher than 5‘3.

10. Helical motion Exercise p330.
p(t)=r
1- 10(t)= z=550
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X=—worsin ot

. 2
X=—wmwrcosmt

2-{ y=wrcoswt y=—w’rsinot a-v=0 doxMH
2=V i=0
- 2
3-4 - v=\/w2r2+vzzzcst ﬂ:0 a=w’r=cst=—
dt R
2 2
% 2wy
R=r+— P=—m— R=r+ pz
or 4r

0=2n

2 2
_ v
5- I= f \/r2d62+d22=2n\/r2+—22=2nr\/1+ pz >
00 Q) 47°r

2

4
— _ 2_.2 2 Ll 2
V|=V, v, =or v'=vi+v, r=—;R=cos aR

v

V) Vi v
L L v
I=2n—=Ry1+—L=2nR—*+=2nr—
1% vy v Vi

2nr

[=27tRcos o=
cos o

These last two expressions depend only on the geomettric
quantities r and o, they depend only on the shape of the
tfrajectory and not on the speed at which it is traveled.
These formulas are therefore also frue for non-uniform
helical motion.

11. The magnetosphere Exercise p331.
1 - Magnetic force: fzq VAB.

Force power: P:_f-il’ then P=0.
N dT
Kinetic power theorem: P:I

(E or Tbecause the energy of mass is constant).
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So T=(y—1)mc’=cst and v=cst.

2 - Helical frajectory
Solving the system of differential equations:

dv_ . = N
myE:qv/\B V=V, (y is here constant)

Motion, projected in a
plane perpendicular to 1_3
myv,
lq|B
A negative particle rotates in the
tfrigonometric direction for a
forward field E
Cyclotron angular frequency:
o=ldlB
my
Motion, projected along the
direction of 1§, uniform.
Constant pitch helix.
Charged particles wrap around the
magnetic field lines.

circular of radius R=

3 - Magnetic field lines flow from
North to South (magnetic poles).
The North of a compass is attracted
to the Earth's magnetic South .
located not far from the geographic North (historical
convention of a magnetic "North").

The magnetic flux is conserved: ® = fﬁﬁ B-dS=0.

Consequence: by conservation of the flux on a field tube,
the magnetic field is more intense when the field lines
tighten.

Components of Bin spherical coordinates:
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_ W 2cos€)l Be_ﬁMsmO
" 4n r3 4x r

and B_=0.

Néeo

u,=4nx10'm.T/A and M=7.7x10%A.m’

4 - When the lines of a tube fighten, the field is no longer
homogeneocus and a force appears which pushes the
particle towards
the zone of
weak field:

f=qVA(B +B||) fJ_+f|| and fuzqi/'/\Bj_.
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The charged particles, trapped in the magnetosphere, go
back and forth between the poles (fo give some orders of
magnitude, an electron can make a round trip in one
second, for protons and antiprotons it is longer: a few tens
of seconds. It depends on the energy of the particle and
its distance from the Earth).

5- The field lines weaken with altitude. The field is
therefore more intense downwards with a smaller radius of
curvature. Our two-zone model, combining half circles of
different radii, gives an average eastward drift velocity for
a negatively charged particle:

_D1_D2_ Bz_B1

=T, 1, “"B>+B,
2 2
Up .
—
v
© B, —

< . ‘ i

® B,
Down

Drift of a charged particle in a non-uniform field.
Electrons, protons, and antiprotons drift around the Earth.
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6 - Trap:

a- B:BrLTr+B9J9+B(pLT@:BX?+By7+BZE
Without going into technical details:

U =sin 6 cos cp_1'>+sinﬂsincp_j+c056i<’

d,=cosOcos ¢ i +cos6 sincp}'—sinel_é

u,=—singi+cosq j

[3xzi+3yz]+(22°—x*—y*)k]

- M
Then: B(x,y,z)z Ho S
r

with r=vVx’+y’+z°

d m c my v Bi
vxzi(vyB -V By)x/cz—vi—vzy—vi

mc
v'yzmic(szx—vaZ)\/cz—vi—vi—vf
V'Z:#(VXB},—V),BX)\/C -V —vi—v

¢ [ k=v,=A(v,) A Ay A3 Ay
y=v,=B(v,) B, B, B, B,
Z:Vz:C(Vz) ¢, G, G, C,
:D(x,y,z,vx,vy,vz) D, D, D, D,

\)X
v, E(x,y,z,vx,vy,vz) E, E, E, E,
v,=F(x,y,z,v,,v,,v,) F, F, F; F,

X)) Yy

494



d-

e Case of an antiproton of 2 GeV trapped in the
equatorial plane: We will practice with this particular case
where the motion is plane. Initially the antiproton is
placed at 20,000 km from the center of the Earth and has
a speed of 95% of ¢ directed towards the East,

-Curves : during T=0.8 s with n=500,000 iterations:

Perspective:

Side view:

4000 km
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-Characteristics: The particle executes its cyclotron rota-
fion while drifting towards the East. The anfiproton goes
around the Earth in a little more than 0.8 seconds and
performs, in the same time, about 7 cyclotron rotations.
On a cyclotron rotation the angle varies of 53° and it
takes 0.12s:

Teyeo=0.12s and  Tgr=0.82s.

Let us find the order of magnitude of the cyclotron period
with our formulas. First, the expression of the dipole
magnetic field is simplified in the equatorial plane:

o M
B(x,y,0)=— Ho

- u,M
~k with ——=7.7x10"T.m’
Amr 4n
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The frajectory is between rin=~11,400 kmn & rnex=20,000 km
WIth Tog=15,700 km. Hence Brax=5.2x10°T, Bpn=0.96x10°T
and Bayg=2.0x10°T:

~27 my
e

T ~(0.10s

cyclo
avg

which is correct considering the great inhomogeneity of
the magnetic field. The cyclotron frequency variations are
greater than a factor of § between perigee and apogee.
If the particle went around the Earth with a perigee of
20 000 km, it would take 0.44 s.

-Trajectory stability: We compute trajectories for
increasing n and observe if they tend towards a stable
trajectory.
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The simulations converge: in black n=500,000, and, with
each halving of the numerical work, in lighter gray each
time, n=250,000, n=125,000, n=62,500, n=31250, and
n=15,625.

-Energy error:
The energy of a particle is constant in a magnetic field.
We plot the error on the energy as a function of the
number of iterations.

2 GeV Antiproton trapped in the magnetosphere of Earth

Global error on energy versus numerical work
AB maximal on a step as a function of n

27 X
\\
-3 ‘\\
.
< -4
<
o \\\
k<] ~l
™ _5 ey
.“\“ log A8,,..." =-1.01logn + 3.06
5 ‘\\\ R =r2 = 0,99997
by
\\.\
y T~
g, ™
- log AE =-5/07 log n +15.6
R =r2=0.999989
-9
-10
35 4 4.5 5 5.5 log n

The behavior is excellent, the energy variations decrease
exponentially and rapidly with work. We have a very
regular decrease (correlation coefficient close to 1) and
without accidents; we are reassured about the
convergence. The hazardous variations in high work are
normal, they are due to rounding errors. Indeed, in the
program we have numbers with a precision of 14
significant digits, but for a precision of 107° MeV and an
energy of 2000 MeV, the maximum precision is precisely
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reached. In gray, the maximum angle variation over one
step. We note fthis value reached at the end of the
calculation on fthe last turn where the curvature is
important. Here again the result is very good.

-The antiparticle test: Our trajectory starts from an initial
point I to reach a final point F. We now consider another
particle of the same mass and opposite charge which
starts with the final conditions of the first one I'=F to reach
its final point F'. The particle of opposite charge leaves
from the same position with a speed in the opposite
direction. Logically the anftiparticle must go back and
perfectly resume the path in the other direction to end up
in F'=1. The force is the same and the change of sign of
the velocity is like going back in time. The tfrajectory not
being exact we can estimate the difference with the
ideal trajectory.

Evolution of the distance between [ and F':

T=0.8s step n dr1
RK4 h=25.6 us 31,250| 3,240 km
RK4 h=6.4 us 125,000 688 km
RK4 h=1.6 ps 500,000 167 km
RK4 A AB=0°0'5.65" A 31,250/ R31,542| 2,354 km
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n=31250

Principle of path reversal: Just as a photfon fakes the same
path if it goes back in the other direction, in the same
way that the Voyager probe would take the slings in
reverse order to slow down fo the Earth, a proton goes
back through the path of the antiproton fo return to ifs
initial position. A simulation that does not approximately
verify this property is not valid.
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n=125000

e Case of an antiproton of 500 MeV:

Initially the antiproton is placed in the equatorial plane at
14,800 km from the center of the Earth with a velocity of
76% of ¢ directed towards the Northeast.

-Curves : during T=2s with n=500,000:
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-Characteristics: The antiproton goes around the Earth in
about 3 seconds. In the same time there are about 13 go
and return between the poles. And on each go and
return between the mirrors we count about ftwenty
cyclotron rotations:

Tainr=3.28 , Tpoes=0.24s and Teyeo=8.9 ms to 42 ms.

The cyclotron period is inversely proportional to the
magnetic field strength. The magnetic field varies from
2.4x10°T at the equator to 11x10°T at the poles.
Approaching the poles the radius of curvature becomes
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small around 300 km. It is equalized at the mirror points
with the cyclotron radius, the pitch of the helix becomes
zero and the motion is momentarily plane with a velocity,
parallel to the magnetic field, equal to zero. At the
beginning, at the equator, the radius of curvature Re. is
2,167 km, the cyclotron radius R« 1.083 km and the helix
pitch p 6,806 km.

. , dv v
Radius of curvature calculation: —=0 => R.,,=—
dt a

v-B
Helix pitch calulation: vi=—2= & P=VjToq,
\%
Cyclotron radius: vl=\/v2—v"2 & Rcyclo:—(L)J_

cyclo

-Stability of the ftrajectory: In black, we recognize the
frajectory for n=500,000. In gray, the one for n=200,000.
Until the fourth mirror there is a good correspondence,
then the curves diverge and become significantly
different. On the gray curve the curvatures become
stronger and the spins are more dived.

-Energy error: Here the error curves are more uneven than
for the 2 GeV antiproton in the equatorial plane. We
regularly have peaks above a baseline. The peaks on the
energy variation and the angle variation are correlated.
As we could suspect, it is on the most bent parts of the
frajectory, that the energy has difficulty to be conserved.
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log AE (MeV)

Antiproton of 500 MeV trapped in the Earth's magnetosphere
Global error on energy versus numerical work
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-Antiparticle test: We perform the test on two go and
return trips between the poles.

T=0.488 s temporal step n de
RK4 h= 10 us 48,800 463 km
RK4 h=4 us 122,000 188 km
RK4 h=1 us 488,000 39 km
E=500 MeV
T=0.488 s

h=10 ps

We succeed in simulating an antiproton belt in the Earth's
magnetosphere. For accurate results a high computing
power is needed.

File: www.voyagepourproxima.fr/magnetique.php
source code: .../docs/magnetique.ixt
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12. Penning trap Exercise p333.

1 - This vector field derives from a potential if the
cross derivatives are equal:

ov- 0V- 0V=
— I———J——k

0 X oy oz

IfVexistss E=—VV=

For example,
O0E, OE
ov___ oV if and only if F=—L
0x0y O0yox oy O0x

Now dll the cross derivatives are zero, so the
condition is verified.
. U,
Integration: V=—-
Iy
2- F=qE then F(0)=0: position of equilibrium.
Stapility: E =qV (potential energy).

2

0 Ep:+2eUO
2 2

0z ry

2 2

0 EZP:_zeEJ%O and 0 E2p:_2e210<0

0 X ro oy ry

unstable in the plane (Oxy).

2 2
X + 2
y_Z

+cst, ry=v2z,.

>0, stable along (O2).

3-a- Magnetic force:

- - X\ |0 B,y
F=—eVAB=—e|y|A| 0 |=—€|—B,x
z| |\B, 0

The force along z is zero: the equilibrium and stability
along this direction are not modified.

3-b- Fundamental principle of dynamics:
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eU
——2°x+BOy (1) X= ;)x—mcy
ro mr,
X U, eU, ,
m|y|=—e|—— y—B,x|={(2) y=——Fy+o.x
5 r mr,
2U 2eU
20 5= 2OZ
ro mr,
, . . . eU,
M+ = p—jo.p— > p=0
0

Characteristic equation with p=Ae"":

eU , 4elU,

—=0 and A=-o +—"
mr, mr;

The solutions are harmonic if the exponential has
complex argument:

2 .
r'—jo.r—

4eU,

5
mry

a negative discriminant gives >

4mU,
Then: B,>4,———=B..
er,

_— ,_ eu L
Oscillations along z: 2=———3z and Z+w, z=0,
m

solutions of the form: z(t)=z,,cos(w, t+q),

2eU,
= ,= =
mry
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.1 4mU,
3-c- r=jo, | 1x/1-——
2 eryB,

solutions: p=Ae’" “+Be’™" (A,B)eC?,

1 4mU,
UJC':U%E 1+ 1———
ery,B,
4mU
wm:wcé 1—41—— g
er,B,
N.A.: B,~2.14mT < B,,

w,~145rad/s, f,~58kHz,
®,,~199rad/s=32turns/s,
w,~m,'=52.7x10°rad/s and f.~f.'~8.4MHz.

4 - Microscopic cage:

a- It is not an electric monopole, because
the fotal charge is zero. It is not a dipole, because
the barycenters of the positive and negative
charges are identical. This charge distribution can
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therefore correspond to that of a quadrupole.

a W 2cos0
b- B=2B|r=—,0=0|=2—
0 r r \/E ’ ) 43'5‘ B r3
1 Wolp , a
and B,=7% ~10.5T th d=—.
0 T d3 Wi \/2
@
1 ¢ - The total electric field
E, is the sum of the electric
JM/ fields generated by the six
p /rf/ /, point charges.
— o o We place us on the
d verfical axis (Oz) oriented
along to the two magne-
d tic moments.
a
29
At point M(z, 0, 0):
—2e —2e .
— 1 —( )2+( )2+4><s1noc>< I
dmey| (d—z)* (d+z) d+z

With z small in front of d: sina~tana=z/d

E~—2 1—5)2— 1+2 72+2£ 1+Z—2 B
2me,d’ d d d\" d°
N L

ne,d I
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4mU
d- B=y 0 [ O 1 35%10°T > B,
er; ne,d

The magnetic field is totally insufficient with a factor
of about one milion to trap antiprotons. Perhaps
within a ferromagnetic material the B, field could
reach such values.
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